Sparse representations of random signals

Tao Qian

Macao Centre for Mathematical Sciences, Macau University of Science and Technology, Macao

Correspondence

Tao Qian, Macao Centre for Mathematical Sciences, Macau University of Science and Technology, Macao.
Email: tqian@must.edu.mo

Communicated by: W. Sprößig

Funding information

The Science and Technology Development Fund, Macau SAR, Grant/Award Number: 0123/2018/A3

Abstract

Sparse (fast) representations of deterministic signals have been well studied. Among other types, there exists one called adaptive Fourier decomposition (AFD) for functions in analytic Hardy spaces. Through the Hardy space decomposition of the L^{2}-space, the AFD algorithm also gives rise to sparse representations of signals of finite energy. To deal with multivariate signals, the general Hilbert space context comes into play. The multivariate counterpart of AFD in general Hilbert spaces with a dictionary has been named preorthogonal AFD (POAFD). In the present study, we generalize AFD and POAFD to random analytic signals through formulating stochastic analytic Hardy spaces and stochastic Hilbert spaces. To analyze random analytic signals, we work on two models, both being called stochastic AFD, or SAFD in brief. The two models are respectively made for (i) those expressible as the sum of a deterministic signal and an error term (SAFDI) and for (ii) those from different sources obeying certain distributive law (SAFDII). In the later part of the paper, we drop off the analyticity assumption and generalize the SAFDI and SAFDII to what we call stochastic Hilbert spaces with a dictionary. The generalized methods are named as stochastic POAFDs, SPOAFDI and SPOAFDII. Like AFDs and POAFDs for deterministic signals, the developed stochastic POAFD algorithms offer powerful tools to approximate and thus to analyze random signals.

KEYWORDS

adaptive Fourier decomposition, analytic signals, dictionary, Hardy spaces, preorthogonal adaptive Fourier decomposition, random signal, sparse representation, stochastic analytic Hardy spaces, stochastic Hilbert spaces

MSC CLASSIFICATION

42A16; 42A20; 41A30; 30B99; 34K28; 35A35

1 | INTRODUCTION

If F is a complex-valued signal in $[0,2 \pi)$ with finite energy, then it can be expanded into its $L^{2}([0,2 \pi))$-convergent Fourier series:

$$
F(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{i k t} .
$$

To make convenient use of complex analysis we alter the notation and denote it as $f\left(e^{i t}\right)=F(t)$. Then, the Plancherel
theorem asserts $\|f\|^{2}=\sum_{-\infty}^{\infty}\left|c_{k}\right|^{2}$, where the L^{2}-norm is defined from the inner product

$$
\langle f, g\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i t}\right) \bar{g}\left(e^{i t}\right) d t
$$

The Plancherel relation infers that c_{k} tends to zero, and therefore, the complex-valued functions

$$
f^{+}(z)=\sum_{k=0}^{\infty} c_{k} z^{k} \text { and } f^{-}(z)=\sum_{k=-1}^{-\infty} c_{k} z^{k}
$$

are analytic in \mathbf{D} and in $\mathbf{C} \backslash \overline{\mathbf{D}}$, respectively, where \mathbf{D} stands for the open unit disc in the complex plane \mathbf{C}. Restricted to the unit circle, in the L^{2}-convergence sense, we define

$$
f^{+}\left(e^{i t}\right) \triangleq \sum_{k=0}^{\infty} c_{k} e^{i k t}
$$

as the analytic signal associated with f. Denote by H the Hilbert transformation on the circle:

$$
H f\left(e^{i t}\right)=\sum_{k=-\infty}^{\infty}(-i) \operatorname{sgn}(k) c_{k} e^{i k t}
$$

where $\operatorname{sgn}(k)=k /|k|$ when $k \neq 0$ and $\operatorname{sgn}(0)=0$. We have $f^{ \pm}=\frac{1}{2}\left(f+i H f \pm c_{0}\right)$. The nontangential boundary limit of $f^{+}(z)$ as $z \rightarrow e^{i t}$ coincides with the above defined L^{2}-limit $f^{+}\left(e^{i t}\right)$. To be practical, we assume that the test functions f are real valued. Then, $c_{-n}=\bar{c}_{n}$, and, as a consequence,

$$
f\left(e^{i t}\right)=2 \operatorname{Re}\left\{f^{+}\left(e^{i t}\right)\right\}-c_{0} .
$$

Due to the above relation, the analysis of a real-valued signal of finite energy can be reduced to the analysis of the associated analytic signal f^{+}. Since f^{+}is the boundary limit of the analytic function $f^{+}(z)$ in \mathbf{D}, complex analytic methods are available for f^{+}. The totality of such analytic functions $f^{+}(z)$ in the disc is identical with the function space

$$
\begin{align*}
H^{2}(\mathbf{D}) & \triangleq\left\{f: \mathbf{D} \rightarrow \mathbf{C} \mid f \text { is analytic and } f(z)=\sum_{k=0}^{\infty} c_{k} z^{k} \text { with } \sum_{k=0}^{\infty}\left|c_{k}\right|^{2}<\infty\right\} \tag{1.1}\\
& =\left\{f: \mathbf{D} \rightarrow \mathbf{C} \mid f \text { is analytic and } \sup _{0<r<1} \int_{0}^{2 \pi}\left|f\left(r e^{i t}\right)\right|^{2} d t<\infty\right\}
\end{align*}
$$

called the (complex analytic) Hardy H^{2}-space in the unit disc. There exist other complex analytic Hardy spaces with more or less parallel theories as the one defined in the disc. In other words, the Hardy space idea to study functions may be extended to signals defined on the real line \mathbf{R} or to those defined on manifolds in the higher dimensional complex spaces \mathbf{C}^{d} in the several complex variables setting (e.g., the Hardy spaces on the n-torus, ${ }^{1}$ or the Drury-Arveson space or the Hardy space of the solid ball in several complex variables ${ }^{2}$) or to those in the real-Euclidean spaces \mathbf{R}^{d} in the Clifford algebra setting (the conjugate harmonic systems ${ }^{1,3}$) and with scalar, complex, vector values, or even matrix values, ${ }^{2,4}$ all obeying the same philosophy. We will only take the context $H^{2}(\mathbf{D})$ as an example to explain the adaptive Fourier decomposition (AFD) theory. In below, we often abbreviate $H^{2}(\mathbf{D})$ as H^{2}. The Hardy space $H^{2}(\mathbf{D})$ has several equivalent characterizations that are not of interest of this paper. The disc case deals with signals defined in a compact interval on the line. That is also the model for periodic signals. In the first half of this paper, we mainly concentrate in stochastic-lization of the Hardy space in which the adaptive Fourier decomposition, AFD or Core-AFD, was earlier established. ${ }^{5}$ We note that AFD on the disc heavily depends on two intimately related concepts, Blaschke product and Takenaka-Malmquist system, the latter being abbreviated as TM system. AFD is, in fact, in terms of TM system. In many analytic function spaces, Blaschke product-like functions are not available. Preorthogonal AFD (POAFD) then provides a replacement of AFD in the Hilbert spaces that do not have easy-usable Blaschke product-like functions nor explicit and constructive orthogonal function systems like the TM system. The latter happens mostly for multivariate signals. We leave the POAFD
method to be studied in the later half of this paper in which we formulate stochastic POAFD (SPOAFD) in the general setting of stochastic Hilbert space with a dictionary.
In contrast with the deterministic signals setting, in practice, one encounters random signals (RSs): Signals are mostly corrupted with noise or together with measurement errors or as an alternative type, consisting of several classes of signals under certain distribution law. A practical formulation then should be a real-valued function $F(t, w)$, where a.s. (a.s.) for a fixed probabilistic sample point $w \in \Omega$, the function $F(\cdot, w)$ is a deterministic signal of finite energy; meanwhile, for almost everywhere, a point t in the time domain or the space domain the function $F(t, \cdot)$ is a random variable. We call such signals RSs. To formulate the corresponding stochastic Hardy space theory in the case $t \in[0,2 \pi)$, we rewrite $F(t, w)$ as $F(t, w)=f\left(e^{i t}, w\right)=f_{w}(t)$, and, since it a.s. has finite energy, we have the trigonometric expansion

$$
\left.f\left(e^{i t}, w\right)=\sum_{k=-\infty}^{\infty} c_{k}(w) e^{i k t}=\left[\sum_{k=-\infty}^{\infty} c_{k}(w) z^{k}\right]\right]_{z=e^{i t}}, \text { where } c_{k}(w)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i s}, w\right) e^{-i k s} d s
$$

The Plancherel theorem gives

$$
\|f(\cdot, w)\|^{2}=\sum_{k=-\infty}^{\infty}\left|c_{k}(w)\right|^{2} .
$$

In this study, we impose the condition

$$
\begin{equation*}
\left[E_{w}\|f(\cdot, w)\|^{2}\right]^{\frac{1}{2}}=\left(\sum_{k=-\infty}^{\infty} E_{w}\left|c_{k}(w)\right|^{2}\right)^{\frac{1}{2}}<\infty, \tag{1.2}
\end{equation*}
$$

where $E_{w}\left|c_{k}(w)\right|^{2}$ stands for the mathematical expectation of the function $\left|c_{k}(w)\right|^{2}$ of the random variable w in the underlying probability space. In the whole paper, the underlying probability space, $(\Omega, \mu), w \in \Omega$, is not specified, as the theory is valid for any but fixed probability measure. The quantity in (1.2) is called the energy expectation norm (EE-norm) of f, denoted as $\|f\|_{\mathcal{N}}$. Set

$$
\begin{equation*}
L_{w}^{2}(\partial \mathbf{D}, \Omega)=\left\{f: \partial \mathbf{D} \times \Omega \rightarrow \mathbf{C} \mid f \text { is a RS, and }\|f\|_{\mathcal{N}}<\infty\right\}, \tag{1.3}
\end{equation*}
$$

called the space of RSs of finite energy. One can similarly define a space $L_{w}^{2}(\mathbf{R}, \Omega)$ with periodicity being replaced by global finiteness in energy. In this paper, we explicitly write out the theory in the periodic case corresponding to the unit circle. The $L_{w}^{2}(\partial \mathbf{D}, \Omega)$ is written briefly as \mathcal{N}. The RSs in $L_{w}^{2}(\partial \mathbf{D}, \Omega)$ are called normal $R S s$. The space \mathcal{N} is a Hilbert space under the inner product, $\langle\cdot, \cdot\rangle_{\mathcal{N}}$, induced from the EE-norm. A normal RS is a.s. a signal of finite energy in t. In below, we will preserve the inner product notation $\langle\cdot, \cdot\rangle$ only for the inner product of the time-domain space $L^{2}(\partial \mathbf{D})$.
Similarly to the deterministic case, we will concentrate in studying "a half" of the space \mathcal{N}, consisting of the RSs with expansions in the spectrum range $k=0,1, \ldots$,

$$
f^{+}\left(e^{i t}, w\right)=\sum_{k=0}^{\infty} c_{k}(w) e^{i k t}, \text { satisfying } \sum_{k=0}^{\infty} E_{w}\left(\left|c_{k}(w)\right|^{2}\right)<\infty .
$$

As a consequence, a.s.

$$
\sum_{k=0}^{\infty}\left|c_{k}(w)\right|^{2}<\infty,
$$

and thus, a.s.

$$
f^{+}(z, w)=\sum_{k=0}^{\infty} c_{k}(w) z^{k}
$$

is an analytic function in \mathbf{D}. The boundary limits exist a.e. in the pointwise way and in the L^{2}-convergence sense as $r=|z| \rightarrow 1$. Since f is assumed to be of real valued, we have $c_{-k}=c_{k}$, that implies

$$
f\left(e^{i t}, w\right)=2 \operatorname{Re}\left\{f^{+}\left(e^{i t}, w\right)\right\}-c_{0}(w) .
$$

On the boundary $\partial \mathbf{D}$, the projection f^{+}, apart being obtained through the power series expansion, can also be obtained through the singular integral operator, the (circular) Hilbert transform, H :

$$
\begin{equation*}
f^{+}\left(e^{i t}, w\right)=\frac{1}{2}\left(f\left(e^{i t}, w\right)+i H f\left(e^{i t}, w\right)+c_{0}\right) \tag{1.4}
\end{equation*}
$$

where

$$
\begin{aligned}
H f\left(e^{i t}, w\right) & \triangleq \sum_{k=-\infty}^{\infty}(-i) \operatorname{sgn}(k) c_{k}(w) e^{i k t} \\
& =\frac{1}{\pi} \text { v.p. } \int_{-\infty}^{\infty} \cot \left(\frac{s}{2}\right) f\left(e^{i(t-s)}, w\right) d s .
\end{aligned}
$$

By using the Hilbert transformation, analysis of the normal RSs is reduced to analysis of their half series. We define the stochastic Hardy space to be the collection of the functions f^{+}in the above argument (with the superscript "+" being dropped off), denoted

$$
\begin{align*}
H_{w}^{2}(\mathbf{D})=\{f: \mathbf{D} \times \Omega & \rightarrow \mathbf{C} \mid f(z, w) \text { is a.s. analytic in } z \text { and } \\
f(z, w) & \left.=\sum_{k=0}^{\infty} c_{k}(w) z^{k} \text { with }\|f\|_{\mathcal{N}}^{2}=\sum_{k=0}^{\infty} E_{w}\left|c_{k}(w)\right|^{2}<\infty\right\} \tag{1.5}
\end{align*}
$$

The space $H_{w}^{2}(\mathbf{D})$ induces a space, being the totality of the boundary limits of the RSs in $H_{w}^{2}(\mathbf{D})$, denoted as $H_{w}^{2}(\partial \mathbf{D})$. The latter is a proper closed subspace of the Hilbert space \mathcal{N} on the boundary $\partial \mathbf{D}$. The mapping that maps functions in $H_{w}^{2}(\mathbf{D})$ to their boundary limits in $H_{w}^{2}(\partial \mathbf{D})$ is, in fact, an isometry between the two spaces.

The purpose of this study is twofold. The first fold is to develop two types of stochastic AFDs (SAFDs), named as SAFDI and SAFDII, for analyzing RSs. In order to make use of complex analysis methods, we employ the Fourier expansion, Hilbert transform, or the Cauchy integral to obtain the analytic functions f^{+}from their boundary data. The second fold is to generalize the results obtained in the first fold to the context of Hilbert space with a dictionary. A general context in which some complex analysis methodology can be adopted is reproducing kernel Hilbert space in which the reproducing kernel plays the role of the Cauchy kernel. In the later part of the paper, we establish a counterpart theory in what we call stochastic Hilbert space. A Hilbert space with a dictionary is a more general concept than a reproducing kernel Hilbert space.

The writing plan is as follows. In Section 2, with the stochastic Hardy space context, we establish two types of sparse approximations, SAFDI and SAFDII, for treating two different types of analytic RSs: One is for noised signals (the ramdomization is from the noise), and the other is for a collection of RSs obeying certain probability distribution. The second type is more general than the first. In Section 3, we extend the theory to the context of stochastic Hilbert space with a dictionary treating also two types of RSs and develop accordingly two types of sparse approximations, named as SPOAFDI and SPOAFDII. The necessity of developing a theory in the general Hilbert space context lays in the demanding of applications, especially in the multivariate RS cases, in which there do not exist analyticity properties as being used in the classical Hardy space cases. As example, by using the developed sparse representation algorithm one may analyze heart ECG signals from a group of people at one time, ${ }^{6-8}$ or numerically or with explicit formulas, solve certain stochastic partial differential equations. ${ }^{9}$

For the reader's convenience, we give the following abbreviations list:
AFD: adaptive Fourier decomposition (for deterministic signals in the classical Hardy spaces consisting of analytic signals of finite energy on the boundary, associated with a Blaschke product structure)

BVC: boundary vanishing condition
MSP: maximal selection principle
POAFD: preorthogonal adaptive Fourier decomposition (applicable for Hilbert spaces with a dictionary satisfying BVC)
SBVC: stochastic boundary vanishing condition
RS: random signal
Normal RS: normal random signal or a signal in the space (1.3)
\mathcal{N} : the Hilbert space consisting of normal RSs
$H_{w}^{2}(\mathbf{D})$: the stochastic Hardy space on the disc, corresponding to $c_{k}(w)=0$ for $k<0$
$H_{w}^{2}(\partial \mathbf{D})$: the space of the functions as boundary limits of those in $H_{w}^{2}(\mathbf{D})$ defined on $\partial \mathbf{D}$

SHS: a stochastic Hilbert space or a Hilbert space of RSs possessing finite variation
SAFD, SAFDI, SAFDII: SAFDs are divided into two types: the type I, SAFDI, is for the RSs that are expressible as a deterministic signal corrupted with a noise of small \mathcal{N}-norm; the type II, SAFDII, is for a general stochastic Hardy space.

SPOAFD, SPOAFDI, SPOAFDII: SPOAFDs in SHS consist of two types: the type I, SPOAFDI, is for the RSs being expressible as noised signals; the type II, SPOAFDII, is for any general SHS.

2 | STOCHASTIC AFDS

In the deterministic signal analysis, AFD is a sparse approximation methodology using a suitably adapted TM system. We use the terminology "sparse approximation" or "sparse representation" in the sense that a given signal is expanded by a system that is not necessarily a basis but with fast convergence. The expression "fast convergence" has the specified meaning that it is either in the classical sense or in the best n partial sum approximation sense under n-parameters selections, where n can be any prescribed positive integer. In the classical Hardy space formulation, AFD well fits with the Beurling-Lax theorem, where any specific function belongs to a backward shift-invariant subspace in which the function is the limit of a fast converging TM series. The AFD-type expansions have found ample applications in signal and image analysis and in system identification (see, for instance, previous studies ${ }^{10-13}$). With the stochastic Hardy space case, as defined in Section 1, we generate two types of AFD-like expansions, called stochastic AFDI (SAFDI) and stochastic AFDII (SAFDII), of which each has its own merits in applications. Before studying the SAFDs, we develop some aspects in relation to Hardy space projections of normal RSs.

2.1 | Properties of hardy space projection of RSs

Normal RSs $f\left(e^{i t}, w\right)$ can all be represented into the form

$$
\begin{equation*}
f\left(e^{i t}, w\right)=\tilde{f}\left(e^{i t}\right)+r\left(e^{i t}, w\right), \tag{2.1}
\end{equation*}
$$

where $\tilde{f}=E_{w} f$ and $r\left(e^{i t}, w\right)=f\left(e^{i t}, w\right)-\tilde{f}\left(e^{i t}\right)$. The difference r is also called the remainder RS. Like in the deterministic signals case, we are to reduce analysis of normal RSs to that of the associated analytic normal RSs. Given by the next two theorems, the Hardy space projections $f^{+},[\tilde{f}]^{+}$and r^{+}preserve many properties possessed by the function $f \in \mathcal{N}$.

Theorem 2.1. If $f \in \mathcal{N}$, then $\tilde{f} \in L^{2}(\partial \boldsymbol{D}), r \in \mathcal{N}, E r=0$. In writing

$$
f\left(e^{i t}, w\right)=\sum_{k=-\infty}^{\infty} c_{k}(w) e^{i k t} \text { and } r\left(e^{i t}, w\right)=\sum_{k=-\infty}^{\infty} d_{k}(w) e^{i k t}
$$

there hold

$$
\tilde{f}\left(e^{i t}\right)=\sum_{k=-\infty}^{\infty} E_{w}\left(c_{k}(w)\right) e^{i k t}
$$

and

$$
d_{k}(w)=c_{k}(w)-E_{w} c_{k}, E_{w} d_{k}=0, k=0, \pm 1, \pm 2 \ldots
$$

The Hardy space projections $f^{+},[\tilde{f}]^{+}, r^{+}$, respectively, belong to $H_{w}^{2}(\partial \boldsymbol{D}), H^{2}(\partial \boldsymbol{D})$, and in $H_{w}^{2}(\partial \boldsymbol{D})$. There hold

$$
\left\{E_{w} f\right\}^{+}=E_{w}\left\{f^{+}\right\} \text {and }\left\|r^{+}\right\|_{\mathcal{N}}=\frac{\left\|r+d_{0}\right\|_{\mathcal{N}}}{\sqrt{2}}
$$

Proof. We note that

$$
\begin{align*}
\left(\sum_{k=-\infty}^{\infty}\left|E_{w}\left(c_{k}(w)\right)\right|^{2}\right)^{1 / 2} & \leq E_{w}\left[\left(\sum_{k=-\infty}^{\infty}\left|c_{k}(w)\right|^{2}\right)^{1 / 2}\right] \text { (Minkovski's inequality) } \\
& \leq\left[E_{w}\left(\sum_{k=-\infty}^{\infty}\left|c_{k}(w)\right|^{2}\right)\right]^{1 / 2}\left[E_{w}(1)\right]^{1 / 2} \text { (Hölder's inequality) } \tag{2.2}\\
& =\left[\sum_{k=-\infty}^{\infty} E_{w}\left(\left|c_{k}(w)\right|^{2}\right)\right]^{1 / 2}\left[E_{w}(1)\right]^{1 / 2} \\
& =\|f\|_{\mathcal{N}}<\infty
\end{align*}
$$

Then, the Riesz-Fisher theorem asserts that

$$
g\left(e^{i t}\right)=\sum_{k=-\infty}^{\infty} E_{w}\left(c_{k}(w)\right) e^{i k t} \in L^{2}(\partial \mathbf{D}) .
$$

Now, we show $\tilde{f}=g$. Denote $f_{n}\left(e^{i t}, w\right)=\sum_{|k| \leq n} c_{k}(w) e^{i k t}$. Then, $E_{w} f_{n}\left(e^{i t}, w\right)=\sum_{|k| \leq n} E_{w}\left(c_{k}\right) e^{i k t}$. Similarly, to the reasoning of (2.2), there follows

$$
\begin{aligned}
\left\|E_{w} f-E_{w} f_{n}\right\| & =\left\|E_{w}\left(f-f_{n}\right)\right\| \\
& \leq E_{w}\left\|f-f_{n}\right\| \\
& \leq\left(E_{w}\left\|f-f_{n}\right\|^{2}\right)^{1 / 2} \\
& =\left\|f-f_{n}\right\|_{\mathcal{N}} \\
& =\left(\sum_{|k|>n} E_{w}\left(\mid c_{k}(w)^{2}\right)\right)^{1 / 2} \\
& \rightarrow 0, \text { as } n \rightarrow \infty .
\end{aligned}
$$

Since the linear functional of the m th Fourier coefficient, C_{m}, is continuous, there follows

$$
C_{m}\left(E_{w} f\right)=\lim _{n \rightarrow \infty} C_{m}\left(E_{w} f_{n}\right)=E_{w}\left(c_{m}(w)\right) .
$$

This shows that $E_{w} f=g \in L^{2}(\partial \mathbf{D})$ and is with the Fourier expansion

$$
\tilde{f}=\sum_{k=-\infty}^{\infty} E_{w}\left(c_{k}(w)\right) e^{i k t} \in L^{2}(\partial \mathbf{D}) .
$$

It then follows

$$
\begin{equation*}
E_{w}\left(r\left(e^{i t}, w\right)\right)=E_{w} d_{k}=0, \forall t \in[0,2 \pi) \text { and } k=0, \pm 1 \ldots \tag{2.3}
\end{equation*}
$$

As a consequence of (2.3), we have the orthogonality

$$
\begin{equation*}
E_{w}\left(\left|\tilde{f}\left(e^{i t}\right)+r\left(e^{i t}, w\right)\right|^{2}\right)=\left|\tilde{f}\left(e^{i t}\right)\right|^{2}+E_{w}\left|r\left(e^{i t}, w\right)\right|^{2}, \tag{2.4}
\end{equation*}
$$

and thus, the finiteness of the \mathcal{N}-norm of r :

$$
\begin{equation*}
E_{w}\left(\left|r\left(e^{i t}, w\right)\right|^{2}\right)=\|f\|_{\mathcal{N}}^{2}-\|\tilde{f}\|_{L^{2}(\partial \mathbf{D})}^{2}<\infty \text { for a.e. } t \in[0,2 \pi) . \tag{2.5}
\end{equation*}
$$

To compute the \mathcal{N}-norm of r^{+}, by taking into account $d_{k}=\bar{d}_{-k}$, we have

$$
\left\|r^{+}\right\|_{\mathcal{N}}^{2}=E_{w} \int_{0}^{2 \pi}\left|r^{+}\left(e^{i t}, w\right)\right|^{2} d t=\sum_{k=0}^{\infty} E_{w}\left|d_{k}(w)\right|^{2}=\frac{\left\|r+d_{0}\right\|_{\mathcal{N}}^{2}}{2} .
$$

The proof of the theorem is complete.

2.2 | The type SAFDI: Taking mean first

In this section, we assume that $f\left(e^{i t}, w\right)$ is in $H_{w}^{2}(\mathbf{D})$. Letting $\tilde{f}=E_{w}\left(f\left(e^{i t}, w\right)\right)$, we, as in the last section, have

$$
f\left(e^{i t}, w\right)=\tilde{f}\left(e^{i t}\right)+r\left(e^{i t}, w\right) .
$$

The function \tilde{f} is, in fact, in $H^{2}(\mathbf{D})$. This is a consequence of Theorem 2.1 or can be proved by the similar but integral inequalities as, for $r<1$,

$$
\begin{align*}
& \left(\int_{0}^{2 \pi}\left|E_{w} f\left(r e^{i t}, w\right)\right|^{2} d t\right)^{1 / 2} \\
\leq & E_{w}\left[\left(\int_{0}^{2 \pi}\left|f\left(r e^{i t}, w\right)\right|^{2} d t\right)^{1 / 2}\right] \text { (Minkovski's inequality) } \tag{2.6}\\
\leq & \left(E_{w} \int_{0}^{2 \pi}\left|f\left(r e^{i t}, w\right)\right|^{2} d t\right)^{1 / 2} E_{w}(1)^{1 / 2} \text { (Hölder's inequality) } \\
\leq & \|f\|_{\mathcal{N}}<\infty .
\end{align*}
$$

We also note that, as a consequence of the last inequality, for a.s. $w \in \Omega, f(z, w), z=r e^{i t}$, is a function in the classical analytic Hardy space with the power series expansion

$$
f(z, w)=\sum_{0}^{\infty} c_{k}(w) z^{k}=\sum_{0}^{\infty} c_{k}(w) r^{k} e^{i k t}, \quad r<1 .
$$

The type SAFDI is based on AFD of the deterministic signal \tilde{f}. For the self-containing purpose, we now go through a full AFD expansion of \tilde{f}. We will be using the L^{2}-normalized Szegö kernel on the circle:

$$
e_{a}(z)=\frac{\sqrt{1-|a|^{2}}}{1-\bar{a} z}, a \in \mathbf{D} .
$$

In $H^{2}(\mathbf{D})$, it has the reproducing kernel property: For arbitrary $g \in H^{2}(\mathbf{D})$,

$$
\left\langle g, e_{a}\right\rangle=\sqrt{1-|a|^{2}} g(a) .
$$

Let $f_{1}=\tilde{f}$. For any $a \in \mathbf{D}$, we have the following identity as an orthogonal decomposition

$$
\begin{equation*}
\tilde{f}(z)=\left\langle f_{1}, e_{a}\right\rangle e_{a}(z)+f_{2}(z) \frac{z-a}{1-\bar{a} z}, \tag{2.7}
\end{equation*}
$$

where f_{2} is call the reduced remainder, given by

$$
\begin{equation*}
f_{2}(z)=\frac{f_{1}(z)-\left\langle f_{1}, e_{a}\right\rangle e_{a}(z)}{\frac{z-a}{1-\bar{a} z}} \in H^{2}(\mathbf{D}) . \tag{2.8}
\end{equation*}
$$

Due to the orthogonalization, we have

$$
\begin{equation*}
\|\tilde{f}\|_{H^{2}(\mathbf{D})}=\left|\left\langle f_{1}, e_{a}\right\rangle\right|^{2}+\left\|f_{2}\right\|_{H^{2}(\mathbf{D})} \tag{2.9}
\end{equation*}
$$

Thus, the larger the quantity $\left|\left\langle f_{1}, e_{a}\right\rangle\right|^{2}$ is, the smaller the energy of the reduced remainder f_{2} is. Although \mathbf{D} is an open set, it can be proved (see Qian and Wang, ${ }^{5}$ for instance) that

$$
\sup \left\{\left|\left\langle f_{1}, e_{a}\right\rangle\right|^{2} \mid a \in \mathbf{D}\right\}
$$

is attainable at a point of \mathbf{D}. Hence, one theoretically selects

$$
a_{1}=\arg \max \left\{\left|\left\langle f_{1}, e_{a}\right\rangle\right|^{2} \mid a \in \mathbf{D}\right\}
$$

Such maximal selection is phrased as maximal selection principle (MSP) of the Hardy space. ${ }^{5}$ The MSP is evidenced by the boundary vanishing condition (BVC) of the Szegö kernel dictionary in the Hardy space (see Section 3 for a more general formulation). Using this a_{1} in place of a in (2.7), (2.8), and (2.9), we have that the corresponding reduced remainder f_{2} has its least possible norm. In our terminology, this is n-best approximation with $n=1$.

To f_{2} we carry on the same decomposition procedure, and so on. After n-iterations, we have

$$
\begin{equation*}
\tilde{f}(z)=\sum_{k=1}^{n}\left\langle f_{k}, e_{a_{k}}\right\rangle B_{k}(z)+f_{n+1}(z) \prod_{k=1}^{n} \frac{z-a_{k}}{1-\bar{a}_{k} z} \tag{2.10}
\end{equation*}
$$

where $\left\{B_{k}\right\}_{k=1}^{\infty}$ is the automatically generated orthonormal TM system corresponding to the maximally selected a_{1}, \ldots , a_{k}, \ldots, all in \mathbf{D}, where, explicitly,

$$
\begin{gather*}
B_{k}(z)=e_{a_{k}}(z) \prod_{l=1}^{k-1} \frac{z-a_{l}}{1-\bar{a}_{l} z}, \tag{2.11}\\
a_{k}=\max \left\{\left|\left\langle f_{k}, e_{a}\right\rangle\right|^{2} \mid a \in \mathbf{D}\right\} \tag{2.12}\\
f_{k+1}(z)=\frac{f_{k}(z)-\left\langle f_{k}, e_{a_{k}}\right\rangle e_{a_{k}}(z)}{\frac{z-a_{k}}{1-\bar{a}_{k} z}} \in H^{2}(\mathbf{D}) \tag{2.13}
\end{gather*}
$$

We note that $\left\{B_{k}\right\}$ is automatically an orthonormal system, although not necessarily a basis. It turns out that under the maximal selections of $a_{k}, k=1,2, \ldots$, there holds the convergence:

$$
\begin{equation*}
\tilde{f}(z)=\sum_{k=1}^{\infty}\left\langle f_{k}, e_{a_{k}}\right\rangle B_{k}(z) \tag{2.14}
\end{equation*}
$$

Due to the consecutive optimal selections of the parameters a_{k}, the convergence is in a fast pace. Although on the unit circle the Hardy space functions may not be smooth, it admits a promising convergence rate. ${ }^{5}$

Remark 2.2. Any sequence ($a_{1}, \ldots, a_{n}, \ldots$) in \mathbf{D} can define a TM system $\left\{B_{k}\right\}_{k=1}^{\infty}$ by (2.11). A TM system is alternatively called a rational orthonormal system. In the area of rational approximation, the study of TM systems together with their applications has a long history. ${ }^{14} \mathrm{~A}$ TM system is an H^{p}-basis, $1<p<\infty$, if and only if $\sum_{k=1}^{\infty}\left(1-\left|a_{k}\right|\right)=\infty$. A half of the Fourier basis, $\left\{z^{k-1}\right\}_{k=1}^{\infty}$, corresponding to all a_{n} being identical with zero, is a particular example of the basis case. The study ${ }^{5}$ opens a new era of adaptive use of TM systems through maximal selections of the parameters according to the data of the given signal. The MSP of AFD declares the best selection principle at the one-step selection. This is due to attainability of the global maximum at each step that rests in the availability of repeating selections of the parameters when needed. AFD shares the same idea as greedy algorithm for the one-step optimal selection strategy; the latter, however, does not address the issue concerning attainability of the global maximal in the parameters nor address necessity and feasibility of repeating selections of the parameters. AFD found close connections to the Beurling theorem for $H^{2}(\mathbf{D})$ asserting directional-sum decomposition of the space into shift- and backward shift-invariant subspaces:

$$
\begin{equation*}
H^{2}(\mathbf{D})=\overline{\operatorname{span}}\left\{B_{k}\right\}_{k=1}^{\infty} \oplus b H^{2}(\mathbf{D}) \tag{2.15}
\end{equation*}
$$

where $\left\{B_{k}\right\}_{k=1}^{\infty}$ is the TM system and b is the Blaschke product, when can be defined, with the sole zeros a_{1}, a_{2}, \ldots, including the multiplicities. The Blaschke product is well defined if and only if $\sum_{k=1}^{\infty}\left(1-\left|a_{k}\right|\right)<\infty$. If the sequence
cannot define a Blaschke product, then

$$
\begin{equation*}
H^{2}(\mathbf{D})=\overline{\operatorname{span}}\left\{B_{k}\right\}_{k=1}^{\infty} . \tag{2.16}
\end{equation*}
$$

With the AFD formulation, we know that $\tilde{f} \in \overline{\operatorname{span}}\left\{B_{k}\right\}_{k=1}^{\infty}$, the backward shift-invariant subspace in (2.15) or (2.16).
Remark 2.3. AFD was motivated by intrinsic positive frequency decomposition of analytic signals. It automatically generates a fast converging orthogonal expansion of which each entry has a meaningful instantaneous frequency. It has several variations, namely, cyclic AFD, unwinding AFD, and be generalized, in the sparse approximation aspect, to multidimensions with the Clifford and several complex variables setting with scalar- to matrix-valued signals. ${ }^{2,4,15-19}$ In the one-dimensional case, a variation called unwinding Blaschke expansion was first studied by Coifman and Nahon in 2000 and then joined by Steinerberger and Peyriére making further connections with Blaschke products and outer functions. ${ }^{20,21}$ Unwinding method was also separately developed in Qian ${ }^{22}$ and further developed in a recent paper on maximal unwinding AFD. ${ }^{23}$ AFD has also been generalized to Hilbert spaces with a dictionary satisfying BVC. ${ }^{24,25}$ The AFD generalization in Hilbert spaces is called preorthogonal AFD (POAFD). Among others, POAFD algorithms in weighted Bergman spaces and weighted Hardy spaces (non-Hardy-type Hilbert spaces of holomorphic functions) were developed in Qu and Dang. ${ }^{26,27} \mathrm{AFD}$ and its one-dimensional variations, as well as its generalizations to the non-Hardy type and general Hilbert spaces, have become powerful tools in signal and image analysis and in system identification. ${ }^{10-13,28}$

Remark 2.4. In the AFD algorithm, as a consequence of the orthogonality, there hold the relations:

$$
\begin{equation*}
\left\langle f_{k}, e_{a_{k}}\right\rangle=\left\langle g_{k}, B_{k}\right\rangle=\left\langle\tilde{f}, B_{k}\right\rangle, k \geq 2, \tag{2.17}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{k}(z)=\tilde{f}(z, w)-\sum_{l=1}^{k-1}\left\langle f_{l}, e_{a_{l}}\right\rangle B_{l}(z), k \geq 2, \tag{2.18}
\end{equation*}
$$

is the k-emphth standard remainder. It is the relation (2.17) that allows AFD to be generalized to Hilbert spaces with a dictionary satisfying BVC. In the latter, there is no reduced remainder structure nor explicit TM system in the underlying Hilbert space as Gram-Schmidt orthogonalization of the Szegö kernels as in the unit disc or the half complex plane case.

We now continue our sparse representation theme for RSs. For an analytic RS f in $H_{w}^{2}(\mathbf{D})$, we obtain a sequence of parameters a_{1}, a_{2}, \ldots, and an associated TM system $\left\{B_{k}\right\}_{k=1}^{\infty}$ that gives rise to an AFD sparse representation of the deterministic $\tilde{f}=E_{w} f_{w}$. The question is that when we use the system $\left\{B_{k}\right\}_{k=1}^{\infty}$ to expand the original $\operatorname{RS} f\left(e^{i t}, w\right)=f_{w}\left(e^{i t}\right)$ for fixed w, then in what extent the related TM series expansion can represent f as a RS? Or, namely, what is the difference

$$
\begin{equation*}
d_{f}\left(e^{i t}, w\right)=f_{w}\left(e^{i t}\right)-\sum_{k=1}^{\infty}\left\langle f_{w}, B_{k}\right\rangle B_{k}\left(e^{i t}\right) ? \tag{2.19}
\end{equation*}
$$

In view of the Beurling theorem, when there holds $\sum_{k=1}^{\infty}\left(1-\left|a_{k}\right|\right)<\infty$, it would well happen that for some $w, f_{w} \in$ $H^{2}(\mathbf{D}) \ominus \overline{\operatorname{span}}\left\{B_{k}\right\}_{k=1}^{\infty}=b H^{2}(\mathbf{D})$, and in the case the difference $d_{f}\left(e^{i t}, w\right)$ is a nonzero function. We have the following.
Theorem 2.5. Let $f \in H_{w}^{2}(\boldsymbol{D}), \tilde{f}=E_{w} f$, and

$$
\tilde{f}=\sum_{k=0}^{\infty}\left\langle\tilde{f}, B_{k}\right\rangle B_{k}
$$

be an AFD expansion of \tilde{f}. Then, with the same $\left\{B_{k}\right\}$,

$$
\begin{equation*}
E_{w} d_{f}\left(e^{i t}, w\right)=0, \forall t \in[0,2 \pi) . \tag{2.20}
\end{equation*}
$$

There holds the relation

$$
\begin{equation*}
E_{w}\left\|f_{w}-\sum_{k=1}^{n}\left\langle f_{w}, B_{k}\right\rangle B_{k}\right\|_{H_{w}^{2}}^{2}=\left\|d_{f}\right\|_{\mathcal{N}}^{2}+\sum_{k=n+1}^{\infty} E_{w}\left|\left\langle f_{w}, B_{k}\right\rangle\right|^{2} \tag{2.21}
\end{equation*}
$$

with

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=n+1}^{\infty} E_{w}\left|\left\langle f_{w}, B_{k}\right\rangle\right|^{2}=0 \tag{2.22}
\end{equation*}
$$

And in terms of the error $r=f-\tilde{f}$, the difference d_{f} is estimated

$$
\begin{equation*}
\left\|d_{f}\right\|_{\mathcal{N}}^{2}=\|r\|_{\mathcal{N}}^{2}-\sum_{k=1}^{\infty} E_{w}\left|\left\langle r_{w}, B_{k}\right\rangle\right|^{2}=\left\|P_{b H^{2}(\mathbf{D})} r\right\|_{\mathcal{N}}^{2}=\left\|P_{b H^{2}(\mathbf{D})} f\right\|_{\mathcal{N}}^{2} \tag{2.23}
\end{equation*}
$$

where P_{X} is, in general, denoted as the projection operator into the closed subspace X.
Proof. Since $\left\{B_{k}\right\}_{k=1}^{\infty}$ is an orthonormal system in the \mathcal{N}-space, the projection function $\sum_{k=1}^{\infty}\left\langle f_{w}, B_{k}\right\rangle B_{k}$ is in the Hilbert space \mathcal{N}. The Bessel inequality gives

$$
\sum_{k=1}^{\infty} E_{w}\left|\left\langle f_{w}, B_{k}\right\rangle\right|^{2} \leq\|f\|_{\mathcal{N}}^{2}
$$

that implies the desired relation (2.22). As a consequence of the Riesz-Fisher theorem, the infinite series

$$
\sum_{k=1}^{\infty}\left\langle f_{w}, B_{k}\right\rangle B_{k}
$$

is well defined for a.s. w as a function in $H_{w}^{2}(\mathbf{D})$. Hence, the difference $d_{f}(w, \cdot)$ belongs to $H_{w}^{2}(\mathbf{D})$. All these functions are in \mathcal{N}.

Since the underlying product measure space of \mathcal{N} is of finite total measure, both the convergence and the projection function are also in L^{1}. As a consequence of the Fubini theorem, we can first take integral with respect to the probability and get

$$
\begin{aligned}
E_{w}\left(f_{w}-\sum_{k=1}^{\infty}\left\langle f_{w}, B_{k}\right\rangle B_{k}\right) & =\tilde{f}-E_{w}\left(\sum_{k=1}^{\infty}\left\langle f_{w}, B_{k}\right\rangle B_{k}\right) \\
& =\tilde{f}-\sum_{k=1}^{\infty} E_{w}\left\langle f_{w}, B_{k}\right\rangle B_{k} \\
& =\tilde{f}-\sum_{k=1}^{\infty}\left\langle\tilde{f}, B_{k}\right\rangle B_{k} \\
& =0
\end{aligned}
$$

as desired by (2.20).
Noting that for each w, d_{f} is orthogonal with all $B_{k} \mathrm{~s}$, we have the orthogonal decomposition

$$
f_{w}-\sum_{k=1}^{n}\left\langle f_{w}, B_{k}\right\rangle B_{k}=d_{f}+\sum_{k=n+1}^{\infty}\left\langle f_{w}, B_{k}\right\rangle B_{k}
$$

that implies the desired Pythagoras relation (2.21).
Since

$$
d_{f}=\left(f_{w}-\tilde{f}\right)-\sum_{k=1}^{\infty}\left\langle f_{w}-\tilde{f}, B_{k}\right\rangle B_{k}=r_{w}-\sum_{k=1}^{\infty}\left\langle r_{w}, B_{k}\right\rangle B_{k}
$$

there follows

$$
\begin{aligned}
\left\|d_{f}\right\|_{\mathcal{N}}^{2} & =E_{w} \int_{0}^{2 \pi}\left|r_{w}\left(e^{i t}\right)-\sum_{k=1}^{\infty}\left\langle r_{w}, B_{k}\right\rangle B_{k}\left(e^{i t}\right)\right|^{2} d t \\
& =E_{w}\left(\left\|r_{w}\right\|_{L^{2}}^{2}-\sum_{k=1}^{\infty}\left|\left\langle r_{w}, B_{k}\right\rangle\right|^{2}\right) \\
& =\|r\|_{\mathcal{N}}^{2}-\sum_{k=1}^{\infty} E_{w}\left|\left\langle r_{w}, B_{k}\right\rangle\right|^{2}
\end{aligned}
$$

The proof of the theorem is complete.
Remark 2.6. The sparse random approximation established in Theorem 2.5 would mostly concern a deterministic signal corrupted with nonsignificant errors. The effectiveness of the averaging TM system represented by the \mathcal{N}-norm of the general difference $d_{f}\left(e^{i t}, w\right)$ defined through (2.19) is identical with the \mathcal{N}-energy of f on $b H^{2}(\mathbf{D})$, dominated by the \mathcal{N}-variation of the error term r. In the following section, we develop a sparse representation for analytic RS that enjoys $d_{f}=0$ a.s. in Ω.

2.3 | The SAFDII: Taking mean secondly

Theorem 2.7. Let $f \in H_{w}^{2}(\boldsymbol{D})$. Then, there exists $a_{1} \in \boldsymbol{D}$ such that

$$
a_{1}=\arg \max \left\{E_{w}\left|\left\langle f_{w}, e_{a}\right\rangle\right|^{2} \mid a \in \boldsymbol{D}\right\}
$$

Proof. Since $E_{w}\left|\left\langle f_{w}, e_{a}\right\rangle\right|^{2}$ is a continuous function in $a \in \mathbf{D}$, it suffices to show that the quantity satisfies a stochastic $B V C$ (SBVC), that is,

$$
\begin{equation*}
\lim _{|a| \rightarrow 1} E_{w}\left|\left\langle f_{w}, e_{a}\right\rangle\right|^{2}=0 \tag{2.24}
\end{equation*}
$$

Then, a continuity argument based on (2.24) concludes the theorem.
The condition $f \in \mathcal{N}$ implies

$$
\begin{equation*}
E_{w} \sum_{k=0}^{\infty}\left|c_{k}(w)\right|^{2}<\infty \tag{2.25}
\end{equation*}
$$

As a consequence of the integrability, a.s.

$$
\sum_{k=0}^{\infty}\left|c_{k}(w)\right|^{2}<\infty
$$

This implies, a.s. $f_{w}(z)=\sum_{k=0}^{\infty} c_{k}(w) z^{k} \in H^{2}(\mathbf{D})$. Thanks to the BVC of the classical Hardy space, ${ }^{5}$ we have a.s.

$$
\begin{equation*}
\lim _{|a| \rightarrow 1}\left|\left\langle f_{w}, e_{a}\right\rangle\right|^{2}=0 \tag{2.26}
\end{equation*}
$$

On the other hand, when $|a| \rightarrow 1$, the function $\left|\left\langle f_{w}, e_{a}\right\rangle\right|^{2}$ uniformly in $a \in \mathbf{D}$ has a uniform positive dominating function. In fact, using the Cauchy-Schwarz inequality,

$$
\left|\left\langle f_{w}, e_{a}\right\rangle\right|^{2} \leq\left\|f_{w}\right\|^{2}=\sum_{k=0}^{\infty}\left|c_{k}(w)\right|^{2}
$$

Given by (2.25), the dominating function is E_{w}-integrable. The Lebesgue domination convergence theorem then can be used to conclude the desired SBVC (2.24). The proof is complete.

The SAFDII proceeds as follows: Guaranteed by the Theorem 2.7, in the same iterative steps as for the classical AFD, one can select, at the k-step, an optimal a_{k} :

$$
\begin{equation*}
a_{k}=\arg \max \left\{E_{w}\left|\left\langle\left(f_{k}\right)_{w}, e_{a}\right\rangle\right|^{2} \mid a \in \mathbf{D}\right\} \tag{2.27}
\end{equation*}
$$

where $f=f_{1}$, and

$$
f_{k}(z, w)=\left(f_{k}\right)_{w}(z)=\frac{\left(f_{k-1}\right)_{w}(z)-\left\langle\left(f_{k-1}\right)_{w}, e_{a_{k-1}}\right\rangle e_{a_{k-1}}(z)}{\frac{z-a_{k-1}}{1-\bar{a}_{k-1} z}}, k \geq 2 .
$$

The above maximal selection is called stochastic MSP, abbreviated as SMSP. We then construct a TM system $\left\{B_{k}\right\}_{k=1}^{\infty}$, as given in (2.11), corresponding to the selections a_{1}, a_{2}, \ldots, and have the association

$$
f(z, w) \sim \sum_{k=1}^{\infty}\left\langle f_{w}, B_{k}\right\rangle B_{k}(z) .
$$

On the RHS of the last relation, we also have

$$
\begin{equation*}
\left\langle\left(f_{k}\right)_{w}, e_{a_{k}}\right\rangle=\left\langle\left(g_{k}\right)_{w}, B_{k}\right\rangle=\left\langle f_{w}, B_{k}\right\rangle, \tag{2.28}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(g_{k}\right)_{w}(z)=g_{k}(z, w)=f(z, w)-\sum_{l=1}^{k-1}\left\langle f_{w}, B_{l}\right\rangle B_{l}(z), k \geq 2 \tag{2.29}
\end{equation*}
$$

is the k th standard remainder. The relations (2.28) imply

$$
\begin{equation*}
E_{w}\left|\left\langle\left(f_{k}\right)_{w}, e_{a_{k}}\right\rangle\right|^{2}=E_{w}\left|\left\langle\left(g_{k}\right)_{w}, B_{k}\right\rangle\right|^{2}=E_{w}\left|\left\langle f_{w}, B_{k}\right\rangle\right|^{2} . \tag{2.30}
\end{equation*}
$$

The Bessel inequality for f in \mathcal{N} with respect to the orthonormal system $\left\{B_{k}\right\}$ implies

$$
\begin{equation*}
\lim _{k \rightarrow \infty} E_{w}\left|\left\langle f_{w}, B_{k}\right\rangle\right|^{2}=0 . \tag{2.31}
\end{equation*}
$$

In view of (2.30), the SMSP (2.27) is reduced to the form

$$
\begin{equation*}
a_{k}=\arg \max \left\{E_{w}\left|\left\langle f_{w}, B_{k}^{a}\right\rangle\right|^{2} \mid a \in \mathbf{D}\right\}, \tag{2.32}
\end{equation*}
$$

where

$$
B_{k}^{a}(z)=e_{a}(z) \prod_{l=1}^{k-1} \frac{z-a_{l}}{1-\bar{a}_{l} z} .
$$

We now prove
Theorem 2.8. Let $f\left(w, e^{i t}\right) \in H_{w}^{2}(\mathbf{D})$ and $\left(a_{1}, \ldots, a_{n}, \ldots\right)$ be a sequence selected according to the SMSP given in (2.27).
Then, there holds, in the \mathcal{N}-norm sense,

$$
\begin{equation*}
f(z, w)=\sum_{k=1}^{\infty}\left\langle f_{w}, B_{k}\right\rangle B_{k}(z) . \tag{2.33}
\end{equation*}
$$

Proof. By assuming the opposite, we prove the convergence through a contradiction. If the RHS does not converge to the LHS, then there is a nontrivial normal RS, $g \in \mathcal{N}$, such that

$$
\begin{equation*}
f(z, w)=\sum_{k=1}^{\infty}\left\langle f_{w}, B_{k}\right\rangle B_{k}(z)+g(z, w),\|g\|_{\mathcal{N}}>0 . \tag{2.34}
\end{equation*}
$$

We note that g is orthogonal with all $B_{1}, B_{2}, \ldots, B_{k}, \ldots$, and

$$
\begin{equation*}
\|g\|_{N}^{2}=\|f\|_{\mathcal{N}}^{2}-\sum_{k=1}^{\infty} E_{w}\left|\left\langle f_{w}, B_{k}\right\rangle\right|^{2} . \tag{2.35}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} E_{w}\left|\left\langle f_{w}, B_{k}\right\rangle\right|^{2}=0 . \tag{2.36}
\end{equation*}
$$

We show that there exists $b \in \mathbf{D}$ such that

$$
E_{w}\left|\left\langle g_{w}, e_{b}\right\rangle\right|^{2}=\delta^{2}>0
$$

for some $\delta>0$. For if this were not true, then a.s. for all $b \in \mathbf{D}$

$$
\left\langle g_{w}, e_{b}\right\rangle=0
$$

Due to the density of e_{b} in $H^{2}(\mathbf{D})$, we would have, for a.s. $w \in \Omega, g_{w}=0$ as a function of t, being contradictory to the condition $\|g\|_{\mathcal{N}}>0$. We, in particular, can choose b being different from all the selected $a_{k}, k=1,2, \ldots$. In below, we will fix this $b \in \mathbf{D}$ and proceed to derive a contradiction.

Set

$$
h_{k}=-\sum_{l=k}^{\infty}\left\langle f_{w}, B_{l}\right\rangle B_{l} .
$$

From the definition of g_{k} in (2.29), there follows the orthogonal decomposition

$$
g=g_{k}+h_{k}
$$

The Bessel inequality implies, when k is large,

$$
E_{w}\left|\left\langle h_{k}, e_{b}\right\rangle\right|^{2} \leq E_{w}\left\|h_{k}\right\|^{2} \leq \delta^{2} / 4
$$

Hence,

$$
2 E_{w}\left(\left|\left\langle g_{k}, e_{b}\right\rangle\right|^{2}\right)+\delta^{2} / 2 \geq E_{w}\left|\left\langle g_{k}, e_{b}\right\rangle+\left\langle h_{k}, e_{b}\right\rangle\right|^{2}=\delta^{2}
$$

which implies

$$
E_{w}\left|\left\langle g_{k}, e_{b}\right\rangle\right|^{2} \geq \delta^{2} / 4
$$

Due to the reproducing kernel property of e_{b}, for a large k,

$$
\begin{equation*}
\left(1-|b|^{2}\right)^{2} E_{w}\left|\left(g_{k}\right)(b)\right|^{2} \geq \delta^{2} / 4 \tag{2.37}
\end{equation*}
$$

Since pointwise there holds

$$
\begin{equation*}
f_{k}=g_{k} / b_{k} \text { and }\left|b_{k}(b)\right|<1 \tag{2.38}
\end{equation*}
$$

where b_{k} is the Blaschke product generated by a_{1}, \ldots, a_{k} as sole zeros, there follows $\left|f_{k}\right| \geq\left|g_{k}\right|$. Hence,

$$
\left(1-|b|^{2}\right)^{2} E_{w}\left|\left(f_{k}\right)(b)\right|^{2} \geq \delta^{2} / 4
$$

By using the reproducing property of e_{b} again, the inner product form of the last equality has the form

$$
E_{w}\left|\left\langle f_{k}, e_{b}\right\rangle\right|^{2}=E_{w}\left|\left\langle f_{w}, B_{k}\right\rangle\right|^{2} \geq \delta^{2} / 4,
$$

for large enough k. This is contradictory to (2.36). The proof is thus complete.
Remark 2.9. The proof is an adaptation of the one used in Qian and Wang ${ }^{5}$ to the stochastic case, in which, as in the classical case, the relation (2.38) is crucial.

3 | STOCHASTIC SPOAFDS IN HILBERT SPACES

Our discussions on stochastic Hilbert spaces will be based on the related deterministic Hilbert spaces, the latter being assumed to have a dictionary satisfying BVC. For the self-containing purpose, we give a brief exposition on POAFD algorithm for deterministic signals ${ }^{25}$ (also see previous studies ${ }^{24,28,29}$).

3.1 | POAFD in a Hilbert space with a dictionary satisfying BVC

The classical formulation of sparse representation of a Hilbert space is often under the assumption that the space has a dictionary that, by definition, is a collection of certain elements of unit norm whose span is dense in the Hilbert space. The unit norm requirement for a dictionary is not essential. We usually assume that in the underlying Hilbert space \mathcal{H}, there is a subclass of elements $K_{q}, q \in \mathbf{E}$, whose linear span is dense. We call such a set a predictionary. The parameter set \mathbf{E} is an open set of the complex plane, more generally an open set of \mathbf{R}^{d} or $\mathbf{C}^{d^{\prime}}$, or a product of two such open sets. We denote the normalizations of K_{q} by E_{q}, that is, $E_{q}=K_{q} /\left\|K_{q}\right\|, q \in \mathbf{E}$. Below, we often call the K_{q} s in a predictionary by kernels. We borrow this terminology from reproducing kernel Hilbert space. Indeed, the parameterized reproducing kernels constitute a subclass that induces through normalization a dictionary of the space.

Now, we introduce what is called and assumed BVC in our Hilbert space context: For any but fixed $G \in \mathcal{H}$, if $p_{n} \in \mathbf{E}$ and $p_{n} \rightarrow \partial \mathbf{E}$ (including ∞ if \mathbf{E} is unbounded while in the case we use the compactification topology for the added infinity point), then

$$
\lim _{n \rightarrow \infty}\left|\left\langle G, E_{p_{n}}\right\rangle\right|=0 .
$$

We next define what we call by "multiple kernels." Let (q_{1}, \ldots, q_{n}) be any n-tuple of parameters in \mathbf{E}. We denote by $l(k)$ the multiplicity of q_{k} in the k-tuple (q_{1}, \ldots, q_{k}). Multiple kernels are defined as follows. For any $k \leq n$, denote

$$
\tilde{K}_{k}=\left[\left(\frac{\partial}{\partial \bar{q}}\right)^{(l(k)-1)} K_{q}\right]_{q=q_{k}} .
$$

With a little abuse of notation, we will also denote \tilde{K}_{k} by $\tilde{K}_{q_{k}}, k=1,2, \ldots, n$, indicating the parameter sequence in use. The concept multiple kernel is a necessity of the preorthogonal MSP (POMSP): Suppose we already have an ($n-1$)-tuple $\left\{q_{1}, \ldots, q_{n-1}\right\}$, allowing multiplicities, corresponding to the ($n-1$)-tuple of kernels, $\left\{\tilde{K}_{q_{1}}, \ldots, \tilde{K}_{q_{n-1}}\right\}$. By performing the G-S orthonormalization process consecutively, we obtain an equivalent ($n-1$)-orthonormal system, $\left\{B_{1}, \ldots, B_{n-1}\right\}$. For any given G in the Hilbert space, we wish to investigate whether there exists a q_{n} that gives rise to the supreme value

$$
\sup \left\{\left|\left\langle G, B_{n}^{q}\right\rangle\right|: q \in \mathbf{E}, q \neq q_{1}, \ldots, q_{n-1}\right\},
$$

where the finiteness of the supreme is guaranteed by the Cauchy-Schwarz inequality and B_{n}^{q} is such that $\left\{B_{1}, \ldots, B_{n-1}, B_{n}^{q}\right\}$ is the G-S orthonormalization of $\left\{\tilde{K}_{q_{1}}, \ldots, \tilde{K}_{q_{n-1}}, K_{q}\right\}$. Since q is distinct from the proceeding $q_{1}, \ldots, q_{n-1}, B_{n}^{q}$ is given by

$$
\begin{equation*}
B_{n}^{q}=\frac{K_{q}-\sum_{k=1}^{n-1}\left\langle K_{q}, B_{k}\right\rangle_{\mathcal{H}} B_{k}}{\left\|K_{q}-\sum_{k=1}^{n-1}\left\langle K_{q}, B_{k}\right\rangle_{\mathcal{H}} B_{k}\right\|} . \tag{3.1}
\end{equation*}
$$

Under BVC, a compact argument leads that there exists a point $q_{n} \in \mathbf{E}$ and $q^{(l)}, l=1,2, \ldots$, such that $q^{(l)}$ are all different from $q_{1}, \ldots, q_{n-1}, \lim _{l \rightarrow \infty} q^{(l)}=q_{n}$, and

$$
\begin{equation*}
\lim _{l \rightarrow \infty}\left|\left\langle G, B_{n}^{q^{()}}\right\rangle\right|=\sup \left\{\left|\left\langle G, B_{n}^{q}\right\rangle\right|: q \in \mathbf{E}, q \neq q_{1}, \ldots, q_{n-1}\right\}=\left|\left\langle G, B_{n}^{q_{n}}\right\rangle\right|, \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{n}^{q_{n}}=\frac{\tilde{K}_{q_{n}}-\sum_{k=1}^{n-1}\left\langle\tilde{K}_{q_{n}}, B_{k}\right\rangle_{\mathcal{H}} B_{k}}{\sqrt{\left\|\tilde{K}_{q_{n}}\right\|^{2}-\sum_{k=1}^{n-1}\left|\left\langle\tilde{K}_{q_{n}}, B_{k}\right\rangle_{\mathcal{H}}\right|^{2}}}, \tag{3.3}
\end{equation*}
$$

proved through an argument involving Taylor series expansion (see Chen et al ${ }^{28}$ and Qian ${ }^{29}$). The BVC together with multiple kernels are theoretical guarantee of POAFD method: We iteratively apply the above process to $G=G_{n}$, where G_{n} is the standard remainder

$$
G_{n}=F-\sum_{k=1}^{n-1}\left\langle F, B_{k}\right\rangle B_{k},
$$

and $\left(B_{1}, \ldots, B_{n}\right)$ is the G-S orthogonalization of $\left(\tilde{K}_{q_{1}}, \ldots, \tilde{K}_{q_{n}}\right)$. Under the consecutive maximal selections of $\left\{q_{k}\right\}_{k=1}^{\infty}$, one eventually obtains, with a fast convergent pace, ${ }^{24,28,29}$

$$
\begin{equation*}
F=\sum_{k=1}^{\infty}\left\langle F, B_{k}\right\rangle_{\mathcal{H}} B_{k} . \tag{3.4}
\end{equation*}
$$

Remark 3.1. We note that repeating selections of parameters can be avoided in practice. By definition of supreme, for any $\rho \in(0,1)$, a parameter $q_{n} \in \mathbf{E}$ can be found, different from the previously selected $q_{k}, k=1, \ldots, n-1$, to have

$$
\begin{equation*}
\left|\left\langle G_{n}, B_{n}^{q_{n}}\right\rangle\right| \geq \rho \sup \left\{\left\langle G_{n}, B_{n}^{q}\right\rangle: q \in \mathbf{E}, q \neq q_{1}, \ldots, q_{n-1}\right\} . \tag{3.5}
\end{equation*}
$$

The corresponding algorithm is called weak POAFD (WPOAFD). With WPOAFD, one may have all the selected q_{1}, \ldots distinguished, and thus, $l(k) \equiv 1$ and $K_{k}=\tilde{K}_{k}$ for all k. WPOAFD is still a fast converging algorithm although at each step, it does not reach the optimal.

Remark 3.2. An order $O(1 / \sqrt{n})$ of the convergence rate can be proved: For $M>0$, by defining

$$
\begin{equation*}
\mathcal{M}_{M}=\left\{F \in \mathcal{H}: \exists\left\{c_{n}\right\},\left\{E_{q_{n}}\right\} \text { s.t. } F=\sum_{n=1}^{\infty} c_{n} E_{q_{n}} \text { with } \sum_{n=1}^{\infty}\left|c_{n}\right| \leq M\right\}, \tag{3.6}
\end{equation*}
$$

for any $F \in \mathcal{M}_{M}$, the POAFD partial sums satisfy

$$
\left\|F-\sum_{k=1}^{n}\left\langle F, B_{k}\right\rangle_{\mathcal{H}} B_{k}\right\|_{\mathcal{H}} \leq \frac{M}{\sqrt{n}} .
$$

We note that the above convergence rate is the same as that of the Shannon expansion into the sinc functions of bandlimited entire functions. In the POAFD case, the orthonormal system $\left\{B_{1}, \ldots, B_{n}, \ldots\right\}$ is not necessarily a basis but a system adapted to the given function F. For the Hardy space case, due to the relations in (2.17), the MSP (2.12) for AFD reduces to the MSP (3.2) for POAFD, and AFD reduces to POAFD. The algorithm codes of AFD and POAFD, as well as those of the related ones, are available at request in http://www.fst.umac.mo/en/staff/fsttq.html.

Remark 3.3. AFD and POAFD have been seen to have two directions of developments. One is n-best kernel expansion. That is to determine n-parameters at one time, being obviously of better optimality than the n maximal consecutive kernel expansion as given in (3.4). The n-best approximation is motivated by the classical problem, yet still open in its ultimate algorithm, called the best approximation to Hardy space functions by rational functions of degree not exceeding $n .{ }^{30-32}$ The gradient descending method for cyclic AFD^{32} and cyclic AFD separately ${ }^{15}$ may be adopted to give practical (not mathematical) n-best algorithms in Hilbert spaces with a dictionary satisfying BVC. The second direction of development of POAFD is related to exploration of Blaschke product-like functions and interpolation problems in various types of concrete Hilbert spaces, including Hardy and non-Hardy types, and those with hypercomplex variables and matrix-valued functions. For related publications, see previous studies. ${ }^{2,4,20,22,23}$

3.2 | Stochastic POAFDs

Let \mathcal{H} be a Hilbert space with a predictionary $\left\{K_{q}\right\}$ parameterized in an open set $\mathbf{E}: q \in \mathbf{E}$. We assume that the predictionary satisfies BVC

$$
\begin{equation*}
\lim _{q \rightarrow \partial \mathrm{E}}\left|\left\langle F, E_{q}\right\rangle\right|=0, \tag{3.7}
\end{equation*}
$$

where $E_{q}=K_{q} /\left\|K_{q}\right\|$. Let us consider RSs $F(t, w), t \in T, w \in \Omega$, where for a.s. $w \in \Omega, F(\cdot, w)=F_{w} \in \mathcal{H}$; and for any $t \in T$, $F(t, \cdot)$ is a random variable. Define

$$
\begin{gather*}
\mathcal{N}(\mathcal{H}, \Omega)=\{F(t, w): F(\cdot, w) \in \mathcal{H}, \text { for a.s.w; and } F(t, \cdot) \text { being a random } \\
\text { variable for each fixed } \left.t ; \text { and } E_{w}\|F(\cdot, w)\|_{\mathcal{H}}^{2}<\infty .\right\} \tag{3.8}
\end{gather*}
$$

This formulation supports two types of SPOAFDs, abbreviated as SPOAFDI and SPOAFDII.
SPOAFDI is one to treat a noised deterministic signal. It corresponds to first take the mean and then does maximal energy extractions. We need to show $E_{w} F_{w} \in \mathcal{H}$. Following what is done in (2.6), by using the Minkovski inequality followed by the Cauchy-Schwarz inequality, we get

$$
\left\|E_{w} F_{w}\right\|_{\mathcal{H}} \leq E_{w}\left\|F_{w}\right\|_{\mathcal{H}} \leq\left(E_{w}\left\|F_{w}\right\|_{\mathcal{H}}^{2}\right)^{1 / 2}=\|F\|_{\mathcal{N}(\mathcal{H}, \Omega)}<\infty .
$$

This shows that the mean belongs to the underlying Hilbert space \mathcal{H}. Since \mathcal{H} has a predictionary that satisfies BVC, one can perform POAFD in \mathcal{H}. The difference $d(t, w)=F(t, w)-E_{w} F(t, w)$ enjoys the zero-mean property, and all the related quantities may be analyzed as in the Section 2.2. This approach gives rise to the type SPOAFDI that is suitable for analyzing signals corrupted with noise of zero mean and of a small $\mathcal{N}(\mathcal{H}, \Omega)$ norm.
To perform the SPOAFDII, we first need to prove the stochastic BVC (SBVC),

$$
\lim _{q \rightarrow \partial \mathrm{E}} E_{w}\left|\left\langle F_{w}, E_{q}\right\rangle\right|^{2}=0 .
$$

The proof follows the same route as for the SAFDII. To show SBVC, we again use the Lebesgue dominated convergence theorem for the probability space, through showing as follows.

1. For a.s. $w \in \Omega$

$$
\lim _{q \rightarrow \partial \mathbf{E}}\left|\left\langle F_{w}, E_{q}\right\rangle\right|^{2}=0 .
$$

2. For all q, the function $\left|\left\langle F_{w}, E_{q}\right\rangle\right|^{2}$ is dominated by a positive integrable function in the probability space.

Property 1 is a consequence of BVC of the dictionary $\left\{E_{q}\right\}_{q \in \mathbf{E}}$ in \mathcal{H}. To show 2, we have, by the Cauchy-Schwarz inequality,

$$
E_{w}\left|\left\langle F_{w}, E_{q}\right\rangle\right|^{2} \leq E_{w}\left\|F_{w}\right\|^{2}=\|F\|_{\mathcal{N}(\mathcal{H}, \Omega)}^{2}<\infty .
$$

This concludes that $\left\|F_{w}\right\|^{2}$ is a desired dominating function for $\left|\left\langle F_{w}, E_{q}\right\rangle\right|^{2}$ in the probability space. The SBVC is hence proved.
Based on the SBVC, we have the following theorem.
Theorem 3.4. Let $F(t, w) \in \mathcal{N}(\mathcal{H}, \Omega)$ and $\left(q_{1}, \ldots, q_{n}, \ldots\right)$ be a consecutively selected kernel sequence under SMSP

$$
q_{k}=\arg \sup \left\{E_{w}\left|\left\langle\left(G_{k}\right)_{w}, B_{k}^{q}\right\rangle\right|^{2} \mid q \in \boldsymbol{E}\right\},
$$

where

$$
\left(G_{k}\right)_{w}=F_{w}-\sum_{l=1}^{k-1}\left\langle F_{w}, B_{l}\right\rangle B_{l},
$$

and $\left(B_{1}, \ldots, B_{k-1}, B_{k}\right)$ is the G-S orthonormalization of $\left(B_{1}, \ldots, B_{k-1}, \tilde{K}_{q_{k}}\right)$. Then, there holds, in the $\mathcal{N}(\mathcal{H}, \Omega)$-norm sense,

$$
\begin{equation*}
F(z, w)=\sum_{k=1}^{\infty}\left\langle F_{w}, B_{k}\right\rangle B_{k}(z) . \tag{3.9}
\end{equation*}
$$

Remark 3.5. The proof of Theorem 2.8 crucially depends on the property $\left|b_{k}(z)\right| \leq 1$ of the classical Blaschke products. In the general Hilbert space case, there may not exist Blaschke product-like functions. Below, we give a proof of Theorem 3.4 that does not depend on Blaschke product-like functions. The proof is an adaptation of one for the deterministic signal case (see Qian ${ }^{29,33}$ or Chen et al, ${ }^{28}$ where Chen et al ${ }^{28}$ is English equivalent to Qian ${ }^{29}$).

Proof of Theorem 3.4. We will prove the theorem by contradiction. If the RHS series of (3.9) does not converge to the LHS function, then there is a nontrivial $\operatorname{RS} H \in \mathcal{N}(\mathcal{H}, \Omega)$ such that

$$
\begin{equation*}
F(t, w)=\sum_{k=1}^{\infty}\left\langle F_{w}, B_{k}\right\rangle B_{k}(z)+H(z, w),\|H\|_{\mathcal{N}(\mathcal{H}, \Omega)}>0 . \tag{3.10}
\end{equation*}
$$

We note that H is orthogonal with all $B_{1}, B_{2}, \ldots, B_{k}, \ldots$, and

$$
\begin{equation*}
0<\|H\|_{\mathcal{N}(\mathcal{H}, \Omega)}^{2}=\|F\|_{\mathcal{N}(\mathcal{H}, \Omega)}^{2}-\sum_{k=1}^{\infty} E_{w}\left|\left\langle F_{w}, B_{k}\right\rangle\right|^{2} . \tag{3.11}
\end{equation*}
$$

We claim the fact that $\|H\|_{\mathcal{N}(\mathcal{H}, \Omega)}>0$ implies that there exists $q \in \mathbf{E}$ such that

$$
E_{w}\left|\left\langle H_{w}, E_{q}\right\rangle\right|^{2}=\delta^{2}>0
$$

For if this were not true, then a.s. for all $q \in \mathbf{E}$

$$
\left\langle H_{w}, E_{q}\right\rangle=0 .
$$

Due to the density of K_{q} in \mathcal{H}, we would have a.s. $H_{w}=0$ as a function of t, being contradictory to $\|H\|_{\mathcal{N}(\mathcal{H}, \Omega)}>0$. We may, in particular, choose q being distinguished from all the selected $q_{k}, k=1,2, \ldots$. In below such $q \in \mathbf{E}$ will be fixed. The following argument will lead to a contradiction with the selections of q_{M} for large enough M.

Based on the notation G_{k} for standard remainders defined in the theorem we rewrite the relation (3.10) as

$$
\begin{aligned}
F_{w} & =\left(\sum_{k=1}^{M}+\sum_{k=M+1}^{\infty}\right)\left\langle\left(G_{k}\right)_{w}, B_{k}\right\rangle B_{k}+H \\
& =\sum_{k=1}^{M}\left\langle\left(G_{k}\right)_{w}, B_{k}\right\rangle B_{k}+\tilde{G}_{M+1}+H \\
& =\sum_{k=1}^{M}\left\langle\left(G_{k}\right)_{w}, B_{k}\right\rangle B_{k}+G_{M+1},
\end{aligned}
$$

where $\tilde{G}_{M+1}=\sum_{k=M+1}^{\infty}\left\langle\left(G_{k}\right)_{w}, B_{k}\right\rangle B_{k}$ and $G_{M+1}=\tilde{G}_{M+1}+H$. The Bessel inequality implies

$$
\begin{equation*}
\lim _{M \rightarrow \infty}\left\|\tilde{G}_{M+1}\right\|_{\mathcal{N}(\mathcal{H}, \Omega)}=0 \tag{3.12}
\end{equation*}
$$

On one hand, we have, from the orthogonality and (2.31), for large M,

$$
\begin{equation*}
E_{w}\left|\left\langle\left(G_{M+1}\right)_{w}, B_{M+1}\right\rangle\right|^{2}=E_{w}\left|\left\langle F_{w}, B_{M+1}\right\rangle\right|^{2}=E_{w}\left|\left\langle F_{w}, B_{M+1}^{q_{M+1}}\right\rangle\right|^{2}<\delta^{2} / 16 \tag{3.13}
\end{equation*}
$$

On the other hand, we can show, for large M, there holds

$$
\begin{equation*}
E_{w}\left|\left\langle\left(G_{M+1}\right)_{w}, B_{M+1}^{q}\right\rangle\right|^{2}>9 \delta^{2} / 16 \tag{3.14}
\end{equation*}
$$

where B_{M+1}^{q} is the last function of the Gram-Schmidt orthonormalization of the $(M+1)$-system $\left(B_{1}, B_{2}, \ldots, B_{M}, K_{q}\right)$ in the given order. From the triangle inequality of the $\mathcal{N}(\mathcal{H}, \Omega)$-norm,

$$
\left(E_{w}\left|\left\langle\left(G_{M+1}\right)_{w}, B_{M+1}^{q}\right\rangle\right|^{2}\right)^{1 / 2} \geq\left(E_{w}\left|\left\langle H_{w}, B_{M+1}^{q}\right\rangle\right|^{2}\right)^{1 / 2}-\left(E_{w}\left|\left\langle\left(\tilde{G}_{M+1}\right)_{w}, B_{M+1}^{q}\right\rangle\right|^{2}\right)^{1 / 2}
$$

Using the Gauchy-Schwarz inequality and then (3.12), for large enough M, we have

$$
E_{w}\left|\left\langle\left(\tilde{G}_{M+1}\right)_{w}, B_{M+1}^{q}\right\rangle\right|^{2} \leq\left\|\tilde{G}_{M+1}\right\|_{\mathcal{N}(\mathcal{H}, \Omega)}^{2} \leq \delta^{2} / 16
$$

Therefore,

$$
\begin{equation*}
\left(E_{w}\left|\left\langle\left(G_{M+1}\right)_{w}, B_{M+1}^{q}\right\rangle\right|^{2}\right)^{1 / 2} \geq\left(E_{w}\left|\left\langle H_{w}, B_{M+1}^{q}\right\rangle\right|^{2}\right)^{1 / 2}-\delta / 4 \tag{3.15}
\end{equation*}
$$

Next, we compute the energy of the projection of H_{w} into the span of $\left(B_{1}, \ldots, B_{M}, E_{q}\right)$. The energy is then just $E_{w}\left|\left\langle H_{w}, B_{M+1}^{q}\right\rangle\right|^{2}$, for H_{w} is orthogonal with B_{1}, \ldots, B_{M}. However, the span is just the same if we alter the $\operatorname{order}\left(B_{1}, \ldots, B_{M}, E_{q}\right)$
to $\left(E_{q}, B_{1}, \ldots, B_{M}\right)$. As a consequence, the energy of the projection into the span is surely not less than the energy of H_{w} projected onto the first function E_{q}. This gives rise to the relation

$$
E_{w}\left|\left\langle H_{w}, B_{M+1}^{q}\right\rangle\right|^{2} \geq E_{w}\left|\left\langle H_{w}, E_{q}\right\rangle\right|^{2}=\delta^{2} .
$$

Combining with (3.15), we have

$$
\left(E_{w}\left|\left\langle\left(G_{M+1}\right)_{w}, B_{M+1}^{q}\right\rangle\right|^{2}\right)^{1 / 2} \geq 3 \delta / 4 .
$$

Thus, we proved (3.14) that is contradictory with (3.13). This shows that the selection of q_{M+1} did not obey SMSP, for we would better select q instead of q_{M+1} at the $(M+1)$ th step. The proof of the theorem is hence complete.

Remark 3.6. For $F \in \mathcal{N}(\mathcal{H}, \Omega)$ (or for $f \in L_{w}^{2}(\mathbf{R}, \Omega)$ in the classical setting), the definition given by (3.8) (or one similar to 1.3) implies, owing to Fubini's theorem, that

$$
\begin{equation*}
E_{w}\left(\|F(\cdot, w)\|^{2}\right) \in \mathcal{H} \quad\left(\text { or } E_{w}\left(\|f(\cdot, w)\|^{2}\right) \in L^{2}(\mathbf{R})\right) . \tag{3.16}
\end{equation*}
$$

Signals satisfying (3.16) belong to the category of second order processes. ${ }^{34}$ This, as a necessary condition for a function in the defined space \mathcal{N}, automatically rules out the white noise type signals in the cases when the L^{2} space for the time or the space variable t is of infinite measure. In such cases, one can accordingly define a weak version of stability and accordingly a weak version of ergodicity and develop a related Hardy space and sparse approximation theory.

Remark 3.7. Theorems 2.8 and 3.4 have separate proofs. Theorem 2.8 is, as a matter of fact, a special case of Theorem 3.4. The question is whether validity of the former can be reduced to the latter. The answer is "Yes." In (2.8), we do not use the G-S orthogonalization but the backward shift process to obtain the orthogonality. Whether the two methodologies result in the same orthonormal system? In Appendix A1, we prove that the TM system, obtained in AFD through the backward shift process to the Szegö kernel, coincides with that from the G-S orthogonalization to the same kernels. This validates the above "Yes" answer. Precisely, we will prove

Theorem 3.8. Let $\left\{a_{1}, \ldots, a_{n}\right\}$ be any n-tuple of parameters in \boldsymbol{D} in which multiplicities are allowed. Denote by $l(m)$ the multiplicity of a_{m} in the m-tuple $\left\{a_{1}, \ldots, a_{m}\right\}, 1 \leq m \leq n$. For each m, denote by

$$
\tilde{k}_{a_{m}}(z)=\left.\frac{\partial^{l(m)-1}}{(\partial \bar{a})^{l(m)-1}} k_{a}(z)\right|_{a=a_{m}}, \text { where } k_{a}(z)=\frac{1}{1-\bar{a} z} .
$$

Then, the Gram-Schmidt orthonormalization of $\left\{\tilde{k}_{a_{1}}, \ldots, \tilde{a}_{a_{m}}\right\}$ in the given order coincides with the m-TM system $\left\{B_{1}, \ldots, B_{m}\right\}(2.11)$ defined through the ordered m-tuple $\left\{a_{1}, \ldots, a_{m}\right\}$.

There exist different proofs for this result. In Appendix A1, we give a constructive proof. As far as the author is aware, the unit disc and a half of the complex plane are the only cases to which the equivalence of the two processes has been proved.

ACKNOWLEDGEMENTS

The author wishes to express his sincere thankfulness to Dr Chen Wei-Guo, Dr Wang Shi-Lin, Dr Cheng Han-Sheng, Prof Chen Qiu-Hui, and Prof Leong Ieng Tak for their interest and encouragement to study this topic and useful comments on draft material of this article. This article is funded by The Science and Technology Development Fund, Macau SAR (0123/2018/A3).

CONFLICT OF INTEREST

This work does not have any conflicts of interest.

ORCID

Tao Qian (D) https://orcid.org/0000-0002-8780-9958

REFERENCES

1. Stein EM, Weiss G. Introduction to Fourier Analysis on Euclidean Spaces: Princeton University Press; 1971.
2. Alpay D, Colombo F, Qian T, Sabadini I. Adaptative decomposition: the case of the Drury-Arveson space. J Fourier Anal Appl. 2017;23(6):1426-1444.
3. Dang P, Mai WX, Qian T. Fourier spectrum of Clifford H_{p} spaces on $R+n+1$ for ÜTHORN. J Math Anal Appl. 2020;483(1):123598.
4. Alpay D, Colombo F, Qian T, Sabadini I. Adaptive orthonormal systems for matrix-valued functions. Proc Am Math Soc. 2017;145(5):2089-2106.
5. Qian T, Wang YB. Adaptive Fourier series—a variation of greedy algorithm. Adv Comput Math. 2011;34(3):279-293.
6. Dai L, Zhang L, Qian T. A universal signal and image compression method based on stochastic adaptive Fourier decomposition. preprint.
7. Tan CY, Zhang LM, Qian T. A new supervised learning approach: statistical adaptive Fourier decomposition (SAFD). preprint.
8. Tan CY, Zhang LM, Qian T, Bräas S, Pinho AJ. Statistical n-best AFD based sparse representation for ECG biometric identification. preprint.
9. Yang F, Qu W, Qian T, Chen JC. Sparse representation solution for stochastic boundary value problems. preprint.
10. Li YT, Zhang LM, Qian T. 2D partial unwinding-a novel non-linear phase decomposition of images. IEEE Trans Image Process. 2019;28(10):4762-4773. https://doi.org/10.1109/TIP.2019.2914000
11. Mi W, Qian T. Frequency-domain identification: an algorithm based on an adaptive rational orthogonal system. Automatica. 2012;48(6):1154-1162.
12. Mi W, Qian T. On backward shift algorithm for estimating poles of systems. Automatica. 2014;50(6):1603-1610.
13. Wang XY, Qian T, Leong IT, Gao Y. Two-dimensional frequency-domain system identification. IEEE Trans Autom Control. 2019;2:577-590. https://doi.org/10.1109/TAC.2019.2913047
14. Walsh JL. Interpolation and Approximation by Rational Functions in the Complex Domain, Vol. 10: American Mathematical Society Publication; 1962.
15. Qian T. Cyclic AFD algorithm for best rational approximation. Math Methods Appl Sci. 2014;37(6):846-859.
16. Qian T, Sproessig W, Wang JX. Adaptive Fourier decomposition of functions in quaternionic Hardy spaces. Math Methods Appl Sci. 2012;35(1):43-64.
17. Qian T, Wang JX, Yang Y. Matching pursuits among shifted Cauchy kernels in higher-dimensional spaces. Acta Math Sci. 2014;34(3):660-672.
18. Wang JX, Qian T. Approximation of functions by higher order Szegö kernels I. Complex variable cases. Complex Variables Elliptic Equ. 2015;60(6):733-747.
19. Wang JX, Qian T. Approximation of monogenic functions by higher order Szegö kernels on the unit ball and the upper half space. Sci China: Math. 2014;57(9):1785-1797.
20. Coifman R, Steinerberger S. Nonlinear phase unwinding of functions. J Fourier Anal Appl. 2017;23(4):778-809.
21. Coifman R, Peyriére J. Phase unwinding, or invariant subspace decompositions of Hardy spaces. J Fourier Anal Appl. 2019;25:684-695.
22. Qian T. Intrinsic mono-component decomposition of functions: An advance of Fourier theory. Math Methods Appl Sci. 2010;33(7):880-891.
23. Qian T, Tan L-H, Chen J-C. A class of iterative greedy algorithms related to Blaschke product. Sci China Math. 2021;64:2703-2718.
24. Qian T. Two-dimensional adaptive Fourier decomposition. Math Methods Appl Sci. 2016;39(10):2431-2448.
25. Qian T. Reproducing kernel sparse representations in relation to operator equations. Complex Anal Oper Theory. 2020;14(2):1-15.
26. Qu W, Dang P. Rational approximation in a class of weighted Hardy spaces. Compl Anal Oper Theory. 2019;13(4):1827-1852.
27. Qu W, Dang P. Reproducing kernel approximation in weighted Bergman spaces: algorithm and applications. Math Methods Appl Sci. 2019;42(12):4292-4304.
28. Chen Q-H, Qian T, Tan L-H. A Theory on Non-Constant Frequency Decompositions and Applications, Advancements in Complex Analysis; 2020;1-37.
29. Qian T. A novel Fourier theory on non-linear phase and applications. Adv Math (China). 2018;47(3):321-347. (in Chinese).
30. Baratchart L. Existence and generic properties of L^{2} approximations for linear systems. Math Control Inform; 3:89-101.
31. Baratchart L, Cardelli M, Olivi M. Identification and rational L ${ }^{2}$ approximation: a gradient algorithm. Automatica. 1991;27(2):413-417.
32. Qian T, Wang JZ, Mai WX. An enhancement algorithm for cyclic adaptive fourier decomposition. Appl Comput Harmon Anal. 2019;47(2):516-525.
33. Qian T. Adaptive Fourier Decomposition: Science Press; 2015.
34. Lord GJ, Powell CE, Shardlow TT. An Introduction to Computational Stochastic PDEs: Cambridge University Press; 2014.

How to cite this article: Qian T. Sparse representations of random signals. Math Meth Appl Sci. 2022;45(8): 4210-4230. doi:10.1002/mma. 8033

APPENDIXA

Proof of Theorem 3.8. Denote the canonical Blaschke product determined by a_{1}, \ldots, a_{m} by

$$
b_{a_{1}, \ldots, a_{m}}(z)=\prod_{l=1}^{m} \frac{z-a_{l}}{1-\bar{a}_{l} z}
$$

We first show that for any $a \in \mathbf{D}$ being different from a_{1}, \ldots, a_{m-1}, there holds

$$
\begin{equation*}
k_{a}(z)-\sum_{l=1}^{m-1}\left\langle k_{a}, B_{l}\right\rangle B_{l}(z)=\bar{b}_{a_{1}, \ldots, a_{m-1}}(a) b_{a_{1}, \ldots, a_{m-1}}(z) k_{a}(z) \tag{A1}
\end{equation*}
$$

For this aim, we use mathematical induction. First, we verify the case $m=2$. Using the reproducing kernel property of k_{a}, there follows

$$
\begin{aligned}
k_{a}-\left\langle k_{a}, B_{1}\right\rangle B_{1}(z) & =\frac{1}{1-\bar{a} z}-\bar{B}_{1}(a) B_{1}(z) \\
& =\frac{1}{1-\bar{a} z}-\frac{\alpha}{1-\bar{a}_{1} z}, \quad \text { with } \alpha=\frac{1-\left|a_{1}\right|^{2}}{1-a_{1} \bar{a}} \\
& =\frac{\bar{a}-a_{1}}{1-a_{1} \bar{a}} \frac{z-a_{1}}{1-\bar{a}_{1} z} \frac{1}{1-\bar{a} z} \\
& =\bar{b}_{a_{1}}(a) b_{a_{1}}(z) k_{a}(z)
\end{aligned}
$$

Assume that (A1) holds for a general $m-1$. Under the inductive hypothesis, we have

$$
\begin{aligned}
k_{a}(z)-\sum_{l=1}^{m-1}\left\langle k_{a}, B_{l}\right\rangle B_{l}(z) & =\left[k_{a}(z)-\sum_{l=1}^{m-2}\left\langle k_{a}, B_{l}\right\rangle B_{l}(z)\right]-\left\langle k_{a}, B_{m-1}\right\rangle B_{m-1}(z) \\
& =\bar{b}_{a_{1}, \ldots, a_{m-2}}(a) b_{a_{1}, \ldots, a_{m-2}}(z) k_{a}(z)-\left\langle k_{a}, B_{m-1}\right\rangle B_{m-1}(z) \\
& =\bar{b}_{a_{1}, \ldots, a_{m-2}}(a) b_{a_{1}, \ldots, a_{m-2}}(z) k_{a}(z)-\bar{B}_{m-1}(a) B_{m-1}(z) \\
& =\bar{b}_{a_{1}, \ldots, a_{m-2}}(a) b_{a_{1}, \ldots, a_{m-2}}(z)\left[k_{a}(z)-\frac{1-\left|a_{m-1}\right|^{2}}{\left(1-a_{m-1} \bar{a}\right)\left(1-\bar{a}_{m-1} z\right)}\right] \\
& =\bar{b}_{a_{1}, \ldots, a_{m-1}}(a) b_{a_{1}, \ldots, a_{m-1}}(z) k_{a}(z) .
\end{aligned}
$$

We hence proved (A1). Next, we deal with multiplicity of parameters. Now, we are with the new inductive hypothesis that the Gram-Schmidt orthonormalization of $\left\{\tilde{k}_{a_{1}}, \ldots, \tilde{k}_{a_{m-1}}\right\}$ is the $(m-1)$-TM system $\left\{B_{1}, \ldots, B_{m-1}\right\}$. First, assume that a_{m} is different from all the preceding $a_{k}, k=1, \ldots, m-1$. In (A1), let $a=a_{m}$. By taking the norm on the both sides of (A1) and invoking the orthonormality of the TM system, we have

$$
\left\|k_{a_{m}}(z)-\sum_{l=1}^{m-1}\left\langle k_{a_{m}}, B_{l}\right\rangle B_{l}(z)\right\|=e^{-i c_{m}} \bar{b}_{a_{1}, \ldots, a_{m-1}}\left(a_{m}\right) \frac{1}{\sqrt{1-\left|a_{m}\right|^{2}}}
$$

where c_{m} is a real number depending on $a_{1}, \ldots, a_{m-1}, a_{m}$, and precisely,

$$
e^{i c_{m}}=\frac{\left|b_{a_{1}, \ldots, a_{m-1}}\left(a_{m}\right)\right|}{b_{a_{1}, \ldots, a_{m-1}}\left(a_{m}\right)} .
$$

We thus conclude that

$$
\begin{equation*}
\frac{k_{a_{m}}(z)-\sum_{l=1}^{m-1}\left\langle k_{a_{m}}, B_{l}\right\rangle B_{l}(z)}{\left\|k_{a_{m}}(z)-\sum_{l=1}^{m-1}\left\langle k_{a_{m}}, B_{l}\right\rangle B_{l}(z)\right\|}=e^{i c_{m}} b_{a_{1}, \ldots, a_{m-1}}(z) e_{a_{m}}(z) \tag{A2}
\end{equation*}
$$

Note that here we are with the case $l(m)=1$ and $k_{a_{m}}=\tilde{k}_{a_{m}}$. Next, we consider the case $l(m)>1$, and we are to show

$$
\begin{equation*}
\frac{\tilde{k}_{a_{m}}(z)-\sum_{l=1}^{m-1}\left\langle\tilde{k}_{a_{m}}, B_{l}\right\rangle B_{l}(z)}{\left\|\tilde{k}_{a_{m}}(z)-\sum_{l=1}^{m-1}\left\langle\tilde{k}_{a_{m}}, B_{l}\right\rangle B_{l}(z)\right\|}=e^{i c_{m}} \phi_{a_{1}, \ldots, a_{m-1}}(z) e_{a_{m}}(z) . \tag{A3}
\end{equation*}
$$

For b being sufficiently close to a_{m} in \mathbf{D}, we have up to the $(l(m)-1)$-order power series expansion in the variable b :

$$
\begin{aligned}
k_{b}(z) & =\sum_{l=0}^{l(m)-1} \frac{1}{l!}\left[\left(\frac{\partial}{\partial \bar{a}}\right)^{l} k_{a}(z)\right]_{a=a_{m}}\left(b-a_{m}\right)^{l}+o\left(\left(b-a_{m}\right)^{l(m)-1)}\right. \\
& =T(z)+\frac{1}{(l(m)-1)!} \tilde{k}_{a_{m}}(z)\left(b-a_{m}\right)^{l(m)-1}+o\left(\left(b-a_{m}\right)^{l(l m)-1)},\right.
\end{aligned}
$$

where

$$
T(z)=\sum_{l=0}^{l(m)-2} \frac{1}{l!}\left[\left(\frac{\partial}{\partial \bar{a}}\right)^{l} k_{a}(z)\right]_{a=a_{m}}\left(b-a_{m}\right)^{l} .
$$

Now, according to the inductive hypothesis, B_{1}, \ldots, B_{m-1} involve the derivatives of the reproducing kernel up to the $(l(m)-2)$-order, and hence, T is in the linear span of B_{1}, \ldots, B_{m-1}. As a consequence,

$$
\begin{equation*}
T(z)-\sum_{k=1}^{m-1}\left\langle T, B_{k}\right\rangle B_{k}=0 . \tag{A4}
\end{equation*}
$$

Inserting the left-hand side of (A4) into (A2), where a_{m} is replaced by b with $b \rightarrow a_{m}$ horizontally (meaning that $\left.\operatorname{Im}(b)=\operatorname{Im}\left(a_{m}\right)\right)$, and from the right-hand side, while dividing both the denominator and numerator part of the left-hand side quotient by $\left(b-a_{m}\right)^{l(m)-1}>0$, we have

$$
\frac{\frac{k_{b}(z)-T(z)}{\left(b-a_{m}\right)^{(m)-1}}-\sum_{l=1}^{m-1}\left\langle\frac{k_{b}-T}{\left(b-a_{m}\right)^{(m)-1}}, B_{l}\right\rangle B_{l}(z)}{\left\|\frac{k_{b}-T}{\left(b-a_{m}\right)^{(m(m)-1}}-\sum_{l=1}^{m-1}\left\langle\frac{k_{b}-T}{\left(b-a_{m}\right)^{(m)-1}}, B_{l}\right\rangle B_{l}(z)\right\|}=e^{i c_{m}} \phi_{a_{1}, \ldots, a_{m-1}}(z) k_{b}(z) .
$$

Letting $b-a_{m} \downarrow 0$ and noticing that the Taylor series remainder is

$$
k_{b}-T=\tilde{k}_{a_{m}}(z)\left(b-a_{m}\right)^{l(m)-1}+o\left(b-a_{m}\right)^{l(m)-1},
$$

we obtain the desired relation (A3). The proof is complete.

