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We generalize the pre-orthogonal adaptive Fourier approximation developed by T. 
Qian et al. [9,7,10] to functions in the Bergman space on the unit disc and the unit 
ball to the Bergman space A2(D) on the irreducible bounded symmetric domain 
D . We show that A2(D) satisfies the boundary vanishing property, so that the 
maximum selection principle allows us to give an adaptive expansion of any function 
f ∈ A2(D) in terms of linear combinations of generalized kernel functions in an 
optimal way.

© 2021 Published by Elsevier Inc.

1. Introduction

Let D be the subset of all p × q complex matrices z in Cp×q such that Iq − z∗z is positive definite, where 
p ≥ q, and z∗ is the conjugate transpose of z, so D is a bounded symmetric domain of type I. Let A2(D) be 
the Bergman space of all square integrable holomorphic functions on D with respect to Euclidean volume 
form dV in Cp×q,

A2(D) =
{

f is holomorphic on D
∣∣∣ ‖f‖2 =

∫
D

|f |2 dV < ∞
}
.

Bergman space is a Hilbert space with inner product

〈f, g〉 =
∫
D

f g dV.
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L. K. Hua in [3] constructed the Bergman kernel: for any z, w ∈ D ,

K(z, w) = 1
|D |det(Iq − w∗z)p+q

∈ A2(D)

and established the reproducing property f(w) = 〈f, K(·, w)〉 for any f ∈ A2(D).
In particular, A2(D) is a reproducing kernel Hilbert space with positive definite kernel function kw(z) =

K(z, w), and the linear span of all kernel functions { kw | w ∈ D } is dense in A2(D). In the other words, 
one can use a finite linear combination of kwi

with wi ∈ D to approximate any function in A2(D).
In the general setting of reproducing kernel Hilbert space (RKHS), the third author proposed POAFD 

scheme to approximate any element in underlying space with linear combination of kernel functions. We 
apply this proposal to Bergman space A2(D) setting in this paper, we outline the idea of POAFD below. 
More details can be found in our main Theorem 1.

Naively, for any given distinct points a1, a2, · · · , an of D , the positive definite property of the reproducing 
kernel K of A2(D) implies that {ka1 , ka2 , · · · , kan

} is linearly independent in A2(D), one then applies Gram-
Schmidt orthonormalization to obtain an orthonormal sequence { B1, B2, · · · , Bn } of A2(D) such that 
B1 = ka1/‖ka1‖ and

Bm =
kam

−
∑m−1

i=1 〈kam
,Bi〉Bi

‖kam
−

∑m−1
i=1 〈kam

,Bi〉Bi‖
(1)

for all 2 ≤ m ≤ n. Then for any f ∈ A2(D), let gn be the image of the orthogonal projection of f onto the 
span{ B1, · · · , Bn } = span{ kai

| i = 1, · · · , n },

gn =
n∑

i=1
〈f,Bi〉Bi and ‖gn‖2 =

n∑
i=1

|〈f,Bi〉|2. (2)

In [4,8,5], T. Qian proposed the maximal selection principle to select an optimal sequence {a1, · · · , an} of 
points in D successively such that the modulus |〈f, Bi〉| of the coefficients in (2) is as large as possible for 
i = 1, 2, · · · , n.

In particular, when m = 1, the first point a1 ∈ D is chosen to satisfy the following

|〈f, ka1

‖ka1‖
〉| = sup

{
|〈f, kb

‖kb‖
〉|

∣∣∣ b ∈ D
}
. (3)

One can establish the existence of a1 by means of boundary vanishing property (BVP) in Proposition 4
below. For the other points am (2 ≤ m ≤ n) in D , we establish their existence inductively by means of 
studying the following objective function gm defined by

gm(b) = |〈 f, Bb
m 〉|, (4)

for all b ∈ D \ {a1, · · · , am−1}, where Bb
m = kb−

∑m−1
i=1 〈kb,Bi〉Bi

‖kb−
∑m−1

i=1 〈kb,Bi〉Bi‖
.

With the help of BVP again, one can prove that gm can be extended to a bounded continuous function 
on Dm = D \ {a1, · · · , am−1}. Then the sup{ g(b) | b ∈ Dm } can be realized by a limit lim

i→∞
gm(bi) where 

{bi}i≥1 is a sequence in Dm. By passing to its subsequence if necessary, we may assume that the sequence 
{bi}i≥1 converges to a point a in D . One can use BVP to rule out the case that a lies in the boundary of 
D , so a ∈ D . Then we have the following two cases.

In the case of a /∈ {a1, · · · , am−1}, we set am = a and Bm as in (1). However, the other case 
a ∈ {a1, · · · , am−1} poses a serious problem, one can still set am = a, which implies that the m points 
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a1, a2, · · · , am are not distinct, so the set {ka1 , · · · , kam
} is linearly dependent. For this reason, we follow 

the idea of [8,10] by introducing the following generalized kernels

ka,α(z) = ∂|α|

∂wαK(z, w)
∣∣∣
w=a

for any multi-index α ∈ Npq.
In this case, we set am = a. By analyzing the function gm in more detail, we will prove in section 4

that there exist a positive integer � and a sequence (cα)|α|=� of complex numbers with all α ∈ Npq of order 
|α| = �, such that

E =
∑
|α|=�

cαka,α 	= 0, and Bm =
E −

∑m−1
i=1 〈E,Bi〉Bi

‖E −
∑m−1

i=1 〈E,Bi〉Bi‖
∈ A2(D).

In both cases, the following maximal modulus property holds:

|〈f,Bm 〉| = sup
{ ∣∣∣∣∣

〈
f,

kb −
∑m−1

i=1 〈kb,Bi〉Bi

‖kb −
∑m−1

i=1 〈kb,Bi〉Bi‖

〉∣∣∣∣∣
∣∣∣ b ∈ D \ {a1, · · · , am−1}

}
. (5)

We can summarize all of these in the following.

Theorem 1. (Maximal selection principle). Let D be a bounded symmetric domain of type I. For any f ∈
A2(D), there exist

(i) a sequence (ai)i≥1 of points in D ,
(ii) a sequence (ka1,m1 , ka2,m2 , · · · , kai,mi

, · · · ) of generalized kernel functions in A2(D), where mi ∈ N

and

kai,mi
(z) =

∑
|α|=mi

ci,α
∂|α|K

∂wα (z, w)
∣∣∣
w=ai

for some ci,α ∈ C,
(iii) an orthonormal sequence {B1, · · · , Bi, · · · } of rational functions in A2(D) obtained by applying Gram-

Schmidt orthonormalization process to the sequence in (ii), such that the following maximal selection 
principle holds:

|〈f,Bi〉| = sup
{

|〈f,Bb
i 〉|

∣∣∣ b ∈ D \ {a1, a2, · · · , ai−1}
}

(6)

for all i ≥ 1.

It follows from our main Theorem 1 that for any f ∈ A2(D), we can construct an orthonormal sequence 
{Bi}i≥1.

Theorem 2. (Convergence of POAFD). With the notations stated above, the sequence 
∑n

i=1〈f, Bi〉Bi in 
A2(D) converges to f in A2(D), i.e.,

f =
∑

〈f,Bi〉Bi in A2(D). (7)

i≥1
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The right hand side of equation (7) is called a pre-orthogonal adaptive Fourier decomposition (POAFD) 
of f . Similar results could be found in [1], and the monograph [6] written in Chinese is still one of the best 
source of the recent development of adaptive Fourier decomposition (AFD), including some applications of 
AFD and its variants in signal processing.

The proof of Theorem 1 is quite long as it occupies most of the paper. The rest of this paper is structured 
as follows. In section 2, we review some basic facts of the irreducible bounded symmetric domain D of 
Type I, the Bergman space A2(D) and the Bergman kernel K. In section 3, we introduce generalized 
kernel functions ka,α and proved that they form a linearly independent set. We show that A2(D) satisfies 
boundary vanishing property which is related to the maximal selection principle in Theorem 1. In section 
4, we establish a maximal selection principle in A2(D) by finding an explicit limit Bi in A2(D) so that the 
optimal value of |〈f, Bb

i 〉| on D can be attained. In section 5, we give a proof of Theorem 2.

2. Bergman space A2(D)

2.1. Notations

Let N be the set of all non-negative integers. Denote by Npq the set of all multi-indices α = (α1,1, . . . , αp,q)
of nonnegative integers. We use α ≥ α′ to mean αi,j ≥ α′

i,j for all i = 1, . . . , p and j = 1, . . . , q. In particular, 
α ≥ 0 means all αi’s are nonnegative. We also write |α| = α1,1 + · · · + αp,q, α! = α1,1! · · ·αp,q!.

For any fixed positive integers p ≥ q, let Cp×q be the set of all complex p × q matrices (aij)1≤i,j≤q.
A Hermitian matrix A = (Aij)1≤i,j≤q ∈ Cq×q is called positive semi-definite, denoted by A ≥ 0, if

z∗Az =
∑

1≤i,j≤q

zi Aijzj ≥ 0 (8)

for any column vector z = (z1, z2, · · · , zq)T ∈ Cq. Furthermore, A is called positive definite, denoted by 
A > 0, when the following condition holds:

z∗Az = 0 holds if and only if z = 0 in Cq.

Let Iq be the q × q identity matrix. Let D = { z ∈ Cp×q | Iq − z∗z > 0 } be an irreducible bounded 
symmetric domain D of Type I in the Helgason book [2]. This is a non-empty connected open subset in 
Cp×q. The condition Iq − z∗z > 0 implies that D is bounded in Cp×q, so it has a finite Euclidean volume, 
denoted by |D |. Our basic reference is Hua’s classical treatise [3]. In the following, we will use I to denote 
Iq. Let O(D) be the vector space of the holomorphic functions defined on the domain D . Obviously, the 
coordinate functions pi,j(z) = zi,j are holomorphic on D .

We use Cpq to denote the usual pq-dimensional complex vector space. From now on, we use Cpq instead 
of Cp×q, and equip Cpq with standard Euclidean norm ‖ · ‖. A power series in Cpq with center a ∈ Cpq is 
of the form ∑

α≥0
cα(z − a)α =

∑
α1,1≥0,...,αp,q≥0

cα1,1...αp,q
(z1,1 − a1,1)α1,1 · · · (zp,q − ap,q)αp,q , (9)

where cα1,1...αp,q
’s are complex numbers and

(z − a)α = (z1,1 − a1,1)α1,1 · · · (zp,q − ap,q)αp,q .

For holomorphic and anti-holomorphic derivatives of functions on domain in Cpq, we write

∂|α|

∂zα
= ∂|α|

∂z
α1,1 · · · ∂zαp,q

p,q
and ∂|β|

∂zβ
= ∂|β|

∂z
β1,1 · · · ∂zβp,q

,

1,1 1,1 p,q
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f (α)(z) = ∂|α|f

∂zα
(z) and f (β)(z) = ∂|β|f

∂zβ
(z),

in which we use a bar on top of the order multi-index β for the anti-holomorphic derivatives of order β. 
Similarly, if f(z, w) is defined on some open subset of Cpq ×Cpq, we denote

f (α,β)(z, w) = ∂|α|+|β|f

∂zα∂wβ
(z, w).

2.2. Reproducing kernel of A2(D)

We first recall the definition of reproducing kernel Hilbert space [11].

Definition 1. Let H be a Hilbert space of complex-valued functions defined on a non-empty set X with an 
inner product 〈 , 〉. H is called a reproducing kernel Hilbert space (RKHS) on X, if for any point x ∈ X the 
evaluation functional Lx : H → C defined by Lx(f) = f(x) is continuous on H.

The following proposition follows from the Riesz representation theorem.

Proposition 1. Let H be a RKHS on X. Then for any y ∈ X, there exists a unique function ky ∈ H such 
that f(y) = 〈f, ky〉 for all f ∈ H.

Definition 2. Let H be a RKHS on X and y ∈ X. The function ky in Proposition 1 is called the reproducing 
kernel function at the point y ∈ X. In this case, the function K : X ×X → C defined by

K(x, y) = ky(x)

is called the reproducing kernel for H.

Lemma 1. The linear span of the set { ky
∣∣ y ∈ X } of all reproducing kernel functions ky is dense in H.

Proof. Let V be the closure of the linear span of {ky
∣∣ y ∈ H} in H. Suppose contrary that V is a proper 

closed subspace in H. Then there exists a non-zero f in the orthogonal complement V ⊥ of V in H. f is 
orthogonal to ky for all y ∈ X and thus f(y) = 〈f, ky〉 = 0 for every y ∈ X, i.e., f = 0 in H, which is a 
contradiction. Hence, V = H. �
Theorem 3. [3] (i) The Bergman space A2(D) is a reproducing kernel Hilbert space and the reproducing 
kernel is the Bergman kernel in the form

K(z, w) = |D |−1 · (det(I − w∗z))−(p+q). (10)

(ii) The reproducing kernel functions kw(z) = K(z, w) satisfy the following reproducing property: for any 
w ∈ D and for any f ∈ A2(D),

〈f, kw〉 = f(w).

(iii) The linear span of the set {kw | w ∈ D} is dense in A2(D), i.e., any function in A2(D) can be 
approximated by linear combination of kw’s.
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The domain D in Cpq can be viewed as generalizations of the unit disc D in C when p = q = 1, and of 
the unit ball Bp in Cp when p > q = 1 respectively.

The following example shows that the classical Bergman space A2(Bp) on the unit ball Bp in Cp is a 
special case of the space A2(D). The corresponding topological boundaries and the Bergman kernels are 
recorded.

Example 1. For p > q = 1, we have

D =
{

z = (z1, . . . , zp) ∈ Cp
∣∣ z∗z =

p∑
k=1

|zk|2 < 1
}
,

which is the unit ball Bp in Cp, and

∂Bp =
{

z ∈ Cp
∣∣ z∗z = 1

}
is its boundary. The Bergman kernel for the Bergman space A2(Bp) is given by the following rational 
function in z and w:

K(z,w) = 1
|Bp|(1 − w∗z)p+1 . �

The topological boundary ∂D of D is the disjoint union of q connected components B1, · · · , Bq, where

Bi =
{
z ∈ Cpq

∣∣ I − z∗z ≥ 0 and has rank q − i
}

for 1 ≤ i ≤ q, and Bi+1 ⊂ Bi for 1 ≤ i ≤ q − 1.
The following lemma will be used in the proof of the boundary vanishing property (BVP) of A2(D) in 

Proposition 4.

Lemma 2. Let A ∈ D and B ∈ D = D ∪ ∂D . Then,

(i) det(I −A∗B) 	= 0;
(ii) if A0 ∈ ∂D , then lim

A→A0
det(I −A∗A) = 0;

(iii) the function fA(B) = | det(I − A∗B)|−1 extends continuously to D and fA(B) is bounded for any 
B ∈ D .

Proof. (i) Suppose contrary that det(I−A∗B) = 0, as I−A∗B is a q×q matrix, there exists a non-zero v ∈ Cq

such that (I −A∗B)v = 0. Then we have 0 = v∗0 = v∗(I −A∗B)v = v∗v−v∗A∗Bv = ‖v‖2 − (Av)∗(Bv), 
which implies that

‖v‖2 = 〈Bv, Av〉. (11)

On the other hand, as A ∈ D , B ∈ D and v 	= 0 ∈ Cq, we have

v∗(I −A∗A)v > 0 and v∗(I −B∗B)v ≥ 0,

and hence we have ‖v‖2 = v∗v = v∗Iv > v∗A∗Av = (Av)∗(Av) = ‖Av‖2, and ‖v‖2 ≥ ‖Bv‖2 similarly. 
Then ‖Av‖ ‖Bv‖ ≤ ‖Av‖ ‖v‖ < ‖v‖2. It follows from (11) and Cauchy-Schwarz inequality that

‖v‖2 = 〈Bv, Av〉 = |〈Bv, Av〉| ≤ ‖Bv‖‖Av‖ < ‖v‖2,
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which is a contradiction.
(ii) As p(A) = det(I −A∗A) is a polynomial in the entries of A and their conjugates, it is continuous on D . 
For any point A0 in the boundary ∂D , the rank of I −A∗

0A0 is less than q, limA→A0 p(A) = p(A0) = 0.
(iii) For a fixed A ∈ D , by (i), the function h(B) = (det(I−A∗B))−1 is bounded on D , and hence the result 
follows. �
3. Generalized kernel functions in A2(D)

In the one-dimensional case [10], the authors constructed generalized kernel functions by differentiating 
the reproducing kernel functions iteratively. In this section, we generalize their idea to high-dimensional 
case.

We are going to define the generalized kernel functions ka,α from a given kernel ka(z) = K(z, a) by 
taking anti-holomorphic derivatives of order α with respect to second variable, and prove some important 
and useful properties which will be used in later sections.

3.1. Generalized kernel functions

Definition 3. For any given a ∈ D , α ∈ Npq, define generalized kernel function ka,α on D of order α at the 
point a to be

ka,α(z) = ∂|α|

∂wα kw
∣∣
w=a

= ∂|α|

∂wαK(z, w)
∣∣∣
w=a

. (12)

In particular, ka,α = ka if α = (0, . . . , 0) ∈ Npq.

By Theorem 3(iii), any function f ∈ A2(D) can be approximated by the linear combination of kernel 
functions ka on D . For any given f ∈ A2(D), we want to select a sequence {ai}i≥1 of points in D successively 
and to apply Gram-Schmidt orthonormalization process to construct a sequence {Bi}i≥1 of orthonormal 
rational functions in A2(D).

We first study some properties of kernel functions ka and their anti-holomorphic derivatives. By repro-
ducing property, we have

‖ka‖2 = 〈ka, ka〉 = ka(a) = |D |−1 · (det(I − a∗a))−(p+q). (13)

We define the normalized reproducing kernel functions ea at a ∈ D by

ea(z) = ka(z)
‖ka‖

= ka(z)√
ka(a)

. (14)

By Theorem 3(iii), the linear span of functions ea is also dense in A2(D). Now, by the reproducing property 
again, we have

〈f, ea〉 =
√

|D |(det(I − a∗a))
p+q
2 f(a). (15)

In this section, the main result in Proposition 2 gives a characterization of the generalized kernel functions 
of higher order. In order to prove Proposition 2, one can prove the following lemma by the Cauchy-Riemann 
equations and induction.

Lemma 3. Let f(z, w) be a complex-valued function defined on Cpq × Cpq. Suppose that f satisfies the 
following 3 conditions:
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(i) f(w, z) = f(z, w) for all (z, w) ∈ Cpq ×Cpq;
(ii) f(z, w) is holomorphic in the first variable z;
(iii) f(z, w) is anti-holomorphic in the second variable w.

Then for any α ∈ Npq, we have f (α,β)(b, a) = f (β,α)(a, b).

Proposition 2. (i) ka,α ∈ A2(D) for any a ∈ D and α ∈ Npq.
(ii) 〈F, ka,α〉 = ∂|α|F

∂zα (a) for any F ∈ A2(D), and

〈ka,α, kb,β〉 = K(β,α)(b, a). (16)

(iii) Let P = {a1, · · · , an} be n distinct points in D and m ∈ N. Then

{kai,αi
∈ A2(D) | αi ∈ Npq, |αi| ≤ m, i = 1, . . . , n}

is linearly independent in A2(D).

Proof. (i) By the definition of kw(z) = 1
|D| det(I−w∗z)p+q and ka,α(z) in (12), we have

ka,α(z) = ∂|α|K

∂wα (z, w)
∣∣∣
w=a

= pα(z, w)
|D |

(
det(I − w∗z)

)p+q+|α|

∣∣∣
w=a

, (17)

where pα(z, w) is a polynomial in z and w. By Lemma 2(i), det(I −w∗z) is nonzero for any w ∈ D and any 
z ∈ D . By Lemma 2(iii), the function g(z) = | det(I −w∗z)|−1 is bounded for all w ∈ D and z ∈ D , and so 
is kw,α. Hence, kw,α ∈ A2(D).
(ii) It follows from Theorem 3(iii) that the vector space span{ka | a ∈ D} is a dense subspace of A2(D). It 
suffices to prove (ii) when F = ka where a ∈ D . By Lemma 3, we have

〈ka, kb,α〉 = 〈kb,α, ka〉 = kb,α(a) = ∂|α|K

∂wα (z, w)
∣∣∣
(z,w)=(a,b)

= ∂|α|K

∂zα
(z, w)

∣∣∣
(z,w)=(b,a)

.

This implies that for any α, β ∈ Npq and a, b ∈ D , we have

〈ka,α, kb,β〉 = ∂|β|

∂zβ
(ka,α(z))

∣∣∣
z=b

= ∂|β|

∂zβ

(
∂|α|

∂wα (K(z, w)
∣∣∣
w=a

) ∣∣∣
z=b

=
(

∂|α|+|β|

∂zβ∂wαK(z, w)
) ∣∣∣

(z,w)=(b,a)
= K(β,α)(b, a).

(iii) Suppose that 
∑

a∈P,|α|≤m ca,αka,α = 0, we want to show that ca,α = 0 for all a ∈ P and multi-indices 
α of total order at most m.

For any fixed vectors λ = (λ1, λ2, · · · , λpq) ∈ Cpq, a = (a1, · · · , apq) ∈ D ⊂ Cpq, and any t ∈ R, define 

fλ ∈ A2(D) by fλ(z) = e〈z,tλ〉 = exp(t 
pq∑
i=1

ziλi). Then 
∂|α|fλ
∂zα

(a) = tλ
α exp(t 

pq∑
i=1

aiλi) = t|α|λ
α exp(t〈a, λ〉), 

and from (ii),

0 = 〈fλ,
∑

a∈P,|α|≤m

ca,αka,α〉 =
∑

a∈P,|α|≤m

ca,α〈fλ, ka,α〉

=
∑

ca,α
∂|α|fλ
∂zα

(a) =
∑

ca,α λ
α
t|α| exp(t〈a, λ〉)
a∈P,|α|≤m a∈P,|α|≤m
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=
∑
a∈P

m∑
k=0

⎛
⎝ ∑

|α|=k

ca,α λ
α

⎞
⎠ tk exp(t〈a, λ〉).

As P ⊂ D ⊂ Cpq and there are only finitely many vectors in P , there exists a non-empty open subset U
in Cpq such that
(U1) λα 	= 0 for all α of order at most m for all λ ∈ U , and
(U2) for any λ ∈ U , the complex numbers 〈a, λ〉 are distinct for a ∈ P .

It follows from condition (U2) that for any fixed λ ∈ U , the set of the following functions in t:
{ tk exp(t〈a, λ〉) | a ∈ P, 0 ≤ k ≤ m } is linearly independent, which implies that the following com-
plex coefficients vanish for any fixed λ ∈ U :

∑
|α|=k

ca,α λα =
∑
|α|=k

ca,α λ
α = 0.

This vanishing condition of the homogeneous polynomial in λ of degree at most m on non-empty open 
subset U on Cpq and condition (U1) implies that all the coefficients ca,α in the polynomial above are all 
zero as well. �
Lemma 4. (Cauchy estimate) Let f be a holomorphic function on a n-dimensional polydisc Δ centered at 
a ∈ Cn with positive radius R′, and

f(z) =
∑
α≥0

fα(a)
α! zα

be the Taylor series of f centered at z = a. Suppose that R < R′ and let

MR(f) = max
{

|f(z)|
∣∣∣ z = (z1, · · · , zn) ∈ Δ, |zi − ai| ≤ R

}
.

Then for all α ∈ Nn, we have |f
(α)(a)
α! | ≤ MR(f)

R|α| . �
Next we will prove that the Taylor series of the Bergman kernel in the anti-holomorphic variables con-

verges in A2(D).

Proposition 3. Let a ∈ D ⊂ Cpq, v ∈ Cpq and t ∈ C with sufficiently small |t| such that a + tv ∈ D , then

(i) the series 
∑

α≥0 ka,α
(tv)α
α! converges in A2(D); and

(ii) in the norm topology of A2(D), we have

ka+tv =
∑
α≥0

ka,α
α! (tv)α.

Proof. (i) As K(z, w) = 1
|D| det(1−wT z)p+q and it is holomorphic in z ∈ Cpq and is anti-holomorphic in 

w ∈ Cpq, or equivalently it is holomorphic in w ∈ Cpq. For any multi-indices α, β ∈ Npq, and a, b ∈ D , it 
follows from Cauchy estimate in Lemma 4 that

|K(β,α)(b, a)| ≤ MR(K)
|α|+|β| , (18)
α!β! R
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where MR(K) = max{ |K(z, w)| | |zij−bij | ≤ R, and |wij−aij | ≤ R for all i, j }. Moreover, by Proposition 
2(ii), 〈ka,α, kb,β〉 = K(β,α)(b, a). Suppose t ∈ C with sufficiently small |t|, and any v ∈ Cpq, it follows from 
(16) that ‖ka,α‖2 = 〈ka,α, ka,α〉 = K(α,α)(a, a), and then from (18) and geometric series that

∑
α≥0

∣∣∣∣∣∣ka,α tvα

α!

∣∣∣∣∣∣ ≤ ∑
α≥0

‖ka,α‖
|(tv)α|
α! ≤

∑
α≥0

√
MR(K)
R2|α| |(tv)α|

≤
√

MR(K)
∑
α≥0

∣∣∣ ( tv
R

)α ∣∣∣ =
√

MR(K)∏
ij(1 − t|vij |

R )
. (19)

This implies that the series 
∑

α≥0 ka,α
(tv)α
α! converges in A2(D).

(ii) By expanding the function K(a + tv, b + tw) into power series of the holomorphic parameters tv and 
anti-holomorphic parameter tw, we have

‖ka+tv‖2 = K(a + tv, a + tv) =
∑

α,β≥0

K(α,β)(a, a)
α!β! (tv)α(tv)β , (20)

in which the series converges uniformly for all v in the unit ball of Cpq as long as |t| is sufficiently small. 
Then by Proposition 2(ii) and using the Taylor series expansion in (20), the result follows from the following 
estimate

∣∣∣∣∣∣ka+tv −
∑

|β|≤N

ka,β
(tv)β

β!

∣∣∣∣∣∣2

≤ ‖ka+tv‖2 − 2
∑

|β|≤N

Re〈ka,β
(tv)β

β! , ka+tv 〉 +
∑

|α|,|β|≤N

Re〈ka,β
(tv)β

β! , ka,α
(tv)α

α! 〉

= K(a + tv, a + tv) − 2
∑

|β|≤N

Re
(
K(0,β)(a + tv, a) (tv)β

β!

)

+
∑

|α|,|β|≤N

Re
(
K(α,β)(a, a)

α!β! (tv)α(tv)β
)

=
∑

α,β≥0

K(α,β)(a, a)
α!β! (tv)α(tv)β − 2

∑
α≥0,|β|≤N

Re
(
K(α,β)(a, a)

α!β! (tv)α(tv)β
)

+
∑

|α|,|β|≤N

Re
(
K(α,β)(a, a)

α!β! (tv)α(tv)β
)

= Re

⎛
⎝ ∑

|α|≥N,|β|≥N

K(α,β)(a, a)
α!β! (tv)α(tv)β

⎞
⎠ .

The last sum is the tail of the Taylor series of K(a + tv, a + tv) in t which converges uniformly to 0 for all 
unit vectors v of Cpq as N → +∞, provided that |t| is sufficiently small. �
3.2. Boundary vanishing property

In order to prove our main result the maximum selection principle in Theorem 1, it is crucial to check 
that the reproducing kernel function ka has the boundary vanishing property in Proposition 4(i). We start 
with the following easy lemma and proposition.
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Lemma 5. For any f ∈ A2(D) and any a ∈ D , define H(a) = ka ∈ A2(D) and G(a) = |〈f, ea〉|, where 
ea = ka

‖ka‖ . Then H and G are continuous on D .

Proof. As ‖ka‖ > 0 for all a ∈ D , it suffices to show that the function H(a) = ka is continuous from D to 
A2(D). In fact, as K(z, w) is continuous on D × D ,

‖kb − ka‖2 = ‖kb‖2 + ‖ka‖2 − 2Re〈kb, ka〉 = K(b, b) + K(a, a) − 2ReK(b, a)

converges to 0 as b approaches a. �
Next, we will prove that the function G in Lemma 5 can be extended continuously to D .

Proposition 4. (i) (Boundary vanishing property) For any f ∈ A2(D) and any b0 ∈ ∂D , we have 
limb→b0 |〈f, eb〉| = 0.
(ii) For any f ∈ A2(D), there exists a ∈ D such that |〈f, ea〉| = max{|〈f, eb〉|

∣∣ b ∈ D}.

Proof. (i) By Lemma 1, the linear span of {ka
∣∣ a ∈ D} is a dense subspace of A2(D). For any ε > 0, there 

exist a positive integer N , finite sequences {ai}Ni=1 ⊂ D and {ci}Ni=1 ⊂ C such that F =
∑N

i=1 cikai
, and 

‖f − F‖ < ε. Since ‖eb‖ = 1, the triangle inequality and the Cauchy-Schwarz inequality give

|〈f, eb〉| − |〈F, eb〉| ≤ |〈f − F, eb〉| ≤ ‖f − F‖ ‖eb‖ < ε.

For any b ∈ D , by (15), we have

|〈f, eb〉| ≤ |〈F, eb〉| + ε =
√
|D | |det(I − b∗b)| p+q

2 |F (b)| + ε

≤ |D |− 1
2 |det(I − b∗b)| p+q

2

N∑
i=1

|ci| |det(I − a∗i b)|−(p+q) + ε. (21)

By Lemma 2(ii) and 2(iii), the function t(b) = | det(I−a∗i b)|−(p+q) is bounded on D for all ai ∈ D . Therefore, 
the N -sum 

∑N
i=1 |ci| | det(I − a∗i b)|−(p+q) in (21) is bounded. Since lim

b→b0
det(I − b∗b) = 0, the result follows.

(ii) By Lemma 5, G(b) = |〈f, eb〉| is continuous on D . By (i), G(b) can be continuously extended to the 
compact subset D in Cpq. Then, consider the following two cases of M = max {G(b) 

∣∣ b ∈ D}.
If M = 0, then 0 ≤ |〈f, eb〉| ≤ M = 0 for all b ∈ D . By reproducing property of kb, f = 0 on D . In this 

case, choose a to be any point in D .
If M > 0, then it follows from BVP that G(b) = 0 for all b ∈ ∂D , i.e., the maximum M can only be 

attained at some interior point of D . Therefore, there exists a ∈ D such that M = G(a) = |〈f, ea〉|. �
4. Maximal selection principle

The goal of this section is to prove Theorem 1 about the existence of pre-orthogonal adaptive Fourier 
decomposition in A2(D). We will establish our main result Theorem 1 by a series of lemmas and propositions 
in the rest of this section. We first construct the sequence (an)n≥1 of points in D needed in Theorem 1(i) 
inductively on n.

4.1. Initial step for a1

Initial step. For n = 1, define f1 = f . The BVP in Proposition 4 implies that there exists a1 ∈ D such that

|〈f1,
ka1 〉| = sup

{
|〈f1,

kb 〉|
∣∣∣ b ∈ D

}
,
‖ka1‖ ‖kb‖
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which is the equality (6) of Theorem 1. In this initial step, we set

m1 = 0, ka1,m1 = ka1 and B1 = ea1 = ka1

‖ka1‖
.

Then in the inductive step, let’s first assume that we have a sequence (a1, · · · , an) of not necessarily dis-
tinct points in D , and a sequence (ka1,m1 , ka2,m2 , · · · , kan,mn

) in A2(D) as stated in Theorem 1. By applying 
Gram-Schmidt orthonormalization process to (kai,mi

)1≤i≤n, we obtain an orthonormal set {B1, · · · , Bn}
in A2(D). Define fj ∈ A2(D) be the j-th residual function as follows:

f1 = f, and fj = fj−1 − 〈fj−1,Bj−1〉Bj−1 (22)

for 2 ≤ j ≤ n + 1. We can deduce the following.

Proposition 5. Let f ∈ A2(D), {B1, · · · , Bn} be an orthonormal set in A2(D) and {fj}1≤j≤n+1 be defined 
in (22), then we have

(i) 〈fj , Bj−1〉 = 〈fj , Bj−2〉 = · · · = 〈fj , B1〉 = 0;
(ii) 〈fj , Bj〉 = 〈fj−1, Bj〉 = · · · = 〈f2, Bj〉 = 〈f1, Bj〉 = 〈f, Bj〉 for 1 ≤ j ≤ n;

(iii) fj = f� −
j−1∑
i=�

〈f, Bi〉Bi = f −
j−1∑
i=1

〈f, Bi〉Bi for 1 ≤ � < j ≤ n + 1;

(iv) span{ B1, · · · , Bj−1, Bj } = span{ ka1,m1 , ka2,m2 , · · · , kaj ,mj
} for 1 ≤ j ≤ n;

(v) 〈fj , kai,mi
〉 = 0 for 1 ≤ i < j ≤ n + 1;

(vi) kb −
∑n

j=1〈kb, Bj〉Bj = 0 if and only if b ∈ {a1, · · · , an}.

Proof. (i) Using fj = fj−1 − 〈fj−1, Bj−1〉Bj−1 and 〈Bi, Bj〉 = δij , one has

〈fj ,Bj−1〉 = 〈fj−1 − 〈fj−1,Bj−1〉Bj−1,Bj−1〉

= 〈fj−1,Bj−1〉 − 〈fj−1,Bj−1〉‖Bj−1‖2 = 0,

the others follow similarly.
(ii) follows from 〈fi+1, Bj〉 = 〈fi − 〈fi, Bi〉Bi , Bj〉 = 〈fi, Bj〉 if i < j.
(iii) follows from (ii) and fj = fj−1 − 〈fj−1, Bj−1〉Bj−1 = fj−1 − 〈f, Bj−1〉Bj−1.
(iv) The result follows from Gram-Schmidt orthonormalization process.
(v) The result follows from (iv).
(vi) If b /∈ {a1, · · · , an}, then by Proposition 2(iii), the set {ka1,m1 , · · · , kan,mn

} is linearly independent. If 
b ∈ {a1, · · · , an}, then kb ∈ span{ka1,m1 , · · · , kan,mn

}. Hence, by (iv), we have

kb −
n∑

j=1
〈kb,Bj〉Bj = 0 ⇐⇒ kb ∈ span{B1, · · · ,Bn}

⇐⇒ kb ∈ span{ka1,m1 , · · · , kan,mn
} ⇐⇒ b ∈ {a1, · · · , an}. �

The following lemma is an application of Theorem 1(iii), and it justifies for the existence in the search 
of an+1.

Lemma 6. Suppose that fj 	= 0 (1 ≤ j ≤ n), then |〈 fj , Bj 〉| 	= 0.
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Proof. As fj 	= 0, it follows from continuity of fj that there exist a ∈ D\{a1, · · · , aj−1} and δ > 0 such 
that |fj(w)| > 0 for all point w in the open ball B centered at a with radius δ. As {a1, · · · , aj−1} is a finite 
set in D , one can find a point z ∈ B \ {a1, · · · , aj−1 } ⊆ D \ {a1, · · · , aj−1 }.

As z 	= ai (1 ≤ i ≤ j − 1), Proposition 5(vi) implies that kz, B1, · · · , Bj−1 are linearly independent, and 
so

0 < ‖kz −
j−1∑
i=1

〈kz,Bi〉Bi‖2 = ‖kz‖2 −
j−1∑
i=1

|〈kz,Bi〉|2 ≤ ‖kz‖2. (23)

Applying Gram-Schmidt orthonormalizaton process to kz with orthonormal set { B1, · · · , Bj−1 }, one 
can construct

Bz
j =

kz −
∑j−1

i=1 〈kz,Bi〉Bi

‖kz −
∑j−1

i=1 〈kz,Bi〉Bi‖
∈ A2(D).

In particular, 〈Bz
j , Bi〉 = 0 for 1 ≤ i ≤ j − 1.

Recall that fj = f −
∑j−1

i=1 〈f, Bi〉Bi in Proposition 5(iii). Then it follows from the orthonormal set 
{B1, · · · , Bj−1, Bz

j }, the inequality (23), Proposition 5(i), (6) in Theorem 1(iii) and Proposition 5(iii) that

0 <
|fj(z)|
‖kz‖

= |〈fj , kz〉|
‖kz‖

=
|〈fj , kz −

∑j−1
i=1 〈kz,Bi〉Bi〉|
‖kz‖

≤ |〈fj , kz −
∑j−1

i=1 〈kz,Bi〉Bi〉|
‖kz −

∑j−1
i=1 〈kz,Bi〉Bi‖

= |〈 fj , Bz
j 〉|

= |〈fj +
j−1∑
i=1

〈f,Bi〉Bi, Bz
j 〉|

≤ sup
{
|〈f,Bb

j〉|
∣∣∣ b ∈ D \ {a1, a2, · · · , ai−1}

}
= |〈f,Bj〉| = |〈fj ,Bj〉|. �

4.2. Inductive step for an+1

Inductive step. Suppose that fn+1 	= 0. We are going to show that there exists a point an+1 ∈ D and an 
associated function Bn+1 ∈ A2(D) satisfying the following maximal selection principle:

|〈fn+1,Bn+1〉| = sup
{
|〈fn+1,B

b
n+1〉|

∣∣∣ b ∈ D \ { a1, · · · , an }
}
,

where the test vector Bb
n+1 is the unit vector associated to the non-zero vector kb −

∑n
i=1〈kb, Bi〉Bi which 

is orthogonal to the vector subspace span{B1, · · · , Bn} in A2(D), i.e.,

Bb
n+1 =

kb −
∑n

i=1〈kb,Bi〉Bi

‖kb −
∑n

i=1〈kb,Bi〉Bi‖
=

eb −
∑n

i=1〈eb,Bi〉Bi

‖eb −
∑n

i=1〈eb,Bi〉Bi‖
, (24)

where

‖eb −
n∑
〈eb,Bi〉Bi‖2 = ‖eb‖2 −

n∑
|〈eb,Bi〉|2 = 1 −

n∑
|〈eb,Bi〉|2.
i=1 i=1 i=1
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Definition 4. Let Dn = D \ {a1, · · · , an} be the punctured domain. Define an objective function g on Dn as 
follows: g(b) = |〈fn+1, Bb

n+1〉| for any b ∈ Dn.

It follows from Proposition 5(i) and Cauchy-Schwarz inequality that 〈fn+1, Bj〉 = 0,

g(b) = |〈fn+1,B
b
n+1〉| =

∣∣∣〈fn+1,
kb −

∑n
j=1〈kb,Bj〉Bj

‖kb −
∑n

j=1〈kb,Bj〉Bj‖
〉∣∣∣

= |〈fn+1, kb〉|
‖kb −

∑n
j=1〈kb,Bj〉Bj‖

= |〈fn+1, eb〉|
‖eb −

∑n
j=1〈eb,Bj〉Bj‖

= |〈fn+1, eb〉|√
1 −

∑n
j=1 |〈eb,Bj〉|2

(25)

and

g(b) = |〈fn+1,B
b
n+1〉| ≤ ‖fn+1‖ ‖Bb

n+1‖ ≤ ‖fn+1‖

for all b ∈ Dn.
For any b0 ∈ ∂D , the BVP in Proposition 4(i) implies that lim

b→b0
|〈fn+1, eb〉| = 0 and lim

b→b0
|〈Bj , eb〉| =

0 (1 ≤ j ≤ n), hence it follows from (25) that lim
b→b0

g(b) = 0. Therefore, g can be extended to Dn ∪ ∂D

continuously with g(b) = 0 for all b ∈ ∂D .
As g is bounded on Dn ∪ ∂D , the following supremum

S = sup
{

g(b)
∣∣∣ b ∈ Dn ∪ ∂D

}
(26)

is finite. Then there exists a sequence {bm}m≥1 of points in D such that lim
n→∞

g(bm) = S.
The domain D is bounded in Cpq, and hence its closure D is a compact set. Then the sequence {bm}m≥1

in Dn ⊂ D has a convergent subsequence, still denoted by {bm}m≥1, with limit a = lim
m→∞

bm ∈ D .
We first prove that a /∈ ∂D . Suppose contrary that a ∈ ∂D . Note that the equality in (25) implies that 

g(b) = 0 for all b ∈ Dn if and only if 0 = 〈fn+1, kb〉 = fn+1(b) for b ∈ Dn, so fn+1 = 0 on D by the continuity 
of fn+1. Then, by the continuity of g on Dn ∪ ∂D and BVP, we have

S = lim
m→∞

g(bm) = g(a) = 0.

In particular, 0 ≤ g(b) ≤ S = 0 for all b ∈ Dn, and hence g(b) = 0 on Dn. Then it follows from the note 
above that fn+1(b) = 0 for all b ∈ D , which violates the assumption fn+1 	= 0 stated in the inductive step.

One of the following two cases can happen:

(A) a ∈ Dn, i.e., a 	= ai for all 1 ≤ i ≤ n; and
(B) a ∈ {a1, · · · , an}.

4.3. The simple case (A)

In case (A), we can set mn+1 = 0, an+1 = a,

kan+1,mn+1 = ka, and Bn+1 =
ka −

∑n
j=1〈ka,Bj〉Bj

‖k −
∑n 〈k ,B 〉B ‖ .
a j=1 a j j
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In this case, the equality (6) of Theorem 1 obviously holds.
We will consider the case (B) in the next subsection.

4.4. The case (B) of repeatedly selected points

In the following, we assume that the limit point a appeared in the sequence (a1, · · · , an) of points in D . 
As bm ∈ Dn, so bm 	= a, one can define a sequence {vm}m≥1 of unit vectors in Cpq and a sequence {tm}m≥1
of positive numbers as follows: for any m ∈ Z+,

tm = ‖bm − a‖ > 0,

vm = bm − a

‖bm − a‖ = bm − a

tm
∈ Cpq.

In particular, bm = a + tmvm. Then a = lim
m→∞

bm implies that lim
m→∞

tm = 0.
As the sequence {vm}m≥1 is a sequence in the compact unit sphere in Cpq, it has a convergent subse-

quence, still denoted by {vm}m≥1, with limit v = (v(1), v(2), · · · , v(pq)) in the unit sphere of Cpq.
Define dm = a + tmv for all m. Since lim

m→∞
tm = 0 and a is an interior point of D , we may assume that 

dm ∈ D for all m ≥ 1. Moreover, lim
m→∞

dm = a = lim
m→∞

bm. As Recall that the supremum S in (26) is defined 

by

S = lim
m→∞

g(bm) = lim
m→∞

|〈fn+1,B
bm
n+1〉|. (27)

We want to replace the sequence { bm }m≥1 by the sequence { dm }m≥1 such that the limit property (27)
also holds for the sequence of {dm} instead of {bm}. This is a significant step in the proof of our main 
Theorem 1.

Proposition 6. Suppose that dm = a + tmv ∈ D for all m ≥ 1, we have

(i) the difference sequence kbm − kdm
converges to 0 in the norm of A2(D);

(ii) the difference sequence

(
kbm −

n∑
i=1

〈 kbm ,Bi〉Bi

)
−
(
kdm

−
n∑

i=1
〈 kdm

,Bi〉Bi

)

= (kbm − kdm
) −

n∑
i=1

〈 kbm − kdm
,Bi〉Bi

converges to 0 in the norm of A2(D);

(iii) lim
m→∞

∣∣∣∣∣
∣∣∣∣∣kbm −

n∑
i=1

〈 kbm ,Bi〉Bi

∣∣∣∣∣
∣∣∣∣∣ = lim

m→∞

∣∣∣∣∣
∣∣∣∣∣kdm

−
n∑

i=1
〈 kdm

,Bi〉Bi

∣∣∣∣∣
∣∣∣∣∣; and

(iv) lim
m→∞

g(bm) = lim
m→∞

g(dm).

Proof. The proof of (i)–(iv) follow from Lemma 5. �
Remark 1. It follows from Proposition 6(iv) that whenever S is concerned, we may replace the sequence 
{bm}m≥1 of points in D by {dm}m≥1. From now on, one may assume that bm = a + tmv in D for all m ≥ 1
in the following discussion.
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As the limit point a appears in the sequence (ai)1≤i≤n in the case (B), choose the smallest index i such 
that a = ai, then mi = 0. By Proposition 5(i), 〈fn+1, Bj〉 = 0 for 1 ≤ j ≤ n, and Proposition 5(iv) implies 
that 0 = 〈fn+1, kai,mi

〉 = 〈fn+1, kai,0〉 = fn+1(ai) = fn+1(a). The facts that fn+1 	= 0 and fn+1(a) = 0
imply that f is not a constant function. Hence, there exists α ∈ Npq such that f (α)

n+1(a) 	= 0.

Lemma 7. There exists � ≥ 1 such that

∑
|α|=�

f
(α)
n+1(a)

vα

α! 	= 0.

Proof. Suppose contrary that for any � ≥ 1,

∑
|α|=�

f
(α)
n+1(a)

vα

α! = 0,

which implies that for sufficiently large m,

0 =
∑
α≥0

f
(α)
n+1(a)

vα

α! t
α
m = fn+1(a + tmv) = fn+1(bm).

It follows from the equality in (25) that g(bm) = 0, and hence S = lim
m→∞

g(bm) = 0, which contradicts to 

fn+1 	= 0. �
Definition 5. Let � be the least positive integer such that

(i)
∑
|α|=j

f
(α)
n+1(a)

vα

α! = 0 for all j = 0, 1, · · · , � − 1;

(ii)
∑
|α|=�

f
(α)
n+1(a)

vα

α! 	= 0.

With the help of definition, we define E =
∑
|α|=�

ka,α
vα

α! which is nonzero in A2(D).

Definition 6. For the case (B) of the limit point a stated above, we define

(i) an+1 = a, mn+1 = �,
(ii) kan+1,mn+1 = ka,� =

∑
|α|=�

ka,α
vα

α! , and

(iii) Bn+1 =
kan+1,mn+1 −

∑n
i=1〈kan+1,mn+1 ,Bi〉Bi

‖kan+1,mn+1 −
∑n

i=1〈kan+1,mn+1 ,Bi〉Bi‖
.

In the following, we will prove that Theorem 1 holds for selection of the triple (an+1,mn+1,Bn+1) stated 
above.

4.5. Asymptotic analysis

The main result of this subsection is the following Theorem 4. This shows that in the case (B), where 
the limit point a of the sequence {bm = a + tmv}m≥1 appears in the sequence (a1, . . . , an), we can always 
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construct a function Bn+1 in A2(D) associated to a such that {B1, . . . , Bn, Bn+1} is an orthonormal set. 
We finally can state the most important result in this paper, but its proof requires some delicate estimates.

Theorem 4. The supremum S in (26) is given by

S = lim
m→∞

g(bm) =
∣∣∣〈fn+1,

E −
∑n

i=1〈E,Bi〉Bi

‖E −
∑n

i=1〈E,Bi〉Bi‖
〉∣∣∣.

We divide the proof of the Theorem 4 into a series of lemmas below.

Definition 7. Let α, β ∈ Npq and � ∈ N. Define

(i) S� = { β ∈ Npq | |β| ≥ � }.
(ii) Tα = { β ∈ Npq | β ≥ α } = { α + δ ∈ Npq | δ ≥ 0 }.

Lemma 8. S� =
⋃

|α|=�

Tα. �

Lemma 9. In the setup above, we have

lim
m→∞

fn+1(bm)
t�m

=
∑
|α|=�

f
(α)
n+1(a)
α! vα.

Proof. As stated in Remark 1, we assume that the sequence { bm } in D is defined by bm = a + tmv for all 
m ≥ 1. Then we write down the Taylor series of fn+1 centered at a. It follows from Definition 5 on the least 
positive integer � and for sufficiently large m that we have

fn+1(bm) = fn+1(a + tmv) = t�m

⎛
⎝∑

|α|=�

f
(α)
n+1(a)

vα

α! +
∑
|α|>�

f
(α)
n+1(a)

vα

α! t
|α|−�
m

⎞
⎠ .

Now we want to estimate the second sum, by means of Lemma 8 and Cauchy estimate in Lemma 4. For 
sufficiently large m, we have

∣∣∣∣∣∣
∑
|α|>�

f
(α)
n+1(a)
α! t|α|m vα

∣∣∣∣∣∣ ≤
∑
|α|>�

∣∣∣∣∣f
(α)
n+1(a)
α!

∣∣∣∣∣ t|α|m |vα|

=
∑

α∈S�+1

∣∣∣∣∣f
(α)
n+1(a)
α!

∣∣∣∣∣ t|α|m |vα| ≤
∑

|β|=�+1

∑
α∈Tβ

∣∣∣∣∣f
(α)
n+1(a)
α!

∣∣∣∣∣ t|α|m |vα|

=
∑

|β|=�+1

∑
δ≥0

∣∣∣∣∣f
(β+δ)
n+1 (a)
(β + δ)!

∣∣∣∣∣ t(|β|+|δ|)
m |v(β+δ)|

≤
∑

|β|=�+1

t�+1
m |vβ |

∑
δ≥0

∣∣∣∣∣f
(β+δ)
n+1 (a)

δ!

∣∣∣∣∣ t|δ|m |vδ|

≤ t�+1
m

∑
|vβ |

∑ M2tm(f (β)
n+1)

(2tm)|δ|
t|δ|m |vδ|
|β|=�+1 δ≥0



18 H.T. Wu et al. / J. Math. Anal. Appl. 506 (2022) 125591
≤ t�+1
m

∑
|β|=�+1

|vβ |M2tm(f (β)
n+1)

∑
δ≥0

|
(v

2

)δ

|

= t�+1
m

∑
|β|=�+1

|vβ |M2tm(f (β)
n+1)∏pq

i=1(1 − |v(i)/2|) , (28)

where M2tm(f (β)
n+1) = max

{
|f (β)

n+1(a + r)|
∣∣∣ ‖r‖∞ ≤ 2tm

}
, and

v = (v(1), v(2), · · · , v(pq)).
The summands in (28) satisfy

lim
m→∞

|vβ |M2tm(f (β)
n+1)∏pq

i=1(1 − |v(i)/2|) =
|vβ | |f (β)

n+1(a)|∏pq
i=1(1 − |v(i)/2|) < ∞,

so we have

lim
m→∞

1
t�m

∣∣∣∣∣∣
∑
|α|>�

f
(α)
n+1(a)
α! t|α|m vα

∣∣∣∣∣∣ ≤ lim
m→∞

tm
∑

|β|=�+1

|vβ |M2tm(f (β)
n+1)∏pq

i=1(1 − |v(i)/2|) = 0,

and hence lim
m→∞

fn+1(bm)
t�m

=
∑
|α|=�

f
(α)
n+1(a)
α! vα. �

As S = lim
m→∞

g(bm) > 0 in (26), and

S = lim
m→∞

⎛
⎝ |〈fn+1,kbm 〉|

t�m
‖kbm−

∑n
i=1〈kbm ,Bi〉Bi‖

t�m

⎞
⎠ , (29)

we have

lim
m→∞

‖kbm −
∑n

i=1〈kbm ,Bi〉Bi‖
t�m

=
lim

m→∞
|〈fn+1,kbm 〉|

t�m

S
, (30)

which is finite and non-zero.

Definition 8. In the notations above, we define

Tm =
∑
|α|<�

ka,α
vα

α! t
|α|
m and Wm = kbm − Tm − t�mE,

where E =
∑

|α|=� ka,α
vα

α! is defined in Theorem 4.

It is obvious that Tm, E, Wm are in A2(D). And it follows from bm = a + tmv and Proposition 3 that in 
the norm of A2(D) we have

Tm + t�mE + Wm = kbm = ka+tmv =
∑
α≥0

ka,α
vα

α! t
|α|
m , (31)

which implies that the following holds in the norm of A2(D),
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Wm =
∑
|α|>�

ka,α
vα

α! t
|α|
m . (32)

Then it follows from (31) that

kbm −
n∑

i=1
〈kbm ,Bi〉Bi =

(
Tm −

n∑
i=1

〈Tm,Bi〉Bi

)

+
(
E −

n∑
i=1

〈E,Bi〉Bi

)
t�m +

(
Wm −

n∑
i=1

〈Wm,Bi〉Bi

)
. (33)

Lemma 10. lim
m→∞

‖Wm −
∑n

i=1〈Wm,Bi〉Bi‖
t�m

= 0.

Proof. As {B1, . . . , Bn} is an orthonormal set in A2(D), 
∑n

i=1〈Wm, Bi〉Bi is the orthogonal projection 
of Wm onto the subspace spanned by {B1, . . . , Bn}, so ‖Wm −

∑n
i=1〈Wm, Bi〉Bi‖ ≤ ‖Wm‖. It suffices to 

show the limit lim
m→∞

‖Wm‖
t�m

= 0. For any h ∈ A2(D) and for sufficiently large m, it follows from (32) that

〈h,Wm〉 = 〈h,
∑
|α|>�

ka,α
vα

α! t
|α|
m 〉 =

∑
|α|>�

h(α)(a)
α! vαt|α|m .

Following the same idea of the proof of Lemma 9, we have

|〈h,Wm〉| ≤
∑

|α|≥�+1

∣∣∣∣h(α)(a)
α!

∣∣∣∣ |v|αt|α|m ≤ t�+1
m

∑
|β|=�+1

|vβ | M2tm(h(β))∏pq
i=1(1 − |v(i)|

2 )
. (34)

In particular, we can estimate 
‖Wm‖2

t2�m
= 〈Wm,Wm〉

t2�m
by replacing h = Wm in (34).

For this, we need to show the following estimate

M2tm(W (β)
m ) = max

{
|W (β)

m (a + 2tmr)|
∣∣∣ ‖r‖∞ ≤ 1

}

≤ t�+1
m max

‖r‖∞≤1

{ ∑
|γ|=�+1

|vγ |
M2tm(K(γ,β)

a+2tmr)∏pq
i=1

(
1 − |v(i)|

2

) }
, (35)

where

K
(γ,β)
a+2tmr(ζ) = ∂|β|+|γ|K

∂wβ∂zγ
(z, w)

∣∣∣
(z,w)=( ζ, a+2tmr )

.

We proceed to prove inequality (35) in the following.
For any fixed vector r in Cpq and β ∈ Npq with |β| = � + 1, it follows from (32) and Lemma 3 that

|W (β)
m (a + 2tmr)| = |〈Wm, ka+2tmr,β〉|

=

∣∣∣∣∣∣ 〈
∑
|α|>�

ka,α
vα

α! t
|α|
m , ka+2tmr,β〉

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
|α|>�

〈k(β)
a,α

vα

α! t
|α|
m , ka+2tmr〉

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

k(β)
a,α(a + 2tmr)v

α

α! t
|α|
m

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑ K(β,α)(a + 2tmr, a)

α! vαt|α|m

∣∣∣∣∣∣
|α|>� |α|>�
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=

∣∣∣∣∣∣
∑
|α|>�

K(α,β)(a, a + 2tmr)
α! vαt|α|m

∣∣∣∣∣∣ ≤
∑
|α|>�

∣∣∣∣∣K
(α,β)(a, a + 2tmr)

α!

∣∣∣∣∣ |vα|t|α|m

≤ t�+1
m

∑
|γ|=�+1

|vγ |
M2tm(K(γ,β)

a+2tmr)∏pq
i=1

(
1 − |v(i)|

2

) .
In the last inequality, we apply the same technique in the proof of the estimate (28) in Lemma 9. Moreover, 

one can easily use the continuity of the function K(γ,β)(z, a + 2tmr) to show that the finite sum of the last 
expression has a finite limit as m tends to infinity.

The final result follows from the extra factor t2m in (34) and (35) as follows:

‖Wm‖2

t2�m
≤ t2m

∑
|β|=|γ|=�+1

|vβ | |vγ | max
‖r‖∞≤1

{
M2tm(K(γ,β)

a+2tmr)
}

∏pq
i=1

(
1 − |v(i)|

2

)2 ,

in which the last finite double sum converges to finite number as m converges to infinity. �
Lemma 11. Let Ej =

∑
|α|=j

vα

α! ka,α and Fj = Ej −
n∑

i=1
〈Ej , Bi〉Bi. Let J = { j | 1 ≤ j ≤ � − 1, Fj 	= 0 }. 

Then { Fj }j∈J is linearly independent.

Proof. Suppose that 
∑

j∈J cjFj = 0, we want to prove that cj = 0 for all j ∈ J as follows. Then the 
assumption implies that

∑
j∈J

cjEj =
∑
j∈J

n∑
i=1

cj〈Ej ,Bi〉Bi. (36)

It follows from Proposition 5(iv) span{B1, · · · , Bn} = span{ka1,m1 , · · · , kan,mn
} that there exist

A1, · · · , An ∈ C such that

∑
j∈J

cjEj =
n∑

i=1
Aikai,mi

. (37)

Let I = { i | 1 ≤ i ≤ n, ai = a }. By definition, each Ej is a linear combination of generalized kernel 
functions of same total order j at the same point a, it follows from (37), Proposition 2(iii) and Proposition 
5(iv) that for each j ∈ J , there exist C1, · · · , Cn ∈ C such that

cjEj =
∑

i∈I,mi=j

Aika,mi
=

n∑
i=1

CiBi,

cjFj = cjEj −
n∑

i=1
〈cjEj ,Bi〉Bi = 0.

As j ∈ J , so Fj 	= 0, and hence cj = 0 for all j ∈ J . �
Finally, Lemma 10 and Lemma 11 imply that the following.

Lemma 12. Tm −
n∑
〈Tm, Bi〉Bi = 0 in A2(D) for any m ≥ 1.
i=1
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Proof. Apply the triangle inequality to (33), we have

‖kbm −
∑n

i=1〈kbm ,Bi〉Bi‖
t�m

+
‖Wm −

∑n
i=1〈Wm,Bi〉Bi‖
t�m

+ ‖E −
n∑

i=1
〈E,Bi〉Bi‖ ≥ ‖Tm −

∑n
i=1〈Tm,Bi〉Bi‖
t�m

. (38)

As m tends to +∞, Lemma 10 implies that the sum of 3 terms in (38) tends to

lim
m→∞

|〈fn+1,kbm 〉|
t�m

S
+ 0 + ‖E −

n∑
i=1

〈E,Bi〉Bi‖ < ∞,

so the right hand side in (38) is bounded for all m.

Define Fj =
∑
|α|=j

vα

α!

(
ka,α −

n∑
i=1

〈ka,α,Bi〉Bi

)
∈ A2(D), for 0 ≤ j ≤ � − 1. As an+1 = a appears in the 

sequence (a1, · · · , an), so F0 = 0. Recall that Tm =
∑
|α|<�

ka,α
vα

α! t
|α|
m , so we have

Tm −
∑n

i=1〈Tm,Bi〉Bi

t�m
=

�−1∑
j=1

1
t�−j
m

Fj (39)

which is a polynomial in 1
tm

, and the coefficient Fj of the term 1
t�−j
m

in (39).

Claim: All Fj (j = 0, 1, · · · , � − 1) are zero in A2(D).
Suppose contrary that Fj 	= 0 for some j ∈ {1, · · · , � − 1}. It follows from Lemma 11 that the non-empty 

set of all non-zero Fj is linearly independent. The estimate in (38) implies that the right hand side of (39)
is bounded, so the terms with 1

t�−j
m

of the non-zero Fj are uniformly bounded independent of m. On the 
other hand, lim

m→∞
tm = 0, which is a contradiction as � > j. It follows that all the functions Fj in (39) must 

be zero, and hence Tm −
n∑

i=1
〈Tm, Bi〉Bi = 0. �

By Lemma 10 and Lemma 12, we can determine the following limit.

Lemma 13. The following limit

lim
m→∞

‖ kbm −
∑n

i=1〈kbm ,Bi〉Bi ‖
t�m

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
|α|=�

vα

α!

(
ka,α −

n∑
i=1

〈ka,α,Bi〉Bi

)∣∣∣∣∣∣
∣∣∣∣∣∣

and it is non-zero.

Proof. The result follows from Lemma 12, Lemma 10 and triangle inequality that

lim
m→∞

‖kbm −
∑n

i=1〈kbm ,Bi〉Bi‖
t�m

= lim
m→∞

∣∣∣∣∣
∣∣∣∣∣
(
Tm

t�
+ E + Wm

t�

)
−

n∑〈(
Tm

t�
+ E + Wm

t�

)
,Bk

〉
Bk

∣∣∣∣∣
∣∣∣∣∣
m m k=1 m m
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= lim
m→∞

∣∣∣∣∣
∣∣∣∣∣
(
E + Wm

t�m

)
−

n∑
k=1

〈(
E + Wm

t�m

)
,Bk

〉
Bk

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣E −

n∑
k=1

〈
E,Bk

〉
Bk

∣∣∣∣∣
∣∣∣∣∣ .

Suppose contrary that the limit above is zero, then E =
∑n

i=1〈E, Bi〉Bi which is non-zero vector in 
A2(D). Proposition 5(i) implies that 〈fn+1, Bi〉 = 0 for all i = 1, · · · , n, and hence

〈fn+1, E〉 =
n∑

i=1
〈E,Bi〉〈fn+1,Bi〉 = 0,

which violates the choice of E made in Definition 5(ii). �
Proof of Theorem 4. By Lemma 9 and Lemma 13, we have

S = lim
m→∞

g(bm) = lim
m→∞

|〈fn+1,B
bm
n+1〉| = lim

m→∞

⎛
⎝ |〈fn+1,kbm 〉|

t�m
‖kbm−

∑n
i=1〈kbm ,Bi〉Bi‖

t�m

⎞
⎠

=
|
∑

|α|=�

f
(α)
n+1(a)
α! vα|∣∣∣∣∣∣∑|α|=�

vα

α! (ka,α −
∑n

i=1〈ka,α,Bi〉Bi)
∣∣∣∣∣∣

=
∣∣∣〈fn+1,

E −
∑n

i=1〈E,Bi〉Bi

‖E −
∑n

i=1〈E,Bi〉Bi‖
〉∣∣∣, (40)

which completes the proof of Theorem 4. �
Note that Bn+1 in Definition 6(iii) agrees with (40). This completes the inductive step in constructing 

the sequences (i) and (ii) in Theorem 1. However, it still remains to check the maximal modulus property 
(MSP) in Theorem 1(iii) in order to complete the proof of Theorem 1 as follows.

Proof of MSP in Theorem 1. We have defined B1 in the initial step and Bn+1 in the inductive step for 
cases (A) a ∈ Dn and (B) a ∈ {a1, · · · , an} respectively, such that the equality (40) implies

|〈fn+1,Bn+1〉| = sup
{

|〈fn+1,B
b
n+1〉|

∣∣∣ b ∈ D \ {a1, a2, · · · , an}
}

= S, (41)

where Bn+1 is given in Definition 6(iii) as in (40). Since Bi (i = 1, · · · , n) are mutually orthonormal, by 
Proposition 5(iii),

fn+1 = f −
n∑

i=1
〈f,Bi〉Bi. (42)

By Gram-Schmidt orthonormalization process, we have 〈Bb
n+1, Bi〉 = 0 and 〈Bn+1, Bi〉 = 0 for each 

i = 1, · · · , n. Then it follows from (42) that

〈fn+1,B
b
n+1〉 = 〈f,Bb

n+1〉 and 〈fn+1,Bn+1〉 = 〈f,Bn+1〉.

Hence, the equality (41) is equivalent to

|〈f,Bn+1〉| = sup
{

|〈f,Bb
n+1〉|

∣∣∣ b ∈ D \ {a1, a2, · · · , an}
}

= S. � (43)
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5. Convergence of POAFD in A2(D)

In the last section, we will prove our second main result in Theorem 2, i.e., to show a POAFD of any 
function f in Bergman space A2(D) converges to the same function f .

Definition 9. For any given f ∈ A2(D), a sequence (an)n≥1 of points in D is called a maximal selection 
sequence of f , if there exists an orthonormal sequence {Bj}j≥1 in A2(D) associated to a sequence (an)n≥1
constructed as in Theorem 1 satisfying the maximal modulus property (6) in Theorem 1(iii).

For any given f ∈ A2(D), we fix a maximal selection sequence (an)n≥1 of f with an orthonormal sequence 
{Bj}j≥1 in A2(D). Then Bessel’s inequality implies the following

Lemma 14. Let f ∈ A2(D). Then for any maximal selection sequence (an)n≥1 of f , one has 
∞∑

n=1
〈f, Bn〉Bn ∈

A2(D).

Now we prove the convergence result of POAFD in Theorem 2 for any maximal selection sequence as 
follows.

Proof of Theorem 2. Suppose contrary that (aj)j≥1 is a sequence given by POAFD applied to f , and 
{Bj}j≥1 is the corresponding orthonormal sequence in A2(D) such that the residual

h = f −
∞∑
j=1

〈f,Bj〉Bj ∈ A2(D) (44)

is non-zero. We first prove that 〈h, Bj〉 = 0 for all j ≥ 1. In fact,

〈h,Bk〉 = 〈f −
∞∑
j=1

〈f,Bj〉Bj ,Bk〉 = 〈 lim
N→∞

(f −
N∑
j=1

〈f,Bj〉Bj),Bk〉

= lim
N→∞

〈f −
N∑
j=1

〈f,Bj〉Bj ,Bk〉 = lim
N→∞

(
〈f,Bk〉 − 〈f,Bk〉〈Bk,Bk〉

)
= 0.

As h 	= 0 and h is holomorphic on D , there exists a closed ball B ⊂ Dn centered at some point b in D with 
positive radius such that B is compact and |h(z)| > 0 on B. Then

C0 = min
z∈B

|h(z)|
K(z, z) > 0.

Recall that

fN = f −
N−1∑
j=1

〈f,Bj〉Bj (45)

is the N -th residual. We want to estimate |〈fN , BN 〉| in two different ways.

Firstly, Lemma 14 implies that 
∞∑
j=1

|〈f, Bj〉|2 < ∞. As C0 > 0, there exists N0 ∈ Z+ such that for all 

N ≥ N0, one has
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∞∑
j=N

|〈f,Bj〉|2 <

(
C0

2

)2

. (46)

By Proposition 5(ii) and inequality (46), we have

|〈fN ,BN 〉| = |〈f,BN 〉| < C0

2 . (47)

Secondly, for any fixed N ≥ N0, we select a point b ∈ B\{a1, . . . , aN}. We consider another sequence 
(a1, . . . , aN−1, b). Let (B1, . . . , BN−1, Bb

N ) be the Gram-Schmidt orthonormalization of (B1, . . . , BN−1, kb), 
where

Bb
N =

kb −
∑N−1

i=1 〈kb,Bi〉Bi

‖kb −
∑N−1

i=1 〈kb,Bi〉Bi‖
.

Note that BN is selected according to maximum modulus property (6) in Theorem 1:

|〈f,BN 〉| ≥ |〈fN ,Bb
N 〉|. (48)

Recall that eb = kb

‖kb‖ . Then 〈fN , Bi〉 = 0 for 1 ≤ i ≤ N − 1 in Proposition 5(i), the inequality

‖kb −
N−1∑
i=1

〈kb,Bi〉Bi‖2 = ‖kb‖2 −
N−1∑
i=1

|〈kb,Bi〉|2 ≤ ‖kb‖2. (49)

The inequalities (47), (48) and (49) imply that

|〈fN , eb〉| = |〈fN ,
kb

‖kb‖
〉| =

|〈fN , kb −
∑N−1

i=1 〈kb,Bi〉Bi〉|
‖kb‖

≤ |〈fN , kb −
∑N−1

i=1 〈kb,Bi〉Bi〉|
‖kb −

∑N−1
i=1 〈kb,Bi〉Bi|‖

= |〈fN ,Bb
N 〉| ≤ |〈fN ,BN 〉| < C0

2 . (50)

By (44) and (45),

fN = f −
N−1∑
i=1

〈f,Bi〉Bi =
∞∑

j=N

〈f,Bj〉Bj + h.

It follows from triangle inequality and Cauchy-Schwarz inequality that

|〈fN , eb〉| =

∣∣∣∣∣∣
〈
h +

∞∑
j=N

〈f,Bj〉Bj , eb

〉∣∣∣∣∣∣ ≥
∣∣∣∣ h(b)
K(b, b)

∣∣∣∣−
∣∣∣∣∣∣
〈 ∞∑

j=N

〈f,Bj〉Bj , eb

〉∣∣∣∣∣∣
≥ min

z∈B

∣∣∣∣ h(z)
K(z, z)

∣∣∣∣−
∣∣∣∣∣∣
∣∣∣∣∣∣

∞∑
j=N

〈f,Bj〉Bj

∣∣∣∣∣∣
∣∣∣∣∣∣ ‖eb‖

= C0 −

√√√√ ∞∑
j=N

|〈f,Bj〉|2 > C0 −
C0

2 = C0

2 ,

which contradicts to (50). Consequently, h = 0 and this completes the proof of Theorem 2. �
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