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Sparse (fast) representations of deterministic signals have been well studied.
Among other types, there exists one called adaptive Fourier decomposition
(AFD) for functions in analytic Hardy spaces. Through the Hardy space decom-
position of the L2-space, the AFD algorithm also gives rise to sparse repre-
sentations of signals of finite energy. To deal with multivariate signals, the
general Hilbert space context comes into play. The multivariate counterpart of
AFD in general Hilbert spaces with a dictionary has been named preorthog-
onal AFD (POAFD). In the present study, we generalize AFD and POAFD to
random analytic signals through formulating stochastic analytic Hardy spaces
and stochastic Hilbert spaces. To analyze random analytic signals, we work on
two models, both being called stochastic AFD, or SAFD in brief. The two mod-
els are respectively made for (i) those expressible as the sum of a deterministic
signal and an error term (SAFDI) and for (ii) those from different sources obey-
ing certain distributive law (SAFDII). In the later part of the paper, we drop
off the analyticity assumption and generalize the SAFDI and SAFDII to what
we call stochastic Hilbert spaces with a dictionary. The generalized methods
are named as stochastic POAFDs, SPOAFDI and SPOAFDII. Like AFDs and
POAFDs for deterministic signals, the developed stochastic POAFD algorithms
offer powerful tools to approximate and thus to analyze random signals.
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1 INTRODUCTION

If F is a complex-valued signal in [0, 2𝜋) with finite energy, then it can be expanded into its L2([0, 2𝜋))-convergent Fourier
series:

F(t) =
∞∑

k=−∞
ckeikt.

To make convenient use of complex analysis we alter the notation and denote it as 𝑓 (eit) = F(t). Then, the Plancherel
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theorem asserts ||𝑓 ||2 =
∑∞

−∞ |ck|2, where the L2-norm is defined from the inner product

⟨𝑓, g⟩ = 1
2𝜋 ∫

2𝜋

0
𝑓 (eit)ḡ(eit)dt.

The Plancherel relation infers that ck tends to zero, and therefore, the complex-valued functions

𝑓+(z) =
∞∑

k=0
ckzk and 𝑓−(z) =

−∞∑
k=−1

ckzk

are analytic in D and in C∖D, respectively, where D stands for the open unit disc in the complex plane C. Restricted to
the unit circle, in the L2-convergence sense, we define

𝑓+(eit) ≜
∞∑

k=0
ckeikt

as the analytic signal associated with f. Denote by H the Hilbert transformation on the circle:

H𝑓 (eit) =
∞∑

k=−∞
(−i)sgn(k)ckeikt,

where sgn(k) = k∕|k| when k≠ 0 and sgn(0) = 0. We have 𝑓± = 1
2
( 𝑓 + iH𝑓 ±c0). The nontangential boundary limit of

f+(z) as z → eit coincides with the above defined L2-limit f+(eit). To be practical, we assume that the test functions f are
real valued. Then, c−n = c̄n, and, as a consequence,

𝑓 (eit) = 2Re{𝑓+(eit)} − c0.

Due to the above relation, the analysis of a real-valued signal of finite energy can be reduced to the analysis of the associated
analytic signal f+. Since f+ is the boundary limit of the analytic function f+(z) in D, complex analytic methods are available
for f+. The totality of such analytic functions f+(z) in the disc is identical with the function space

H2(D) ≜{𝑓 ∶ D → C |𝑓 is analytic and 𝑓 (z) =
∞∑

k=0
ckzk with

∞∑
k=0

|ck|2 < ∞}

={𝑓 ∶ D → C |𝑓 is analytic and sup
0<r<1∫

2𝜋

0
|𝑓 (reit)|2dt < ∞},

(1.1)

called the (complex analytic) Hardy H2-space in the unit disc. There exist other complex analytic Hardy spaces with more
or less parallel theories as the one defined in the disc. In other words, the Hardy space idea to study functions may be
extended to signals defined on the real line R or to those defined on manifolds in the higher dimensional complex spaces
Cd in the several complex variables setting (e.g., the Hardy spaces on the n-torus,1 or the Drury–Arveson space or the
Hardy space of the solid ball in several complex variables2) or to those in the real-Euclidean spaces Rd in the Clifford
algebra setting (the conjugate harmonic systems1,3) and with scalar, complex, vector values, or even matrix values,2,4

all obeying the same philosophy. We will only take the context H2(D) as an example to explain the adaptive Fourier
decomposition (AFD) theory. In below, we often abbreviate H2(D) as H2. The Hardy space H2(D) has several equivalent
characterizations that are not of interest of this paper. The disc case deals with signals defined in a compact interval on the
line. That is also the model for periodic signals. In the first half of this paper, we mainly concentrate in stochastic-lization
of the Hardy space in which the adaptive Fourier decomposition, AFD or Core-AFD, was earlier established.5 We note
that AFD on the disc heavily depends on two intimately related concepts, Blaschke product and Takenaka–Malmquist
system, the latter being abbreviated as TM system. AFD is, in fact, in terms of TM system. In many analytic function
spaces, Blaschke product-like functions are not available. Preorthogonal AFD (POAFD) then provides a replacement of
AFD in the Hilbert spaces that do not have easy-usable Blaschke product-like functions nor explicit and constructive
orthogonal function systems like the TM system. The latter happens mostly for multivariate signals. We leave the POAFD
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method to be studied in the later half of this paper in which we formulate stochastic POAFD (SPOAFD) in the general
setting of stochastic Hilbert space with a dictionary.

In contrast with the deterministic signals setting, in practice, one encounters random signals (RSs): Signals are mostly
corrupted with noise or together with measurement errors or as an alternative type, consisting of several classes of signals
under certain distribution law. A practical formulation then should be a real-valued function F(t, w), where a.s. (a.s.) for
a fixed probabilistic sample point w∈Ω, the function F(· , w) is a deterministic signal of finite energy; meanwhile, for
almost everywhere, a point t in the time domain or the space domain the function F(t, ·) is a random variable. We call
such signals RSs. To formulate the corresponding stochastic Hardy space theory in the case t∈ [0, 2𝜋), we rewrite F(t, w)
as F(t, w)= f (eit, w)= fw(t), and, since it a.s. has finite energy, we have the trigonometric expansion

𝑓 (eit,w) =
∞∑

k=−∞
ck(w)eikt =

[ ∞∑
k=−∞

ck(w)zk]

]
z=eit

, where ck(w) = 1
2𝜋 ∫

2𝜋

0
𝑓 (eis,w)e−iksds.

The Plancherel theorem gives

||𝑓 (·,w)||2 =
∞∑

k=−∞
|ck(w)|2.

In this study, we impose the condition

[
Ew||𝑓 (·,w)||2] 1

2 =

( ∞∑
k=−∞

Ew|ck(w)|2) 1
2

< ∞, (1.2)

where Ew|ck(w)|2 stands for the mathematical expectation of the function |ck(w)|2 of the random variable w in the under-
lying probability space. In the whole paper, the underlying probability space, (Ω,𝜇), w∈Ω, is not specified, as the theory
is valid for any but fixed probability measure. The quantity in (1.2) is called the energy expectation norm (EE-norm) of f,
denoted as ||𝑓 || . Set

L2
w(𝜕D,Ω) = {𝑓 ∶ 𝜕D × Ω → C |𝑓 is a RS, and ||𝑓 || < ∞}, (1.3)

called the space of RSs of finite energy. One can similarly define a space L2
w(R,Ω) with periodicity being replaced by global

finiteness in energy. In this paper, we explicitly write out the theory in the periodic case corresponding to the unit circle.
The L2

w(𝜕D,Ω) is written briefly as  . The RSs in L2
w(𝜕D,Ω) are called normal RSs. The space  is a Hilbert space under

the inner product, ⟨·, ·⟩ , induced from the EE-norm. A normal RS is a.s. a signal of finite energy in t. In below, we will
preserve the inner product notation ⟨· , ·⟩ only for the inner product of the time-domain space L2(𝜕D).

Similarly to the deterministic case, we will concentrate in studying “a half” of the space  , consisting of the RSs with
expansions in the spectrum range k = 0, 1, … ,

𝑓+(eit,w) =
∞∑

k=0
ck(w)eikt, satisfying

∞∑
k=0

Ew(|ck(w)|2) < ∞.

As a consequence, a.s.
∞∑

k=0
|ck(w)|2 < ∞,

and thus, a.s.

𝑓+(z,w) =
∞∑

k=0
ck(w)zk

is an analytic function in D. The boundary limits exist a.e. in the pointwise way and in the L2-convergence sense as
r = |z| → 1. Since f is assumed to be of real valued, we have c−k = ck, that implies

𝑓 (eit,w) = 2 Re {𝑓+(eit,w)} − c0(w).
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On the boundary 𝜕D, the projection f+, apart being obtained through the power series expansion, can also be obtained
through the singular integral operator, the (circular) Hilbert transform, H:

𝑓+(eit,w) = 1
2
( 𝑓 (eit,w) + iH𝑓 (eit,w) + c0), (1.4)

where

H𝑓 (eit,w) ≜
∞∑

k=−∞
(−i)sgn(k)ck(w)eikt

= 1
𝜋

v.p.∫
∞

−∞
cot

( s
2

)
𝑓 (ei(t−s),w)ds.

By using the Hilbert transformation, analysis of the normal RSs is reduced to analysis of their half series. We define the
stochastic Hardy space to be the collection of the functions f+ in the above argument (with the superscript “+” being
dropped off), denoted

H2
w(D) ={𝑓 ∶ D × Ω → C |𝑓 (z,w) is a.s. analytic in z and

𝑓 (z,w) =
∞∑

k=0
ck(w)zk with ||𝑓 ||2 =

∞∑
k=0

Ew|ck(w)|2 < ∞}.
(1.5)

The space H2
w(D) induces a space, being the totality of the boundary limits of the RSs in H2

w(D), denoted as H2
w(𝜕D).

The latter is a proper closed subspace of the Hilbert space  on the boundary 𝜕D. The mapping that maps functions in
H2

w(D) to their boundary limits in H2
w(𝜕D) is, in fact, an isometry between the two spaces.

The purpose of this study is twofold. The first fold is to develop two types of stochastic AFDs (SAFDs), named as SAFDI
and SAFDII, for analyzing RSs. In order to make use of complex analysis methods, we employ the Fourier expansion,
Hilbert transform, or the Cauchy integral to obtain the analytic functions f+ from their boundary data. The second fold
is to generalize the results obtained in the first fold to the context of Hilbert space with a dictionary. A general context in
which some complex analysis methodology can be adopted is reproducing kernel Hilbert space in which the reproducing
kernel plays the role of the Cauchy kernel. In the later part of the paper, we establish a counterpart theory in what we call
stochastic Hilbert space. A Hilbert space with a dictionary is a more general concept than a reproducing kernel Hilbert
space.

The writing plan is as follows. In Section 2, with the stochastic Hardy space context, we establish two types of sparse
approximations, SAFDI and SAFDII, for treating two different types of analytic RSs: One is for noised signals (the ram-
domization is from the noise), and the other is for a collection of RSs obeying certain probability distribution. The second
type is more general than the first. In Section 3, we extend the theory to the context of stochastic Hilbert space with a dic-
tionary treating also two types of RSs and develop accordingly two types of sparse approximations, named as SPOAFDI
and SPOAFDII. The necessity of developing a theory in the general Hilbert space context lays in the demanding of appli-
cations, especially in the multivariate RS cases, in which there do not exist analyticity properties as being used in the
classical Hardy space cases. As example, by using the developed sparse representation algorithm one may analyze heart
ECG signals from a group of people at one time,6–8 or numerically or with explicit formulas, solve certain stochastic partial
differential equations.9

For the reader's convenience, we give the following abbreviations list:
AFD: adaptive Fourier decomposition (for deterministic signals in the classical Hardy spaces consisting of analytic

signals of finite energy on the boundary, associated with a Blaschke product structure)
BVC: boundary vanishing condition
MSP: maximal selection principle
POAFD: preorthogonal adaptive Fourier decomposition (applicable for Hilbert spaces with a dictionary satisfying BVC)
SBVC: stochastic boundary vanishing condition
RS: random signal
Normal RS: normal random signal or a signal in the space (1.3)
 : the Hilbert space consisting of normal RSs
H2

w(D): the stochastic Hardy space on the disc, corresponding to ck(w) = 0 for k< 0
H2

w(𝜕D): the space of the functions as boundary limits of those in H2
w(D) defined on 𝜕D

QIAN 4213
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SHS: a stochastic Hilbert space or a Hilbert space of RSs possessing finite variation
SAFD, SAFDI, SAFDII: SAFDs are divided into two types: the type I, SAFDI, is for the RSs that are expressible as a

deterministic signal corrupted with a noise of small  -norm; the type II, SAFDII, is for a general stochastic Hardy space.
SPOAFD, SPOAFDI, SPOAFDII: SPOAFDs in SHS consist of two types: the type I, SPOAFDI, is for the RSs being

expressible as noised signals; the type II, SPOAFDII, is for any general SHS.

2 STOCHASTIC AFDS

In the deterministic signal analysis, AFD is a sparse approximation methodology using a suitably adapted TM system.
We use the terminology “sparse approximation” or “sparse representation” in the sense that a given signal is expanded
by a system that is not necessarily a basis but with fast convergence. The expression “fast convergence” has the specified
meaning that it is either in the classical sense or in the best n partial sum approximation sense under n-parameters
selections, where n can be any prescribed positive integer. In the classical Hardy space formulation, AFD well fits with the
Beurling–Lax theorem, where any specific function belongs to a backward shift-invariant subspace in which the function
is the limit of a fast converging TM series. The AFD-type expansions have found ample applications in signal and image
analysis and in system identification (see, for instance, previous studies10–13). With the stochastic Hardy space case, as
defined in Section 1, we generate two types of AFD-like expansions, called stochastic AFDI (SAFDI) and stochastic AFDII
(SAFDII), of which each has its own merits in applications. Before studying the SAFDs, we develop some aspects in
relation to Hardy space projections of normal RSs.

2.1 Properties of hardy space projection of RSs
Normal RSs f (eit, w) can all be represented into the form

𝑓 (eit,w) = 𝑓 (eit) + r(eit,w), (2.1)

where 𝑓 = Ew𝑓 and r(eit,w) = 𝑓 (eit,w) − 𝑓 (eit). The difference r is also called the remainder RS. Like in the deterministic
signals case, we are to reduce analysis of normal RSs to that of the associated analytic normal RSs. Given by the next two
theorems, the Hardy space projections 𝑓+, [𝑓 ]+ and r+ preserve many properties possessed by the function 𝑓 ∈  .

Theorem 2.1. If 𝑓 ∈  , then 𝑓 ∈ L2(𝜕D), r ∈  ,Er = 0. In writing

𝑓 (eit,w) =
∞∑

k=−∞
ck(w)eikt and r(eit,w) =

∞∑
k=−∞

dk(w)eikt,

there hold

𝑓 (eit) =
∞∑

k=−∞
Ew(ck(w))eikt,

and

dk(w) = ck(w) − Ewck, Ewdk = 0, k = 0,±1,±2 … .

The Hardy space projections 𝑓+, [𝑓 ]+, r+, respectively, belong to H2
w(𝜕D),H2(𝜕D), and in H2

w(𝜕D). There hold

{Ew𝑓}+ = Ew{𝑓+} and ||r+|| =
||r + d0||√

2
.

QIAN4214
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Proof. We note that

( ∞∑
k=−∞

|Ew(ck(w))|2)1∕2

≤ Ew

⎡⎢⎢⎣
( ∞∑

k=−∞
|ck(w)|2)1∕2⎤⎥⎥⎦ (Minkovski's inequality)

≤
[

Ew(
∞∑

k=−∞
|ck(w)|2)]1∕2

[Ew(1)]1∕2 (Hölder's inequality)

=

[ ∞∑
k=−∞

Ew(|ck(w)|2)]1∕2

[Ew(1)]1∕2

= ||𝑓 || < ∞.

(2.2)

Then, the Riesz–Fisher theorem asserts that

g(eit) =
∞∑

k=−∞
Ew(ck(w))eikt ∈ L2(𝜕D).

Now, we show 𝑓 = g. Denote 𝑓n(eit,w) =
∑|k|≤nck(w)eikt. Then, Ew𝑓n(eit,w) =

∑|k|≤nEw(ck)eikt. Similarly, to the
reasoning of (2.2), there follows ||Ew𝑓 − Ew𝑓n|| = ||Ew( 𝑓 − 𝑓n)||

≤ Ew||𝑓 − 𝑓n||
≤ (

Ew||𝑓 − 𝑓n||2)1∕2

= ||𝑓 − 𝑓n||
=

(∑
|k|>n

Ew(|ck(w)2)

)1∕2

→ 0, as n → ∞.

Since the linear functional of the mth Fourier coefficient, Cm, is continuous, there follows

Cm(Ew𝑓 ) = lim
n→∞

Cm(Ew𝑓n) = Ew(cm(w)).

This shows that Ew f= g∈L2(𝜕D) and is with the Fourier expansion

𝑓 =
∞∑

k=−∞
Ew(ck(w))eikt ∈ L2(𝜕D).

It then follows

Ew(r(eit,w)) = Ewdk = 0, ∀t ∈ [0, 2𝜋) and k = 0,±1 … . (2.3)

As a consequence of (2.3), we have the orthogonality

Ew(|𝑓 (eit) + r(eit,w)|2) = |𝑓 (eit)|2 + Ew|r(eit,w)|2, (2.4)

and thus, the finiteness of the  -norm of r:

Ew(|r(eit,w)|2) = ||𝑓 ||2 − ||𝑓 ||2L2(𝜕D) < ∞ for a.e. t ∈ [0, 2𝜋). (2.5)

QIAN 4215
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To compute the  -norm of r+, by taking into account dk = d̄−k, we have

||r+||2 = Ew ∫
2𝜋

0
|r+(eit,w)|2dt =

∞∑
k=0

Ew|dk(w)|2 =
||r + d0||2

2
.

The proof of the theorem is complete.

2.2 The type SAFDI: Taking mean first
In this section, we assume that f (eit, w) is in H2

w(D). Letting 𝑓 = Ew( 𝑓 (eit,w)), we, as in the last section, have

𝑓 (eit,w) = 𝑓 (eit) + r(eit,w).

The function 𝑓 is, in fact, in H2(D). This is a consequence of Theorem 2.1 or can be proved by the similar but integral
inequalities as, for r< 1, (

∫
2𝜋

0
|Ew𝑓 (reit,w)|2dt

)1∕2

≤ Ew

[(
∫

2𝜋

0
|𝑓 (reit,w)|2dt

)1∕2]
(Minkovski's inequality)

≤
(

Ew ∫
2𝜋

0
|𝑓 (reit,w)|2dt

)1∕2

Ew(1)1∕2 (Hölder's inequality)

≤ ||𝑓 || < ∞.

(2.6)

We also note that, as a consequence of the last inequality, for a.s. w∈Ω, f (z, w), z= reit, is a function in the classical
analytic Hardy space with the power series expansion

𝑓 (z,w) =
∞∑
0

ck(w)zk =
∞∑
0

ck(w)rkeikt, r < 1.

The type SAFDI is based on AFD of the deterministic signal 𝑓 . For the self-containing purpose, we now go through a full
AFD expansion of 𝑓 . We will be using the L2-normalized Szegö kernel on the circle:

ea(z) =
√

1 − |a|2
1 − āz

, a ∈ D.

In H2(D), it has the reproducing kernel property: For arbitrary g∈H2(D),

⟨g, ea⟩ = √
1 − |a|2g(a).

Let 𝑓1 = 𝑓 . For any a∈D, we have the following identity as an orthogonal decomposition

𝑓 (z) = ⟨𝑓1, ea⟩ea(z) + 𝑓2(z)
z − a

1 − āz
, (2.7)

where f2 is call the reduced remainder, given by

𝑓2(z) =
𝑓1(z) − ⟨𝑓1, ea⟩ea(z)

z−a
1−āz

∈ H2(D). (2.8)

Due to the orthogonalization, we have

||𝑓 ||H2(D) = |⟨𝑓1, ea⟩|2 + ||𝑓2||H2(D). (2.9)

QIAN4216
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Thus, the larger the quantity |⟨f1, ea⟩|2 is, the smaller the energy of the reduced remainder f2 is. Although D is an open
set, it can be proved (see Qian and Wang,5 for instance) that

sup{|⟨𝑓1, ea⟩|2 |a ∈ D}

is attainable at a point of D. Hence, one theoretically selects

a1 = arg max{|⟨𝑓1, ea⟩|2 |a ∈ D}.

Such maximal selection is phrased as maximal selection principle (MSP) of the Hardy space.5 The MSP is evidenced by the
boundary vanishing condition (BVC) of the Szegö kernel dictionary in the Hardy space (see Section 3 for a more general
formulation). Using this a1 in place of a in (2.7), (2.8), and (2.9), we have that the corresponding reduced remainder f2
has its least possible norm. In our terminology, this is n-best approximation with n = 1.

To f2 we carry on the same decomposition procedure, and so on. After n-iterations, we have

𝑓 (z) =
n∑

k=1
⟨𝑓k, eak⟩Bk(z) + 𝑓n+1(z)

n∏
k=1

z − ak

1 − ākz
, (2.10)

where {Bk}∞k=1 is the automatically generated orthonormal TM system corresponding to the maximally selected a1, …
, ak, … , all in D, where, explicitly,

Bk(z) = eak (z)
k−1∏
l=1

z − al

1 − ālz
, (2.11)

ak = max{|⟨𝑓k, ea⟩|2 |a ∈ D}, (2.12)

𝑓k+1(z) =
𝑓k(z) − ⟨𝑓k, eak⟩eak (z)

z−ak
1−ākz

∈ H2(D). (2.13)

We note that {Bk} is automatically an orthonormal system, although not necessarily a basis. It turns out that under the
maximal selections of ak, k = 1, 2, … , there holds the convergence:

𝑓 (z) =
∞∑

k=1
⟨𝑓k, eak⟩Bk(z). (2.14)

Due to the consecutive optimal selections of the parameters ak, the convergence is in a fast pace. Although on the unit
circle the Hardy space functions may not be smooth, it admits a promising convergence rate.5

Remark 2.2. Any sequence (a1, … , an, … ) in D can define a TM system {Bk}∞k=1 by (2.11). A TM system is alterna-
tively called a rational orthonormal system. In the area of rational approximation, the study of TM systems together
with their applications has a long history.14 A TM system is an Hp-basis, 1< p<∞, if and only if

∑∞
k=1(1− |ak|) = ∞. A

half of the Fourier basis, {zk−1}∞k=1, corresponding to all an being identical with zero, is a particular example of the basis
case. The study5 opens a new era of adaptive use of TM systems through maximal selections of the parameters accord-
ing to the data of the given signal. The MSP of AFD declares the best selection principle at the one-step selection. This
is due to attainability of the global maximum at each step that rests in the availability of repeating selections of the
parameters when needed. AFD shares the same idea as greedy algorithm for the one-step optimal selection strategy;
the latter, however, does not address the issue concerning attainability of the global maximal in the parameters nor
address necessity and feasibility of repeating selections of the parameters. AFD found close connections to the Beurl-
ing theorem for H2(D) asserting directional-sum decomposition of the space into shift- and backward shift-invariant
subspaces:

H2(D) = span{Bk}∞k=1 ⊕ bH2(D), (2.15)

where {Bk}∞k=1 is the TM system and b is the Blaschke product, when can be defined, with the sole zeros a1, a2, … ,
including the multiplicities. The Blaschke product is well defined if and only if

∑∞
k=1(1 − |ak|) < ∞. If the sequence
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cannot define a Blaschke product, then

H2(D) = span{Bk}∞k=1. (2.16)

With the AFD formulation, we know that𝑓 ∈ span{Bk}∞k=1, the backward shift-invariant subspace in (2.15) or (2.16).

Remark 2.3. AFD was motivated by intrinsic positive frequency decomposition of analytic signals. It automatically
generates a fast converging orthogonal expansion of which each entry has a meaningful instantaneous frequency. It
has several variations, namely, cyclic AFD, unwinding AFD, and be generalized, in the sparse approximation aspect, to
multidimensions with the Clifford and several complex variables setting with scalar- to matrix-valued signals.2,4,15–19

In the one-dimensional case, a variation called unwinding Blaschke expansion was first studied by Coifman and
Nahon in 2000 and then joined by Steinerberger and Peyriére making further connections with Blaschke products and
outer functions.20,21 Unwinding method was also separately developed in Qian22 and further developed in a recent
paper on maximal unwinding AFD.23 AFD has also been generalized to Hilbert spaces with a dictionary satisfying
BVC.24,25 The AFD generalization in Hilbert spaces is called preorthogonal AFD (POAFD). Among others, POAFD
algorithms in weighted Bergman spaces and weighted Hardy spaces (non-Hardy-type Hilbert spaces of holomorphic
functions) were developed in Qu and Dang.26,27 AFD and its one-dimensional variations, as well as its generalizations
to the non-Hardy type and general Hilbert spaces, have become powerful tools in signal and image analysis and in
system identification.10–13,28

Remark 2.4. In the AFD algorithm, as a consequence of the orthogonality, there hold the relations:

⟨𝑓k, eak⟩ = ⟨gk,Bk⟩ = ⟨𝑓,Bk⟩, k ≥ 2, (2.17)

where

gk(z) = 𝑓 (z,w) −
k−1∑
l=1

⟨𝑓l, eal⟩Bl(z), k ≥ 2, (2.18)

is the k-emphth standard remainder. It is the relation (2.17) that allows AFD to be generalized to Hilbert spaces
with a dictionary satisfying BVC. In the latter, there is no reduced remainder structure nor explicit TM system in
the underlying Hilbert space as Gram–Schmidt orthogonalization of the Szegö kernels as in the unit disc or the half
complex plane case.

We now continue our sparse representation theme for RSs. For an analytic RS f in H2
w(D), we obtain a sequence of

parameters a1, a2, … , and an associated TM system {Bk}∞k=1 that gives rise to an AFD sparse representation of the deter-
ministic 𝑓 = Ew𝑓w. The question is that when we use the system {Bk}∞k=1 to expand the original RS f (eit, w)= fw(eit) for
fixed w, then in what extent the related TM series expansion can represent f as a RS? Or, namely, what is the difference

d𝑓 (eit,w) = 𝑓w(eit) −
∞∑

k=1
⟨𝑓w,Bk⟩Bk(eit)? (2.19)

In view of the Beurling theorem, when there holds
∑∞

k=1(1 − |ak|) < ∞, it would well happen that for some w, 𝑓w ∈
H2(D)⊖ span{Bk}∞k=1 = bH2(D), and in the case the difference df(eit, w) is a nonzero function. We have the following.

Theorem 2.5. Let 𝑓 ∈ H2
w(D), 𝑓 = Ew𝑓 , and

𝑓 =
∑∞

k=0
⟨𝑓,Bk⟩Bk

be an AFD expansion of 𝑓 . Then, with the same {Bk},

Ewd𝑓 (eit,w) = 0, ∀t ∈ [0, 2𝜋). (2.20)
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There holds the relation

Ew||𝑓w −
n∑

k=1
⟨𝑓w,Bk⟩Bk||2H2

w
= ||d𝑓 ||2 +

∞∑
k=n+1

Ew|⟨𝑓w,Bk⟩|2, (2.21)

with

lim
n→∞

∞∑
k=n+1

Ew|⟨𝑓w,Bk⟩|2 = 0. (2.22)

And in terms of the error r = 𝑓 − 𝑓 , the difference df is estimated

||d𝑓 ||2 = ||r||2 −
∞∑

k=1
Ew|⟨rw,Bk⟩|2 = ||PbH2(D)r||2 = ||PbH2(D)𝑓 ||2 , (2.23)

where PX is, in general, denoted as the projection operator into the closed subspace X.

Proof. Since {Bk}∞k=1 is an orthonormal system in the  -space, the projection function
∑∞

k=1⟨𝑓w,Bk⟩Bk is in the
Hilbert space  . The Bessel inequality gives

∞∑
k=1

Ew|⟨𝑓w,Bk⟩|2 ≤ ||𝑓 ||2
that implies the desired relation (2.22). As a consequence of the Riesz–Fisher theorem, the infinite series

∞∑
k=1

⟨𝑓w,Bk⟩Bk

is well defined for a.s. w as a function in H2
w(D). Hence, the difference df(w, ·) belongs to H2

w(D). All these functions
are in  .

Since the underlying product measure space of  is of finite total measure, both the convergence and the projec-
tion function are also in L1. As a consequence of the Fubini theorem, we can first take integral with respect to the
probability and get

Ew(𝑓w −
∞∑

k=1
⟨𝑓w,Bk⟩Bk) = 𝑓 − Ew(

∞∑
k=1

⟨𝑓w,Bk⟩Bk)

= 𝑓 −
∞∑

k=1
Ew⟨𝑓w,Bk⟩Bk

= 𝑓 −
∞∑

k=1
⟨𝑓,Bk⟩Bk

= 0,

as desired by (2.20).
Noting that for each w, df is orthogonal with all Bks, we have the orthogonal decomposition

𝑓w −
n∑

k=1
⟨𝑓w,Bk⟩Bk = d𝑓 +

∞∑
k=n+1

⟨𝑓w,Bk⟩Bk

that implies the desired Pythagoras relation (2.21).
Since

d𝑓 = (𝑓w − 𝑓 ) −
∞∑

k=1
⟨𝑓w − 𝑓,Bk⟩Bk = rw −

∞∑
k=1

⟨rw,Bk⟩Bk,
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there follows ||d𝑓 ||2 = Ew ∫
2𝜋

0
|rw(eit) −

∞∑
k=1

⟨rw,Bk⟩Bk(eit)|2dt

= Ew

(||rw||2L2 −
∞∑

k=1
|⟨rw,Bk⟩|2)

= ||r||2 −
∞∑

k=1
Ew|⟨rw,Bk⟩|2.

The proof of the theorem is complete.

Remark 2.6. The sparse random approximation established in Theorem 2.5 would mostly concern a deterministic
signal corrupted with nonsignificant errors. The effectiveness of the averaging TM system represented by the -norm
of the general difference df(eit, w) defined through (2.19) is identical with the  -energy of f on bH2(D), dominated by
the  -variation of the error term r. In the following section, we develop a sparse representation for analytic RS that
enjoys d𝑓 = 0 a.s. in Ω.

2.3 The SAFDII: Taking mean secondly
Theorem 2.7. Let 𝑓 ∈ H2

w(D). Then, there exists a1 ∈D such that

a1 = arg max{Ew|⟨𝑓w, ea⟩|2 |a ∈ D}.

Proof. Since Ew|⟨fw, ea⟩|2 is a continuous function in a∈D, it suffices to show that the quantity satisfies a stochastic
BVC (SBVC), that is,

lim|a|→1
Ew|⟨𝑓w, ea⟩|2 = 0. (2.24)

Then, a continuity argument based on (2.24) concludes the theorem.
The condition 𝑓 ∈  implies

Ew

∞∑
k=0

|ck(w)|2 < ∞. (2.25)

As a consequence of the integrability, a.s.
∞∑

k=0
|ck(w)|2 < ∞.

This implies, a.s. 𝑓w(z) =
∞∑

k=0
ck(w)zk ∈ H2(D). Thanks to the BVC of the classical Hardy space,5 we have a.s.

lim|a|→1
|⟨𝑓w, ea⟩|2 = 0. (2.26)

On the other hand, when |a|→1, the function |⟨fw, ea⟩|2 uniformly in a∈D has a uniform positive dominating
function. In fact, using the Cauchy–Schwarz inequality,

|⟨𝑓w, ea⟩|2 ≤ ||𝑓w||2 =
∞∑

k=0
|ck(w)|2.

Given by (2.25), the dominating function is Ew-integrable. The Lebesgue domination convergence theorem then can
be used to conclude the desired SBVC (2.24). The proof is complete.

The SAFDII proceeds as follows: Guaranteed by the Theorem 2.7, in the same iterative steps as for the classical AFD,
one can select, at the k-step, an optimal ak:

ak = arg max{Ew|⟨(𝑓k)w, ea⟩|2 |a ∈ D}, (2.27)
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where f= f1, and

𝑓k(z,w) = (𝑓k)w(z) =
(𝑓k−1)w(z) − ⟨(𝑓k−1)w, eak−1⟩eak−1 (z)

z−ak−1
1−āk−1z

, k ≥ 2.

The above maximal selection is called stochastic MSP, abbreviated as SMSP. We then construct a TM system {Bk}∞k=1, as
given in (2.11), corresponding to the selections a1, a2, … , and have the association

𝑓 (z,w) ∼
∞∑

k=1
⟨𝑓w,Bk⟩Bk(z).

On the RHS of the last relation, we also have

⟨(𝑓k)w, eak⟩ = ⟨(gk)w,Bk⟩ = ⟨𝑓w,Bk⟩, (2.28)

where

(gk)w(z) = gk(z,w) = 𝑓 (z,w) −
k−1∑
l=1

⟨𝑓w,Bl⟩Bl(z), k ≥ 2, (2.29)

is the kth standard remainder. The relations (2.28) imply

Ew|⟨(𝑓k)w, eak⟩|2 = Ew|⟨(gk)w,Bk⟩|2 = Ew|⟨𝑓w,Bk⟩|2. (2.30)

The Bessel inequality for f in  with respect to the orthonormal system {Bk} implies

lim
k→∞

Ew|⟨𝑓w,Bk⟩|2 = 0. (2.31)

In view of (2.30), the SMSP (2.27) is reduced to the form

ak = arg max{Ew|⟨𝑓w,Ba
k⟩|2 |a ∈ D}, (2.32)

where

Ba
k(z) = ea(z)

k−1∏
l=1

z − al

1 − ālz
.

We now prove

Theorem 2.8. Let 𝑓 (w, eit) ∈ H2
w(D) and (a1, … , an, … ) be a sequence selected according to the SMSP given in (2.27).

Then, there holds, in the  -norm sense,

𝑓 (z,w) =
∞∑

k=1
⟨𝑓w,Bk⟩Bk(z). (2.33)

Proof. By assuming the opposite, we prove the convergence through a contradiction. If the RHS does not converge to
the LHS, then there is a nontrivial normal RS, g ∈  , such that

𝑓 (z,w) =
∞∑

k=1
⟨𝑓w,Bk⟩Bk(z) + g(z,w), ||g|| > 0. (2.34)

We note that g is orthogonal with all B1, B2, … , Bk, … , and

||g||2N = ||𝑓 ||2 −
∞∑

k=1
Ew|⟨𝑓w,Bk⟩|2. (2.35)

In particular,
lim

k→∞
Ew|⟨𝑓w,Bk⟩|2 = 0. (2.36)
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We show that there exists b∈D such that

Ew|⟨gw, eb⟩|2 = 𝛿2 > 0

for some 𝛿 > 0. For if this were not true, then a.s. for all b∈D

⟨gw, eb⟩ = 0.

Due to the density of eb in H2(D), we would have, for a.s. w ∈ Ω, gw = 0 as a function of t, being contradictory to the
condition ||g|| > 0. We, in particular, can choose b being different from all the selected ak, k = 1, 2, … . In below,
we will fix this b∈D and proceed to derive a contradiction.

Set

hk = −
∞∑

l=k
⟨𝑓w,Bl⟩Bl.

From the definition of gk in (2.29), there follows the orthogonal decomposition

g = gk + hk.

The Bessel inequality implies, when k is large,

Ew|⟨hk, eb⟩|2 ≤ Ew||hk||2 ≤ 𝛿2∕4.

Hence,
2Ew(|⟨gk, eb⟩|2) + 𝛿2∕2 ≥ Ew|⟨gk, eb⟩ + ⟨hk, eb⟩|2 = 𝛿2,

which implies
Ew|⟨gk, eb⟩|2 ≥ 𝛿2∕4.

Due to the reproducing kernel property of eb, for a large k,

(1 − |b|2)2Ew|(gk)(b)|2 ≥ 𝛿2∕4. (2.37)

Since pointwise there holds
𝑓k = gk∕bk and |bk(b)| < 1, (2.38)

where bk is the Blaschke product generated by a1, … , ak as sole zeros, there follows |fk| ≥ |gk|. Hence,

(1 − |b|2)2Ew|(𝑓k)(b)|2 ≥ 𝛿2∕4.

By using the reproducing property of eb again, the inner product form of the last equality has the form

Ew|⟨𝑓k, eb⟩|2 = Ew|⟨𝑓w,Bk⟩|2 ≥ 𝛿2∕4,

for large enough k. This is contradictory to (2.36). The proof is thus complete.

Remark 2.9. The proof is an adaptation of the one used in Qian and Wang5 to the stochastic case, in which, as in the
classical case, the relation (2.38) is crucial.

3 STOCHASTIC SPOAFDS IN HILBERT SPACES

Our discussions on stochastic Hilbert spaces will be based on the related deterministic Hilbert spaces, the latter being
assumed to have a dictionary satisfying BVC. For the self-containing purpose, we give a brief exposition on POAFD
algorithm for deterministic signals25 (also see previous studies24,28,29).
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3.1 POAFD in a Hilbert space with a dictionary satisfying BVC
The classical formulation of sparse representation of a Hilbert space is often under the assumption that the space has a
dictionary that, by definition, is a collection of certain elements of unit norm whose span is dense in the Hilbert space.
The unit norm requirement for a dictionary is not essential. We usually assume that in the underlying Hilbert space ,
there is a subclass of elements Kq, q∈E, whose linear span is dense. We call such a set a predictionary. The parameter
set E is an open set of the complex plane, more generally an open set of Rd or Cd′ , or a product of two such open sets.
We denote the normalizations of Kq by Eq, that is, Eq = Kq∕||Kq||, q ∈ E. Below, we often call the Kqs in a predictionary
by kernels. We borrow this terminology from reproducing kernel Hilbert space. Indeed, the parameterized reproducing
kernels constitute a subclass that induces through normalization a dictionary of the space.

Now, we introduce what is called and assumed BVC in our Hilbert space context: For any but fixed G ∈ , if pn ∈E
and pn → 𝜕E (including ∞ if E is unbounded while in the case we use the compactification topology for the added infinity
point), then

lim
n→∞

|⟨G,Epn⟩| = 0.

We next define what we call by “multiple kernels.” Let (q1, … , qn) be any n-tuple of parameters in E. We denote by l(k)
the multiplicity of qk in the k-tuple (q1, … , qk). Multiple kernels are defined as follows. For any k ≤ n, denote

K̃k =

[(
𝜕

𝜕q̄

)(l(k)−1)

Kq

]
q=qk

.

With a little abuse of notation, we will also denote K̃k by K̃qk , k = 1, 2, … ,n, indicating the parameter sequence in use.
The concept multiple kernel is a necessity of the preorthogonal MSP (POMSP): Suppose we already have an (n− 1)-tuple
{q1, … , qn− 1}, allowing multiplicities, corresponding to the (n− 1)-tuple of kernels, {K̃q1 , … , K̃qn−1}. By performing the
G-S orthonormalization process consecutively, we obtain an equivalent (n− 1)-orthonormal system, {B1, … , Bn− 1}. For
any given G in the Hilbert space, we wish to investigate whether there exists a qn that gives rise to the supreme value

sup{|⟨G,Bq
n⟩| ∶ q ∈ E, q ≠ q1, … , qn−1},

where the finiteness of the supreme is guaranteed by the Cauchy–Schwarz inequality and Bq
n is such that

{B1, … ,Bn−1,Bq
n} is the G-S orthonormalization of {K̃q1 , … , K̃qn−1 ,Kq}. Since q is distinct from the proceeding

q1, … , qn−1, Bq
n is given by

Bq
n =

Kq −
∑n−1

k=1 ⟨Kq,Bk⟩Bk||Kq −
∑n−1

k=1 ⟨Kq,Bk⟩Bk|| . (3.1)

Under BVC, a compact argument leads that there exists a point qn ∈E and q(l), l = 1, 2, … , such that q(l) are all different
from q1, … , qn− 1, liml→∞q(l) = qn, and

lim
l→∞

|⟨G,Bq(l)

n ⟩| = sup{|⟨G,Bq
n⟩| ∶ q ∈ E, q ≠ q1, … , qn−1} = |⟨G,Bqn

n ⟩|, (3.2)

where

Bqn
n =

K̃qn −
∑n−1

k=1 ⟨K̃qn ,Bk⟩Bk√||K̃qn ||2 −∑n−1
k=1 |⟨K̃qn ,Bk⟩|2 , (3.3)

proved through an argument involving Taylor series expansion (see Chen et al28 and Qian29). The BVC together with
multiple kernels are theoretical guarantee of POAFD method: We iteratively apply the above process to G = Gn, where
Gn is the standard remainder

Gn = F −
n−1∑
k=1

⟨F,Bk⟩Bk,

QIAN 4223

 10991476, 2022, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.8033 by C

ochrane M
acao, W

iley O
nline L

ibrary on [20/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



and (B1, … , Bn) is the G-S orthogonalization of (K̃q1 , … , K̃qn). Under the consecutive maximal selections of {qk}∞k=1, one
eventually obtains, with a fast convergent pace,24,28,29

F =
∞∑

k=1
⟨F,Bk⟩Bk. (3.4)

Remark 3.1. We note that repeating selections of parameters can be avoided in practice. By definition of supreme, for
any 𝜌∈ (0, 1), a parameter qn ∈E can be found, different from the previously selected qk, k = 1, … ,n − 1, to have

|⟨Gn,Bqn
n ⟩| ≥ 𝜌 sup{⟨Gn,Bq

n⟩ ∶ q ∈ E, q ≠ q1, … , qn−1}. (3.5)

The corresponding algorithm is called weak POAFD (WPOAFD). With WPOAFD, one may have all the selected
q1, … distinguished, and thus, l(k)≡ 1 and Kk = K̃k for all k. WPOAFD is still a fast converging algorithm although
at each step, it does not reach the optimal.

Remark 3.2. An order O(1∕
√

n) of the convergence rate can be proved: For M> 0, by defining

M = {F ∈  ∶ ∃{cn}, {Eqn}s. t.F =
∞∑

n=1
cnEqn with

∞∑
n=1

|cn| ≤ M}, (3.6)

for any F ∈ M , the POAFD partial sums satisfy

‖‖‖‖‖F −
n∑

k=1
⟨F,Bk⟩Bk

‖‖‖‖‖ ≤ M√
n
.

We note that the above convergence rate is the same as that of the Shannon expansion into the sinc functions of
bandlimited entire functions. In the POAFD case, the orthonormal system {B1, … , Bn, … } is not necessarily a basis
but a system adapted to the given function F. For the Hardy space case, due to the relations in (2.17), the MSP (2.12)
for AFD reduces to the MSP (3.2) for POAFD, and AFD reduces to POAFD. The algorithm codes of AFD and POAFD,
as well as those of the related ones, are available at request in http://www.fst.umac.mo/en/staff/fsttq.html.

Remark 3.3. AFD and POAFD have been seen to have two directions of developments. One is n-best kernel expansion.
That is to determine n-parameters at one time, being obviously of better optimality than the n maximal consecutive
kernel expansion as given in (3.4). The n-best approximation is motivated by the classical problem, yet still open in its
ultimate algorithm, called the best approximation to Hardy space functions by rational functions of degree not exceed-
ing n.30–32 The gradient descending method for cyclic AFD32 and cyclic AFD separately15 may be adopted to give
practical (not mathematical) n-best algorithms in Hilbert spaces with a dictionary satisfying BVC. The second direc-
tion of development of POAFD is related to exploration of Blaschke product-like functions and interpolation problems
in various types of concrete Hilbert spaces, including Hardy and non-Hardy types, and those with hypercomplex
variables and matrix-valued functions. For related publications, see previous studies.2,4,20,22,23

3.2 Stochastic POAFDs
Let be a Hilbert space with a predictionary {Kq} parameterized in an open set E : q∈E. We assume that the predictionary
satisfies BVC

lim
q→𝜕E

|⟨F,Eq⟩| = 0, (3.7)

where Eq = Kq∕||Kq||. Let us consider RSs F(t, w), t∈T, w∈Ω, where for a.s. w ∈ Ω, F(·,w) = Fw ∈ ; and for any t∈T,
F(t, ·) is a random variable. Define

 (,Ω) ={F(t,w) ∶ F(·,w) ∈ , for a.s.w; and F(t, ·)being a random
variable for each fixed t; and Ew||F(·,w)||2 < ∞.}

(3.8)
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This formulation supports two types of SPOAFDs, abbreviated as SPOAFDI and SPOAFDII.
SPOAFDI is one to treat a noised deterministic signal. It corresponds to first take the mean and then does maximal

energy extractions. We need to show EwFw ∈ . Following what is done in (2.6), by using the Minkovski inequality
followed by the Cauchy–Schwarz inequality, we get

||EwFw|| ≤ Ew||Fw|| ≤ (
Ew||Fw||2)1∕2 = ||F|| (,Ω) < ∞.

This shows that the mean belongs to the underlying Hilbert space . Since  has a predictionary that satisfies BVC,
one can perform POAFD in . The difference d(t,w) = F(t,w) − EwF(t,w) enjoys the zero-mean property, and all the
related quantities may be analyzed as in the Section 2.2. This approach gives rise to the type SPOAFDI that is suitable for
analyzing signals corrupted with noise of zero mean and of a small  (,Ω) norm.

To perform the SPOAFDII, we first need to prove the stochastic BVC (SBVC),

lim
q→𝜕E

Ew|⟨Fw,Eq⟩|2 = 0.

The proof follows the same route as for the SAFDII. To show SBVC, we again use the Lebesgue dominated convergence
theorem for the probability space, through showing as follows.

1. For a.s. w∈Ω
lim

q→𝜕E
|⟨Fw,Eq⟩|2 = 0.

2. For all q, the function |⟨Fw, Eq⟩|2 is dominated by a positive integrable function in the probability space.

Property 1 is a consequence of BVC of the dictionary {Eq}q∈E in . To show 2, we have, by the Cauchy–Schwarz
inequality,

Ew|⟨Fw,Eq⟩|2 ≤ Ew||Fw||2 = ||F||2 (,Ω) < ∞.

This concludes that ||Fw||2 is a desired dominating function for |⟨Fw, Eq⟩|2 in the probability space. The SBVC is hence
proved.

Based on the SBVC, we have the following theorem.

Theorem 3.4. Let F(t,w) ∈  (,Ω) and (q1, … , qn, … ) be a consecutively selected kernel sequence under SMSP

qk = arg sup{Ew|⟨(Gk)w,Bq
k⟩|2 |q ∈ E},

where

(Gk)w = Fw −
k−1∑
l=1

⟨Fw,Bl⟩Bl,

and (B1, … , Bk− 1, Bk) is the G-S orthonormalization of (B1, … ,Bk−1, K̃qk ). Then, there holds, in the  (,Ω)-norm
sense,

F(z,w) =
∞∑

k=1
⟨Fw,Bk⟩Bk(z). (3.9)

Remark 3.5. The proof of Theorem 2.8 crucially depends on the property |bk(z)|≤ 1 of the classical Blaschke products.
In the general Hilbert space case, there may not exist Blaschke product-like functions. Below, we give a proof of
Theorem 3.4 that does not depend on Blaschke product-like functions. The proof is an adaptation of one for the
deterministic signal case (see Qian29,33 or Chen et al,28 where Chen et al28 is English equivalent to Qian29).

Proof of Theorem 3.4. We will prove the theorem by contradiction. If the RHS series of (3.9) does not converge to the
LHS function, then there is a nontrivial RS H ∈  (,Ω) such that

F(t,w) =
∞∑

k=1
⟨Fw,Bk⟩Bk(z) + H(z,w), ||H|| (,Ω) > 0. (3.10)
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We note that H is orthogonal with all B1, B2, … , Bk, … , and

0 < ||H||2 (,Ω) = ||F||2 (,Ω) −
∞∑

k=1
Ew|⟨Fw,Bk⟩|2. (3.11)

We claim the fact that ||H|| (,Ω) > 0 implies that there exists q∈E such that

Ew|⟨Hw,Eq⟩|2 = 𝛿2 > 0.

For if this were not true, then a.s. for all q∈E ⟨Hw,Eq⟩ = 0.
Due to the density of Kq in , we would have a.s. Hw = 0 as a function of t, being contradictory to ||H|| (,Ω) > 0.
We may, in particular, choose q being distinguished from all the selected qk, k = 1, 2, … . In below such q∈E will be
fixed. The following argument will lead to a contradiction with the selections of qM for large enough M.

Based on the notation Gk for standard remainders defined in the theorem we rewrite the relation (3.10) as

Fw =

( M∑
k=1

+
∞∑

k=M+1

)⟨(Gk)w,Bk⟩Bk + H

=
M∑

k=1
⟨(Gk)w,Bk⟩Bk + G̃M+1 + H

=
M∑

k=1
⟨(Gk)w,Bk⟩Bk + GM+1,

where G̃M+1 =
∑∞

k=M+1⟨(Gk)w,Bk⟩Bk and GM+1 = G̃M+1 + H. The Bessel inequality implies

lim
M→∞

||G̃M+1|| (,Ω) = 0. (3.12)

On one hand, we have, from the orthogonality and (2.31), for large M,

Ew|⟨(GM+1)w,BM+1⟩|2 = Ew|⟨Fw,BM+1⟩|2 = Ew|⟨Fw,BqM+1
M+1⟩|2 < 𝛿2∕16. (3.13)

On the other hand, we can show, for large M, there holds

Ew|⟨(GM+1)w,Bq
M+1⟩|2 > 9𝛿2∕16, (3.14)

where Bq
M+1 is the last function of the Gram–Schmidt orthonormalization of the (M+ 1)-system (B1, B2, … , BM, Kq)

in the given order. From the triangle inequality of the  (,Ω)-norm,(
Ew|⟨(GM+1)w,Bq

M+1⟩|2)1∕2 ≥ (
Ew|⟨Hw,Bq

M+1⟩|2)1∕2 −
(

Ew|⟨(G̃M+1)w,Bq
M+1⟩|2)1∕2

.

Using the Gauchy–Schwarz inequality and then (3.12), for large enough M, we have

Ew|⟨(G̃M+1)w,Bq
M+1⟩|2 ≤ ||G̃M+1||2 (,Ω) ≤ 𝛿2∕16.

Therefore, (
Ew|⟨(GM+1)w,Bq

M+1⟩|2)1∕2 ≥ (
Ew|⟨Hw,Bq

M+1⟩|2)1∕2 − 𝛿∕4. (3.15)

Next, we compute the energy of the projection of Hw into the span of (B1, … , BM, Eq). The energy is then
just Ew|⟨Hw,Bq

M+1⟩|2, for Hw is orthogonal with B1, … , BM. However, the span is just the same if we alter the
order (B1, … , BM, Eq)
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to (Eq, B1, … , BM). As a consequence, the energy of the projection into the span is surely not less than the energy
of Hw projected onto the first function Eq. This gives rise to the relation

Ew|⟨Hw,Bq
M+1⟩|2 ≥ Ew|⟨Hw,Eq⟩|2 = 𝛿2.

Combining with (3.15), we have (
Ew|⟨(GM+1)w,Bq

M+1⟩|2)1∕2 ≥ 3𝛿∕4.

Thus, we proved (3.14) that is contradictory with (3.13). This shows that the selection of qM+ 1 did not obey SMSP, for
we would better select q instead of qM+ 1 at the (M+ 1)th step. The proof of the theorem is hence complete.

Remark 3.6. For F ∈  (,Ω) (or for 𝑓 ∈ L2
w(R,Ω) in the classical setting), the definition given by (3.8) (or one

similar to 1.3) implies, owing to Fubini's theorem, that

Ew(||F(·,w)||2) ∈  (or Ew(||𝑓 (·,w)||2) ∈ L2(R)). (3.16)

Signals satisfying (3.16) belong to the category of second order processes.34 This, as a necessary condition for a
function in the defined space  , automatically rules out the white noise type signals in the cases when the L2 space
for the time or the space variable t is of infinite measure. In such cases, one can accordingly define a weak version of
stability and accordingly a weak version of ergodicity and develop a related Hardy space and sparse approximation
theory.

Remark 3.7. Theorems 2.8 and 3.4 have separate proofs. Theorem 2.8 is, as a matter of fact, a special case of Theorem
3.4. The question is whether validity of the former can be reduced to the latter. The answer is “Yes.” In (2.8), we
do not use the G-S orthogonalization but the backward shift process to obtain the orthogonality. Whether the two
methodologies result in the same orthonormal system? In Appendix A1, we prove that the TM system, obtained in
AFD through the backward shift process to the Szegö kernel, coincides with that from the G-S orthogonalization to
the same kernels. This validates the above “Yes” answer. Precisely, we will prove

Theorem 3.8. Let {a1, … , an} be any n-tuple of parameters in D in which multiplicities are allowed. Denote by l(m) the
multiplicity of am in the m-tuple {a1, … , am}, 1 ≤ m ≤ n. For each m, denote by

k̃am (z) =
𝜕l(m)−1

(𝜕ā)l(m)−1
ka(z)|a=am , where ka(z) =

1
1 − āz

.

Then, the Gram–Schmidt orthonormalization of {k̃a1 , … , k̃am} in the given order coincides with the m-TM system
{B1, … , Bm}(2.11) defined through the ordered m-tuple {a1, … , am}.

There exist different proofs for this result. In Appendix A1, we give a constructive proof. As far as the author is
aware, the unit disc and a half of the complex plane are the only cases to which the equivalence of the two processes
has been proved.
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APPENDIX A

Proof of Theorem 3.8. Denote the canonical Blaschke product determined by a1, … , am by

ba1,… ,am (z) =
m∏

l=1

z − al

1 − ālz
.

We first show that for any a∈D being different from a1, … , am− 1, there holds

ka(z) −
m−1∑
l=1

⟨ka,Bl⟩Bl(z) = b̄a1,… ,am−1 (a)ba1,… ,am−1 (z)ka(z). (A1)

For this aim, we use mathematical induction. First, we verify the case m = 2. Using the reproducing kernel property
of ka, there follows

ka − ⟨ka,B1⟩B1(z) =
1

1 − āz
− B̄1(a)B1(z)

= 1
1 − āz

− 𝛼

1 − ā1z
, with 𝛼 = 1 − |a1|2

1 − a1ā
,

= ā − a1

1 − a1ā
z − a1

1 − ā1z
1

1 − āz
= b̄a1 (a)ba1(z)ka(z).

Assume that (A1) holds for a general m− 1. Under the inductive hypothesis, we have

ka(z) −
m−1∑
l=1

⟨ka,Bl⟩Bl(z) = [ka(z) −
m−2∑
l=1

⟨ka,Bl⟩Bl(z)] − ⟨ka,Bm−1⟩Bm−1(z)

= b̄a1,… ,am−2 (a)ba1,… ,am−2 (z)ka(z) − ⟨ka,Bm−1⟩Bm−1(z)
= b̄a1,… ,am−2 (a)ba1,… ,am−2 (z)ka(z) − B̄m−1(a)Bm−1(z)

= b̄a1,… ,am−2 (a)ba1,… ,am−2 (z)
[

ka(z) −
1 − |am−1|2

(1 − am−1ā)(1 − ām−1z)

]
= b̄a1,… ,am−1 (a)ba1,… ,am−1 (z)ka(z).

We hence proved (A1). Next, we deal with multiplicity of parameters. Now, we are with the new inductive hypothesis
that the Gram–Schmidt orthonormalization of {k̃a1 , … , k̃am−1} is the (m− 1)-TM system {B1, … , Bm− 1}. First, assume
that am is different from all the preceding ak, k = 1, … ,m − 1. In (A1), let a= am. By taking the norm on the both
sides of (A1) and invoking the orthonormality of the TM system, we have

||kam (z) −
m−1∑
l=1

⟨kam ,Bl⟩Bl(z)|| = e−icm b̄a1,… ,am−1 (am)
1√

1 − |am|2 ,
where cm is a real number depending on a1, … , am− 1, am, and precisely,

eicm =
|ba1,… ,am−1(am)|
ba1,… ,am−1 (am)

.

We thus conclude that
kam (z) −

∑m−1
l=1 ⟨kam ,Bl⟩Bl(z)||kam (z) −

∑m−1
l=1 ⟨kam ,Bl⟩Bl(z)|| = eicm ba1,… ,am−1 (z)eam (z). (A2)
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Note that here we are with the case l(m) = 1 and kam = k̃am . Next, we consider the case l(m)> 1, and we are to show

k̃am (z) −
∑m−1

l=1 ⟨k̃am ,Bl⟩Bl(z)||k̃am (z) −
∑m−1

l=1 ⟨k̃am ,Bl⟩Bl(z)|| = eicm𝜙a1,… ,am−1 (z)eam(z). (A3)

For b being sufficiently close to am in D, we have up to the (l(m)− 1)-order power series expansion in the variable b:

kb(z) =
l(m)−1∑

l=0

1
l!

[(
𝜕

𝜕ā

)l
ka(z)

]
a=am

(b − am)l + o((b − am)(l(m)−1)

= T(z) + 1
(l(m) − 1)!

k̃am (z)(b − am)l(m)−1 + o((b − am)(l(m)−1),

where

T(z) =
l(m)−2∑

l=0

1
l!

[(
𝜕

𝜕ā

)l
ka(z)

]
a=am

(b − am)l.

Now, according to the inductive hypothesis, B1, … , Bm− 1 involve the derivatives of the reproducing kernel up to the
(l(m)− 2)-order, and hence, T is in the linear span of B1, … , Bm− 1. As a consequence,

T(z) −
m−1∑
k=1

⟨T,Bk⟩Bk = 0. (A4)

Inserting the left-hand side of (A4) into (A2), where am is replaced by b with b→ am horizontally (meaning that
Im(b) = Im(am)), and from the right-hand side, while dividing both the denominator and numerator part of the
left-hand side quotient by (b− am)l(m)− 1 > 0, we have

kb(z)−T(z)
(b−am)l(m)−1 −

m−1∑
l=1

⟨ kb−T
(b−am)l(m)−1 ,Bl⟩Bl(z)

|| kb−T
(b−am)l(m)−1 −

m−1∑
l=1

⟨ kb−T
(b−am)l(m)−1 ,Bl⟩Bl(z)|| = eicm𝜙a1,… ,am−1 (z)kb(z).

Letting b− am↓0 and noticing that the Taylor series remainder is

kb − T = k̃am(z)(b − am)l(m)−1 + o(b − am)l(m)−1,

we obtain the desired relation (A3). The proof is complete.
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