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Adaptive Fourier Decomposition for
Multi-Channel Signal Analysis
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Abstract—Evolved from the conventional Fourier decomposition
based on a pre-defined basis, Adaptive Fourier decomposition
(AFD) uses adaptive basis to achieve the fast energy convergence.
This paper extends the AFD to the multi-channel case, which
finds common adaptive basis across all channels. The proposed
multi-channel AFD (MAFD) scheme includes the multi-channel
core AFD for general signals and the multi-channel unwinding
AFD for specific signals that have common inner functions. Owing
to the merits of the original AFD, the MAFD can provide sparse
joint time-frequency distribution by computing the transient time
frequency distribution (TTFD) across channels. Simulations on
synthetic and real-world signals demonstrate that the proposed
scheme can find and apply the common adaptive basis with desired
properties maintained by the AFD, showing high potentials in
real-world applications.

Index Terms—Amplitude and frequency modulated signal,
adaptive Fourier decomposition, multi-channel signal, time-
frequency analysis.

I. INTRODUCTION

THE observations in the physical sciences and engineering
often form time-varying signals, which cannot be char-

acterized adequately by conventional Fourier analysis [1]. The
univariate modulated oscillation model that describes the one di-
mensional (1D) time-varying signals as amplitude and frequency
modulated oscillations provides an attractive representation and
has become a standard model. To characterize time-varying sig-
nals with arbitrary number of channels, the univariate modulated
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oscillation model is extended to the modulated multivariate os-
cillation model in [2]. This model assumes a common oscillation
spanning all of individual channel signals. An important task
towards multi-channel signal analysis is to identify the common
oscillatory structure [2], [3].

As the interest in the multi-channel signal analysis grows,
multi-channel extensions of several conventional algorithms
have been proposed to explore dependencies among multiple
channels. The work in [2] extended the wavelet ridge transform
for the modulated multivariate oscillations in which the
multivariate wavelet transform (MWT) identifies the local
maximal points for computing the scale parameter in the wavelet
coefficients and thus can provide local oscillatory dynamics
of multi-channel signals. To reduce the restrictions due to the
linear projection in the wavelet transform, the synchrosqueezing
transform is introduced to the MWT in [3]. The multivariate
synchrosqueezing wavelet transform (MSWT) reassigns
the energies of decomposition components to make them
concentrated around the instantaneous frequency curves of the
modulated oscillations. Unfortunately, the wavelet transform is
based on the pre-defined mother wavelet. In order to decompose
signals adaptively, the empirical mode decomposition (EMD) is
proposed and later extended as the multivariate EMD (MEMD)
for analyzing multi-channel signals [4]. Instead of using the
EMD to analyze signals separately on each channel, the MEMD
analyzes signals in all channels simultaneously and can produce
same number of intrinsic mode functions (IMFs) adaptively for
all channels. To enhance the computational efficiency, the fast
MEMD (FMEMD) was proposed [5]. Although the MEMD
performs well on the analyses of the synthetic sinusoidal signals
and real-world signals [6]–[8], it lacks mathematical theory
and necessary theoretical guarantees. To tackle this issue,
several novel adaptive decomposition methods were proposed
in literature. Based on the Fourier theory and zero-phase
filtering as well as the discrete cosine and sine transforms, the
Fourier decomposition method (FDM), the Fourier quadrature
transform (FQT) and the corresponding multi-channel extension
called multivariate FDM (MFDM), were introduced [9], [10]. In
the MFDM, the frequency-domain components are rearranged
by zero-phase filter banks to form band limited Fourier intrinsic
band functions (FIBFs) for analyzing multivariate nonlinear and
non-stationary time series. Except the MFDM, the multivariate
variational mode decomposition (MVMD), originated from
the variation mode decomposition (VMD), achieves the
decompositions of the multivariate data by minimizing
the collective bandwidth of modes whose frequency bands
limits around the center frequency [11], [12]. Then, to
better process wide-band and time-varying multi-channel
signals, the multivariate versions of the nonlinear chirp mode
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decomposition (NCMD), i.e., the multivariate nonlinear
chirp mode decomposition (MNCMD) and the multivariate
intrinsic chirp mode decomposition (MICMD), can transform
the multivariate nonlinear chirp modes into narrow-band
multivariate signals by minimizing the sum of bandwidths of
modes across channels [13], [14]. Compared with the MEMD,
these novel adaptive multi-channel decomposition methods
include more mathematical theorems or mathematical analysis
to avoid the limitations of the EMD with regard to the mode
mixing, the detrend uncertainty and the end effect artifacts [9],
[12], [14], [15]. However, compared with the basis based
decomposition methods, such as the conventional Fourier
decomposition, the decomposition components of these novel
adaptive multi-channel decomposition methods still lack the
support of the rigorous mathematical foundation and cannot
be formulated by mathematical expressions. This issue makes
characteristics of the decomposition components difficult to
be interpreted and analyzed mathematically, which limits their
applications in practice. In this study, the MEMD, the MFDM,
the MVMD and the MNCMD are collectively called empirical
decomposition methods. The AFD, combining the advantages
of the basis based and empirical decomposition methods, was
proposed [16].

The AFD provides a greedy iterative decomposition of time-
varying signals into a series of mono-components (MCs) only
containing non-negative analytic phase derivatives [16]. The de-
composition of the AFD is still based on basis. However, unlike
the conventional basis based decomposition methods using the
pre-defined basis, the AFD uses adaptive basis to decompose sig-
nals so that it can achieve the fast energy convergence [15]. Until
now, for 1D signal, there are several algorithms implementing
the AFD. The core AFD is the most fundamental AFD method. It
applies the modified Blaschke product as its basis and adopts the
matching pursuit decomposition process. In each decomposition
level, one basis component is searched from the dictionary to
extract the largest possible energy portion from the remainder.
Once a basis component is obtained, it will not be adjusted in
the subsequent decomposition processes. Based on such iterative
decomposition procedures, the core AFD can achieve the largest
energy shrinkage in every decomposition level [16]. However,
it cannot guarantee the global optimal convergence efficiency.
To improve the global convergence efficiency of the core AFD,
the cyclic AFD is proposed. Assuming that the total number of
basis components is known, then the basis components obtained
from the core AFD can be adjusted one by one to maximize
the total extracted energy [17]. The cyclic AFD adjusts one
basis component by fixing other basis components and applying
the same basis searching scheme as in the core AFD. This
adjustment process is repeated for all basis components until
the total energy of all extracted components achieves its max-
imum value. Besides the cyclic AFD, the unwinding AFD is
also proposed for speeding up the convergence. Although the
unwinding AFD also adopts the matching pursuit process, it
combines the factorization process [18]. By factorizing the inner
function factor from the remainder, the energy convergence
can practically increase the convergence rate. Using the core
AFD as foundation, these AFD methods adopt different basis
searching processes under different assumptions to achieve the
fast energy convergence. Moreover, because all decomposed
components are MCs, the transient time-frequency distribution
(TTFD) generated based on the AFD satisfies many good mathe-
matical properties, including correct total energy, non-negative,

real-valuedness, weak and strong finite supports [15]. The AFD
is not only proposed for the 1D signals, but also extended to
the two dimensional (2D) and higher dimensional signals [19].
The multi-dimensional AFD applies the Kronecker product of
multiple finite Takenaka-Malmquist (TM) systems in multiple
dimensions as its basis. Based on the similar decomposition
procedure of the 1D AFD, the multi-dimensional AFD can
express the processed multi-dimensional signal to the combi-
nation of multi-dimensional MCs with the high efficiency of
the energy shrinkage. The AFD has shown good performance
in system identification, modeling, signal compression and de-
noising [20]–[25].

In order to apply the main characteristics of the AFD for
analyzing the multi-channel signals, the extension of the AFD to
the multi-channel version is a natural and desired development.
Unfortunately, the existing AFD methods only work for single
channel signals. It is well-known that multi-channel data usually
shares common oscillations across channels. If simply applying
the AFD separately on each channel, the common knowledge
between channels will be neglected, which may yield different
numbers of misaligned MCs for different channels and further
lead to physically meaningless estimates or decisions. On the
other hand, multi-channel signals can be considered as multi-
dimensional signals and thus analyzed by the multi-dimensional
AFD. The existing multi-dimensional AFD assumes that the
decomposition components are continuous in all dimensions to
search adaptive basis [19], [26]. However, the decomposition of
multi-channel signals should not be constrained by the continu-
ity in the channel dimension.

The main contributions of this study are that i) a multi-channel
AFD (MAFD) is proposed, which is the first extension of
the AFD for analyzing multi-channel signals; ii) fast Fourier
transform (FFT) based modifications are applied to improve
the computation efficiency of the proposed MAFD; iii) a joint
time-frequency distribution is further developed based on the
MAFD to provide the coherent time-frequency analysis for the
multi-channel signals; iv) the characteristics of the proposed
MAFD as well as the good time-frequency localization ability
of the proposed joint time-frequency distribution are illustrated
through simulations on synthetic and real-world multi-channel
signals. The proposed MAFD contains several good charac-
teristics including i) applying the common basis components
for all channels to achieve the alignment of common or joint
oscillations across channels; ii) introducing characteristics of
the AFD to the analysis of multi-channel signals, which are the
fast energy convergence with adaptive basis components and the
rigorous mathematical foundation as well as the decomposition
components with non-negative and continuous phase deriva-
tives; iii) owing to these inherited characteristics from the AFD,
being able to provide the joint time-frequency distribution that
follows mathematical properties of the TTFD. In multivariate
oscillations, the bivariate and trivariate cases are most impor-
tant [2], [3]. We focus on analyzing the multi-channel 1D signals
(bivariate oscillations) in this paper. The similar analysis can be
applied to the multi-channel 2D signals (trivariate oscillations).

The organization of the rest part in this paper is as follows:
Section II gives the key notations used in this paper, and in-
troduces the modulated multivariate oscillations and the con-
ventional adaptive Fourier decomposition. Section III presents
the proposed multi-channel extensions of the core AFD and the
unwinding AFD as well as the joint time-frequency analysis
based on the MAFD. Section IV verifies the MAFD through
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simulations and examples of real-world applications. Then, the
basis searched by the proposed MAFD and the computation
complexity of the proposed implementation of the MAFD as
well as the comparisons between the proposed MAFD and the
empirical decomposition methods are discussed in Section V.
Finally, the conclusion is drawn in Section VI.

II. PRELIMINARIES

A. Notations

For a clear introduction of the MAFD methods, Table I
summarizes the key notations used in this paper. In general,
the variables with right subscripts c and n denote that they
correspond to the c-th channel and the n-th decomposition level.
In addition, the function notations with the parentheses and the
square brackets denote the continuous signal and the correspond-
ing discrete signal. For example, Gc,n(ejt) and Gc,n[k] are the
continuous and corresponding discrete processed analytic signal
of the c-th channel in the n-th decomposition level, and have the
relationship Gc,n[k] = Gc,n(e

jtk) with the k-th sampling time
tk.

B. Modulated Multivariate Oscillations

For a signal x(t) containing time-varying amplitudes and
frequencies, the corresponding analytic signal x+(t) can be
described by the modulated oscillation model

x+(t) = x(t) + jH{x(t)} = ζ(t)ejψ(t) (1)

where ζ(t) and ψ(t) are the instantaneous amplitude and phase
respectively, j is the imaginary unit, andH(·) denotes the Hilbert
transform. This concept of univariate modulated oscillation has
been extended to the multivariate case, which models the joint
oscillatory structure of the multi-channel signal [2]. For a multi-
channel signal x(t), we can extend the representation in (1) to
describe the corresponding multi-channel analytic signal by the
modulated multivariate oscillation

x+(t) =

⎡
⎢⎢⎢⎣
ζ1(t)e

jψ1(t)

ζ2(t)e
jψ2(t)

...
ζC(t)e

jψC(t)

⎤
⎥⎥⎥⎦ , (2)

where C is the total number of channels. The study in [2]
proposed that the joint instantaneous frequency Ωx+

(t) can be
expressed as

Ωx+
(t) =

∑C
c=1 ζ

2
c (t)ωc(t)∑C

c=1 ζ
2
c (t)

, (3)

whereωc(t) can be computed as the derivative ofψc(t). Accord-
ing to [3], the joint analytic spectrum of x+(t) is

Sx+
(ω) =

1

Ex+

‖X+(ω)‖2 . (4)

C. Adaptive Fourier Decomposition

The AFD applies a matching pursuit process to search adap-
tive basis {Bn}∞n=1 where functions Bn is called modified

TABLE I
TABLE OF NOTATIONS

Blaschke products and is defined as

Bn
(
ejt

)
=

√
1− |an|2

1− anejt
n−1∏
d=0

ejt − ad
1− adejt , (5)

an ∈ D (n = 1, 2, · · · ), D = {z ∈ C : |z| < 1}, and C is the
complex plane [27]. The system {Bn}∞n=1 is orthonormal for
any sequence of an in D. Therefore, the processed signal G can
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be expressed as

G
(
ejt

)
=

∞∑
n=0

{
An ·Bn

(
ejt

)}
, (6)

where the coefficientAn in the n-th decomposition level can be
computed by 〈G,Bn〉 [16]. By defining the reduced remainder
Gn in the n-th decomposition level as

Gn
(
ejt

)
=

(
G
(
ejt

)− n−1∑
n=0

AnBn
(
ejt

)) n−1∏
d=0

1−adejt
ejt−ad , (7)

we have the relationship

An = 〈G,Bn〉 = 〈Gn, e{an}〉 (8)

where e{a} is called evaluator or normalized reproducing kernel
at a and is defined as

e{a}(ejt) =

√
1− |a|2

1− aejt . (9)

There is a long history related to the studies on the mod-
ified Blaschke products Bn [28], [29]. It should be noticed
that Bn is only determined by the sequence {ad}nd=0. When
a0 = a1 = · · · = an = 0, then Bn is reduced to a Fourier basis
component, i.e., ejnt. From this point of view, the AFD basis can
be considered as the generalization of the conventional Fourier
basis. In addition, let the first component a0 be 0, decomposition
components can always be MCs that only have non-negative
phase derivatives [16], [27]. In this case, the decomposition
components are said to have well defined instantaneous frequen-
cies [30]. Moreover, when a0 = 0, B0(e

jt) = 1, which extracts
the DC components in the processed signals. Normally, key
characteristics of signals are reflected by variances of signals.
Therefore, in the following contents, DC components of pro-
cessed signals are removed in the pre-processing, which makes
the decomposition coefficients at the decomposition level n = 0
be equal to 0. The related decomposition processes at n = 0 is
considered as the pre-decomposition and will not be discussed.
Then, the reduced remainder at the decomposition level n = 1
is G1(e

jt) = G(ejt) · e−jt.
Starting from the decomposition level n = 1, the key proce-

dure of the AFD is to determine a suitable an value that can
provide the fast energy convergence. The achievement of the
optimality is based on the attainability of

an = argmax
{
E{Bn}(a) : a ∈ D

}
, (10)

where E{Bn}(a) denotes the energy of the decomposition com-
ponent Bn(ejt) that uses a as an in the n-th decomposition
level. The attainability is referred as maximal selection principle
(MSP). In this study, two main AFD algorithms, i.e., the core
AFD and the unwinding AFD, are extended to the multi-channel
versions. Since the core AFD and the unwinding AFD apply
different basis forms and thus different schemes to search basis
components, the computations of E{Bn}(a) in them are dif-
ferent, which will be introduced in the detailed decomposition
procedures of the multi-channel core AFD and the multi-channel
unwinding AFD.

In real implementations, the optimization problem shown in
(10) is solved by the exhaustive searching. First, a discrete
searching dictionary containing possible values of a ∈ D is
generated. Then, objective function values of a values in the

searching dictionary are evaluated. Finally, the maximum objec-
tive function value and corresponding a value can be searched.
As the density of the searching dictionary increases, the accuracy
of optimization results will also increase. However, the compu-
tational efficiency will be declined. In the following sections,
FFT based modifications of the exhaustive searching will be
discussed for the discrete multi-channel core and unwinding
AFD methods, which can improve the computation efficiency
of this searching process.

III. MULTI-CHANNEL ADAPTIVE FOURIER DECOMPOSITION

We attempt to propose an extended AFD to analyze multi-
channel signals. To achieve the alignment of common or joint
oscillations across channels, the same number of MCs with the
same basis components should be applied for all channels. The
core AFD is the fundamental 1D AFD method that will be
first generalized to the multi-channel case in this section. The
unwinding AFD applies the Nevanlinna factorization to speed
up the convergence and thus can provide good performance for
analyzing real-world signals [24]. As the supplement of the
multi-channel core AFD, the multi-channel extension of the
unwinding AFD is also derived for the multi-channel signals
that have common inner functions across channels. The multi-
channel extension of the cyclic AFD is not included in this study
because i) the cyclic AFD requires to know the number of basis
components in advance, which cannot be achieved in general for
real-world applications; ii) the decomposition of the cyclic AFD
is similar to that of the core AFD, which leads that the extension
process of the cyclic AFD can be derived by following that of the
core AFD. The final implementation of the multi-channel AFD
combines the multi-channel core AFD and the multi-channel
unwinding AFD. After obtaining the decomposition compo-
nents of the MAFD, joint instantaneous frequencies and joint
instantaneous amplitudes are also determined by computing the
TTFDs across channels.

A. Multi-Channel Core Adaptive Fourier Decomposition

The core AFD is the fundamental implementation of the
AFD. It uses the modified Blaschke products as basis for the
decomposition [16]. Following (6), the analytic signal in the
c-th channel can be expressed as

Gc(e
jt) =

N∑
n=1

{
Ac,n ·Bn(ejt)

}
+Rc,N (ejt), (11)

where the coefficient Ac,n of the n-th decomposition level can
be computed as

Ac,n = 〈Gc,n(ejt), e{an}(ejt)〉, (12)

where the reduced remainderGc,n(ejt) can be obtained through
the recursive procedure that is

Gc,n(e
jt) = Rc,n−1(ejt)

n−1∏
d=1

1−adejt
ejt−ad

=
(
Gc,n−1(ejt)−Ac,n−1 · e{an−1}(ejt)

)
1−an−1ejt
ejt−an−1 .

(13)

In order to achieve the fast energy convergence, an in each
decomposition level should be able to extract largest energy from
the total energy of the multi-channel analytic signal x+(t). In
the L2-norm sense, the total energy at the n-th decomposition
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level can be computed by

E{Bn}(an) =
C∑
c=1

∣∣∣∣∣〈Gc,n(ejt), e{an}(ejt)〉
∣∣∣∣∣
2

. (14)

Then, by inserting E{Bn}(a) shown in (14) into (10), the
optimization problem of determining an in the multi-channel
core AFD can be obtained. Although an determined by (14)
cannot extract the largest energy of each channel simultaneously,
it can extract the largest total energy of all channels. In this study,
all channels are treated equally. By considering the differences
of channels, a more general form of the objective function (14)
is the weighted summation of |〈Gc,n(ejt), e{a}(ejt)〉|2 where
weights indicate importance of channels. For such general case,
the existence of {an}∞n=1 and the convergence have been proved
in [31]. This study further derives the MAFD for the discrete
signals

For the discrete multi-channel signal, assume that the signals
in all channels are equispaced discrete signal sampled from one
period of periodic continuous signals with t ∈ [0, 2π), and let
the sampling time {tk}Kk=1 be same for all channels where
tk = 2π(k − 1)/K and K is the total number of sampling
points. The searching process of an requires the discrete search-
ing dictionary generated by making amplitudes and phases of
values in the searching dictionary discrete, respectively. Let
the discrete searching dictionary be fixed for all decomposition
levels, then the objective function (14) for the discrete signal can
be represented as

E{Bn}[l,m] =
C∑
c=1

∣∣∣∣ K∑
k=1

{Gc,n[k] · {em,l[k]}∗}
∣∣∣∣
2

, (15)

where {·}∗ denotes the complex conjugate, and em,l[k] is defined
as

em,l[k] = e{ρmeφl}(tk) =
√
1− ρ2m

1− ρmej(tk−φl)
. (16)

Suppose the discrete phases in the searching dictionary follow
sampling time, which means tk = φl ∀ k = l, then E{Bn}[l,m]
can be represented as

E{Bn}[l,m] =

C∑
c=1

∣∣∣∣∣ {Gc,n ∗ em,1} [l]
∣∣∣∣∣
2

, (17)

where {Gc,n ∗ em,1}[l] denotes the discrete convolution of
Gc,n[l] and em,1[l]. Note that φ1 = t1 = 0. Applying the con-
volution theorem to (17), the optimization problem in (10) with
the objective function (14) can be generated for discrete signals,
which is

maximize E{Bn}[l,m]

=
C∑
c=1

∣∣∣∣∣F−1 {F {Gc,n[l]} · F {em,1[l]}}
∣∣∣∣∣
2

,

subject to 0 ≤ ρm < 1,

(18)

where F{·} and F−1{·} denote the discrete Fourier transform
(DFT) and the inverse DFT (IDFT) respectively.

Comparing the objective function of the continuous multi-
channel core AFD shown in (14) and the objective function of the
discrete multi-channel core AFD shown in (18), some key points
in the modification should be noticed. First, only the evaluators

e{ρmeφl} at points with φ1 = 0 are required to calculate the ob-
jective functions at all points in the searching dictionary, which
can significantly reduce the time of computing evaluators. Then,
the FFT can be applied to compute the DFT, which increases
the efficiency of computing the objective function values. The
detailed analysis of the computational complexity of the basis
searching is discussed in Section V-B. The analysis shows that
such modification decreases the computational complexity of
the MAFD, and thus improves its practicality in real-world
applications.

B. Multi-Channel Unwinding Adaptive Fourier
Decomposition

In Section III-A, the multi-channel core AFD does not con-
sider the inner function part. Suppose there are common inner
functions across channels, considering these common inner
functions in the basis searching can significantly increase the
convergence rate. According to the Nevanlinna factorization
theorem [32], an analytic signal can be expressed as the product
of its inner function and its outer function parts. The outer
function part does not have zeros in the unit disc. Assuming
that the singular part of the inner function is trivially 1, then the
inner function part is identical with the Blaschke product defined
by the zeros of the objective function in D [18], [24]. Assuming
that the signals in all channels have common zeros, following
(6) and [18], the analytic signal in c-th channel can be expressed
as

Gc(e
jt) =

N∑
n=1

{
Ac,n ·Bn(ejt) ·

n∏
i=1

Ii(e
jt)

}
+Rc,N (e

jt),

(19)
where Ii(ejt) is the inner function of the reduce remainder at
i-th decomposition level and is defined as

Ii(e
jt) =

Hi∏
h=1

ejt − ri,h
1− ri,hejt , (20)

and Ac,n can be computed as

Ac,n = 〈Gc,n(e
jt)

In(ejt)
, e{an}(e

jt)〉. (21)

The corresponding recursive procedure of computing the
reduced remainder is

Gc,n+1(e
jt) =

(
Gc,n(e

jt)

In(ejt)
−Ac,n · e{an}(ejt)

)
1− anejt
ejt − an .

(22)
For the common inner function In, the parameters {rn,h}Hn

h=1
need to satisfy

G1,n(r) = · · · = GC,n(r) = 0. (23)

Note that it is hard to determine r in (23) becauseGc,n(ejt) is
always unknown under normal circumstance. Hence, (23) needs
to be transferred to a solvable form. According to the Cauchy
formula that is

G(r) = 〈G(z), 1

1− rz 〉 ∀ G(z) ∈ H
2, (24)

(23) can be represented as

〈Gc,n(ejt), 1

1− rejt 〉 = 0 ∀ c ∈ {1, 2, . . . , C} . (25)
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All results of (25) belong to {rn,h}Hn

h=1 and are applied to
construct the inner function In. Then, according to (21), the
total energy at the n-th decomposition level is

E{Bn}(an) =
C∑
c=1

∣∣∣∣∣〈Gc,n(e
jt)

In(ejt)
, e{an}(e

jt)〉
∣∣∣∣∣
2

. (26)

Same as the multi-channel core AFD, an can be determined by
solving (10) with the objective function (26).

Algorithm 1: Discrete MAFD.
Input:
{xc}Cc=1: multi-channel discrete signal to be processed;
K: total number of sampling points;
{ρm}Mm=1: discrete amplitudes of an in the searching
dictionary;
{αm}Mm=1: discrete amplitudes of rn,h in the searching
dictionary.

1: tk ← 2π(k−1)
K (k = 1, . . . ,K);

2: Generate discrete phase of an and rn,h in the
searching dictionary: φl = γl = tk for k = l;

3: Convert {xc}Cc=1 to its analytic representation
{Gc}Cc=1 via the Hilbert transform;

4: Calculate F{em,1[l]} and F{ 1
1−αme

jγl
}

(m = 1, . . . ,M );
5: Initialization of determining an: n← 1 and

Gc,1[k]← Gc[k] · e−jtk (c = 1, 2, . . . , C);
6: loop
7: Initialization of determining rn,h:

Yc,n,1[l]← Gc,n[l], and h← 1;
8: repeat
9: Search the suitable (ln,h,mn,h) by solving (28);

10: if ∃(ln,h,mn,h) then
11: rn,h ← αmn,h

ejγln,h ;
12: h← h+ 1;
13: Yc,n,h[l]← Gc,n[l] ·

∏h−1
i=1

1−rn,ie
jγl

ejγl−rn,i
;

14: end if
15: until �(ln,h,mn,h)
16: Hn ← total number of elements in {rn,h};
17: if Hn = 0 then
18: In[k]← 1;
19: else
20: In[k]←

∏Hn

h=1
ejtk−rn,h

1−rn,he
jtk

;
21: end if
22: Search the suitable (ln,mn) by solving (32);
23: an ← ρmn

ejφln ;

24: e{an}[l]←
√

1−|an|2
1−anejφl

;

25: Ac,n ←
∑K
k=1{Gc,n[k]

In[k]
· {e{an}[k]}∗};

26: n← n+ 1;
27: Gc,n[l]←

{Gc,n−1[l]
In−1[l]

−Ac,n−1 · e{an−1}[l]} 1−an−1e
jφl

ejφl−an−1 ;
28: end loop
Output:
{rn,h}: Parameters of inner functions;
{an}: Parameters of outer functions;
{Ac,n}: Coefficients of MCs.

Similarly to the multi-channel core AFD, the computational
efficiency of the multi-channel unwinding AFD also can be
improved by modifying the objective functions of searching
basis parameters and using the FFT. First, parameters {rn,h}Hn

h=1
of the inner functions need to be found by solving (25). Same as
the searching process of an, {rn,h}Hn

h=1 can be searched from a
discrete searching dictionary. In addition, the discrete searching
dictionary can be constructed by the discrete amplitudes and
the discrete phases of r. In the real computations, due to the
computational error and the uncompleted discrete searching
dictionary that cannot contain all points of r ∈ D, it is hard
to find a value of r that exactly makes the reduced remainders
equal to zero in all channels simultaneously. However, from the
searching dictionary, we can find points that are very close to
the real solutions of (25) as {rn,h}Hn

h=1. These estimated points
{rn,h}Hn

h=1 should satisfy

C∑
c=1

∣∣∣∣〈Gc,n(ejt), 1

1− rn,hejt 〉
∣∣∣∣
2

< ε ∀ h ∈ {1, 2, . . . , Hn} ,
(27)

where ε is a small positive number. Since the total number Hn

is uncertainty, all solutions can be searched iteratively. In each
iteration step, one value in {rn,h}Hn

h=1 can be determined by
solving

minimize E{In,h}[l,m],
subject to 0 ≤ αm < 1 and E{In,h}[l,m] < ε,

(28)

where the objective function is

E{In,h}[l,m]

=
C∑
c=1

∣∣∣∣∣
K∑
k=1

{
Yc,n,h[k] ·

{
1

1− αmej(tk−γl)
}∗}∣∣∣∣∣

2

(29)

and

Yc,n,h[k] = Gc,n[k] ·
h−1∏
i=1

1− rn,iejtk
ejtk − rn,i . (30)

Suppose tk = γl ∀ k = l, then, by applying the convolution
theorem, the objective function in (28) for discrete data can be
represented as

E{In,h}[l,m] =
C∑
c=1

∣∣∣∣∣F−1
{
F {Yc,n,h[l]} · F

{
1

1−αme
jγl

}} ∣∣∣∣∣
2

.

(31)
After obtaining all possible values of {rn,h}Hn

h=1, the inner
function In can be constructed. The searching process of an
in the discrete multi-channel unwinding AFD is similar to that
in the discrete multi-channel core AFD, which can be expressed
as

maximize E{Bn}[l,m]

=
C∑
c=1

∣∣∣∣∣F−1
{
F
{
Gc,n[l]
In[l]

}
· F {em,1[l]}

} ∣∣∣∣∣
2

,

subject to 0 ≤ ρm < 1.

(32)

It should be noticed that, for an arbitrary set of time se-
ries, the common inner functions for all channels rarely exist.
However, once the common zeros exist, considering the inner
function part can exactly increase the convergence rate. The
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multi-channel unwinding AFD works as a supplement of the
multi-channel core AFD. In one decomposition level, we first
try to search parameters of the inner function by solving (28).
Suppose that the common inner function cannot be found, the
basis component of the multi-channel core AFD will be applied
by setting the inner function part as 1. Otherwise, the com-
mon inner function will be included in the basis component.
Combining the multi-channel core AFD and the multi-channel
unwinding AFD, the pseudocode is shown in Algorithm 1. In this
implementation, M is the number of amplitudes in the discrete
searching dictionary, which controls the trade-off between the
computational accuracy and efficiency. Specifically, the larger
M leads to the more accurate optimization results of an and
rn,h but longer computational time and larger computational re-
sources. Therefore,M needs to be carefully pre-defined by users.
The MAFD code is available at https://toolbox-for-adaptive-
fourier-decomposition.readthedocs.io.

C. Time-Frequency Analysis Based on Multi-Channel
Adaptive Fourier Decomposition

After the decomposition of the MAFD, the processed multi-
channel analytic signal can be expressed as

x+(t) =

⎡
⎢⎢⎢⎣
A1,1e

jμ1(t) + · · ·+A1,Ne
jμN (t)

A2,1e
jμ1(t) + · · ·+A2,Ne

jμN (t)

...
AC,1e

jμ1(t) + · · ·+AC,Ne
jμN (t)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎣
A1,1, . . . , A1,N

A2,1, . . . , A2,N

...
AC,1, . . . , AC,N

⎤
⎥⎥⎦×

⎡
⎢⎢⎢⎣
ejμ1(t)

ejμ2(t)

...
ejμN (t)

⎤
⎥⎥⎥⎦ , (33)

where ejμn(t) presents adaptive basis components searched from
the MAFD. These basis components have different forms for the
multi-channel core AFD and the multi-channel unwinding AFD,
which leads different transient frequencies.

For the multi-channel core AFD, the n-th basis component
is ejμn,core(t) = Bn(e

jt). Assuming that the processed signal is
under one period t ∈ [0, 2π), the transient frequency ofBn(ejt)
has been discussed in [15], which is

ωn,core(t) =
dμn,core(t)

dt

=
|an| cos(t− ∠an)− |an|2

1− 2 |an| cos(t− ∠an) + |an|2

+

n−1∑
d=0

1− |ad|2
1− 2 |ad| cos(t− ∠ad) + |ad|2

. (34)

For the multi-channel unwinding AFD, the n-th basis com-
ponent is ejμn,unwinding(t) = Bn(e

jt)
∏n
i=1 Ii(e

jt). The transient
frequency of the n-th decomposition component obtained from
the multi-channel unwinding AFD is

ωn,unwinding(t) =
dμn,unwinding(t)

dt

=
|an| cos(t− ∠an)− |an|2

1− 2 |an| cos(t− ∠an) + |an|2

+

n−1∑
d=0

1− |ad|2
1− 2 |ad| cos(t− ∠ad) + |ad|2

+
n∑
i=1

Hi∑
h=1

1− |ri,h|2
1− 2 |ri,h| cos(t− ∠ri,h) + |ri,h|2

.

(35)

The transient frequency has three key characteristics. Firstly,
the transient frequencies in one decomposition level are same
for all channels because the MAFD applies the same basis
components for all channels. Secondly, the transient frequencies
shown in (34) and (35) are always positive, which is inherited
from the characteristics of the AFD and has been discussed
in [27], [29], [33], [34]. The proofs for the proposed MAFD are
provided in Section S.I of the supplementary material. Thirdly,
owing to the characteristics of the TM system that is

ωn(t) < ωn+1(t), (36)

there are not overlapping frequency components between dif-
ferent decomposition levels in each time point, which has been
discussed in [15], [16] and is proofed in Section S.II of the
supplementary material.

The transient amplitudes of the multi-channel core AFD and
the multi-channel unwinding AFD are same because the mag-
nitudes of the inner functions in the multi-channel unwinding
AFD are 1. As reported in [15], the transient amplitude of the
time-frequency distrution at the c-th channel is

λc(t, ω) =
N∑
n=1

λc,n(t) · δ (ω − ωn(t)) , (37)

where δ(ω) is the unit impulse function, and

λc,n(t) = |Ac,n|
√

1− |an|2

1− |an| cos(t− ∠an) + |an|2
. (38)

Then, according to (4), the joint transient amplitude of the multi-
channel TTFD can be estimated as

λ(t, ω) =

√∑C

c=1
λ2c(t, ω). (39)

IV. SIMULATIONS AND EXAMPLES OF REAL-WORLD

APPLICATIONS

The discrete MAFD shown in Algorithm 1 uses the multi-
channel core AFD as the foundation and the multi-channel un-
winding AFD as the supplement, which considers multi-channel
signals with and without common inner functions. Therefore,
this implementation is applied for the following evaluations with
both synthetic and real-world signals. First, the key characteris-
tics of the MAFD are illustrated through simulations. Then, the
potential performance of the MAFD is verified by two examples
of real-world applications.

A. Mode-Alignment Property

The alignment of common or joint oscillations across chan-
nels in a single decomposition level is a fundamental and impor-
tant property, termed as mode-alignment, for ensuring coherent
multivariate signal analysis in many practical applications, such
as fusion, denoising, and classification [12], [35]. To ensure that
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Fig. 1. Comparisons of basis components obtained from the MAFD and the single channel AFD. (a) Basis components obtained in the first decomposition level.
(b) Basis components obtained in the second decomposition level.

the decomposition components can achieve the alignment of
common or joint oscillations across different channels in one
decomposition level, the proposed MAFD searches the adaptive
common basis components for all channels. To illustrate this
ability of the MAFD, we constructed a synthetic multi-channel
signal that is

x+(t) =

⎡
⎢⎢⎢⎢⎢⎣

η1,1
κ1,1e

4j(t−Φ1)+κ1,2e
3j(t−Φ1)

(1−κ1,3ej(t−Φ1))(1−κ1,4ej(t−Φ1))

+η1,2
κ2,1e

4j(t−Φ2)+κ2,2e
3j(t−Φ2)

(1−κ2,3ej(t−Φ2))(1−κ2,4ej(t−Φ2))

η2,1
κ1,1e

4j(t−Φ1)+κ1,2e
3j(t−Φ1)

(1−κ1,3ej(t−Φ1))(1−κ1,4ej(t−Φ1))

+η2,2
κ2,1e

4j(t−Φ2)+κ2,2e
3j(t−Φ2)

(1−κ2,3ej(t−Φ2))(1−κ2,4ej(t−Φ2))

⎤
⎥⎥⎥⎥⎥⎦ . (40)

The similar analytic signal is also used in [16]. The basic
components are common to both two channels with different
summation weights ηc,n. Parameters of (40) are randomly gen-
erated, which are

{ηc,n} =
[
0.134 0.621
0.529 0.513

]
, {Φn} = [1.882 4.818 ],

and

{κn,d} =
[
0.435 0.549 0.420 0.204
0.025 0.435 0.330 0.619

]
.

The single channel unwinding AFD and the proposed MAFD
are applied to decompose the constructed synthetic multi-
channel signal. The single channel unwinding AFD decomposes
signals channel by channel while the MAFD decomposes them
simultaneously. Fig. 1 shows the comparisons of basis com-
ponents obtained from the single channel unwinding AFD and
the MAFD. The basis components obtained from the MAFD in
each decomposition level are aligned for all channels. On the
contrary, the single channel unwinding AFD cannot provide the
aligned basis components for all channels because the energy
distributions are different in different channels.

TABLE II
RECONSTRUCTION ERROR OF THE PROPOSED MAFD, THE MNCMD, THE

MEMD AND THE MWT FOR THE SYNTHETIC MULTI-CHANNEL SIGNAL

B. Fast Energy Convergence

Compared to other non-empirical decomposition methods, the
fast energy convergence is one of key characteristics of the AFD
owing to its adaptive basis, which is inherited by the proposed
MAFD. This property of the MAFD is evaluated by the synthetic
multi-channel signal applied in Section IV-A. Fig. 2 shows
the comparisons of the original signals and the reconstructed
signals obtained from the MAFD and the MWT at the first 10
decomposition levels. Table II shows the comparisons of the
reconstruction error between empirical decomposition methods
including the MNCMD, the MVMD, the MEMD, the MWT and
the proposed MAFD in the first 4 decomposition levels.

To quantitatively compare the energy convergences, the rela-
tive energy error (REE) is applied, which is defined as

REE =

∑C
c=1

{∫
t∈W |x̂c(t)− xc(t)|

}
∑C
c=1

{∫
t∈W |xc(t)|

} , (41)

where C is the total channel number, and W is the focused time
window. The energy convergence rate of the MAFD is compared
with those of the MWT, the MNCMD, the MVMD, and the
MEMD, which is illustrated in Fig. 3.

The proposed MAFD and the MWT are both non-empirical
decomposition methods. Observe that, compared with the MWT,
the MAFD uses less decomposition components to reconstruct
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Fig. 2. Comparisons of the real parts of the reconstructed signals obtained from the MAFD and the MWT in different decomposition levels for the synthetic
multi-channel signal.

Fig. 3. Comparison of relative energy error of the proposed MAFD, the
MNCMD, the MVMD, the MEMD and the MWT for the synthetic multi-channel
signal.

the original signals. The MNCMD, the MVMD, and the MEMD
are all empirical decomposition methods and thus normally
have faster convergence than the non-empirical decomposition
methods. However, the MAFD can provide the similar or even
better performance compared with empirical methods. In the
3 rd decomposition level, the proposed MAFD and the empirical
decomposition methods already recover most energy of the
original signals.

The real-world signals are normally more complex than the
synthetic multi-channel signal shown in (40). To verify the en-
ergy convergence of the proposed MAFD for real-world signals,
the real electrocardiogram (ECG) signals are applied. These
ECG signals are from the MIT-BIH Arrhythmia Database [36],
[37]. According to labels in the database, four types of ECG
beats are extracted. They are the supraventricular ectopic beats,
ventricular ectopic beats, fusing normal and ventricular ectopic
beats, and normal beats. For each type, 100 beats are collected
and combined together as a multi-channel signal to verify the
energy convergence efficiency. Fig. 4 shows that, for ECG
signals, the MAFD keeps the fast energy convergence. Within
the first 20 decomposition levels, the REEs converge to small

Fig. 4. Relative energy error of the MAFD for real ECG signals.

values. Fig. 5 compares the original signals and the reconstructed
signals, which shows that the absolute errors between them
already become very small at the 20th decomposition level.

C. Joint Time-Frequency Distribution

The joint time-frequency representation performance is evalu-
ated by sets of sinusoidal signals, and is quantitatively measured
by the localization power ratio. The localization power ratio is
also used in previous studies, such as [3] and [38], and is defined
as

B =

∫ ∫
(t,ω)∈W |TFD(t, ω)| dtdω∫ ∫
(t,ω)/∈W |TFD(t, ω)| dtdω , (42)

where W is the focused time-frequency window. The proposed
MAFD is compared with the multivariate pseudo Wigner distri-
bution (MPWD) introduced in [3], the MNCMD, the MVMD,
the MEMD, the MSWT, and the MFDM. The performance is
evaluated under different signal-to-noise ratios (SNRs). In each
noise level, 30 independent simulation trials are carried out to
avoid the influences of the stochastic process.
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Fig. 5. Comparisons of the original ECG signals and the signals reconstructed by the MAFD at the 20th decomposition level. (a) First 3 supraventricular ectopic
beats. (b) First 3 ventricular ectopic beats. (c) First 3 fusing normal and ventricular ectopic beats. (d) First 3 normal beats.

Fig. 6. Comparisons of the localization power ratio between the MAFD, the MNCMD, the MVMD, the MEMD, the MSWT, the MPWD and the MFDM for
simple sinusoidal oscillations under different noise levels. (a) Frequencies of sinusoidal signals are 10 and 11 Hz. (b) Frequencies of sinusoidal signals are 40
and 41 Hz. (c) Frequencies of sinusoidal signals are 100 and 101 Hz. The dot points and the shadow areas show the averaged localization power ratios and the
corresponding 95% confidence intervals.

First, a simple case of two-channel sinusoidal oscillations is
considered. This two-channel signal is defined as

x(t) =

[
sin(2πft) + n1(t)

sin(2π(f + 1)t) + n2(t)

]
, (43)

where nc denotes the additive Gaussian white noise of the c-th
channel, and f is set as 10, 40, and 100 Hz in this study.
Fig. 6 shows that the proposed MAFD can provide the best
time-frequency localization performance, especially for high
noise levels (low SNRs). Moreover, as the SNRs increase,
the localization power ratios of most methods also increase.
Compared with most empirical decomposition methods, such as
the MNCMD and the MEMD, the non-empirical decomposition
methods, i.e., the proposed MAFD, the MSWT and the MPWD,
behaves relative stable.

Then a more complex case is considered, in which the two-
channel signal is constructed by the AM and the FM and cor-
rupted with the Gaussian white noise, which is defined as

x(t) =

[
(1 + 0.5 cos(2πt)) cos(40πt) + n1(t)
cos (20πt+ 3.5 cos(2πt)) + n2(t)

]
. (44)

Owing to the fast energy convergence, the MAFD can provide
sparse time-frequency representations, which can be observed
in Fig. 7. Moreover, Fig. 8 illustrates the comparisons of the
localization power ratios between the proposed MAFD, the
MNCMD, the MVMD, the MEMD, the MSWT, the MPWD,
and the MFDM. As the noise power decreases, the performances

of most methods increase. The proposed MAFD can provide
the best performance in most cases. For low noise levels (high
SNRs), since the effect of noise for the time-frequency analysis
is small, the proposed MAFD, the MNCMD and the MVMD
have the similar performance.

D. Examples of Real-World Applications

This section shows the potential performance of the proposed
MAFD in real-world applications that are related to the elec-
troencephalography (EEG) signals. EEG signals monitor the
electrical activity of the brain and typically collected from multi-
electrodes. EEG signals in multiple electrodes are normally
time-varying signals and are supposed to record the same brain
activity through different channels. Recently, the EEG-based
brain computer interface (BCI) provides participants an effective
way to communicate with the external environment without any
peripheral nerves and muscles involved. Therefore, the analysis
of EEG signals has gained increasing attention, especially for
SSVEP signals [39], [40]. EEG signals in this study are from
the SSVEP tasks in the BMI dataset [41]. This dataset contains
54 subjects’ SSVEP signals. These signals are collected from
10 electrodes of the occipital region (P-7/3/z/4/8, PO-9/10, and
O-1/z/2) in 200 trials of 2 sessions, i.e., the offline training phase
and online test phase. Each trial data contains 4-second SSVEP
signals. Signals are recorded with a sampling rate of 1000 Hz
and down-sampled to 200 Hz. In the SSVEP experiments, four
target SSVEP stimuli are designed to flicker at 5.45, 6.67, 8.57,
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Fig. 7. Joint time-frequency representations of the proposed MAFD and the MSWT for the multi-channel signal combined with the AM and FM signals
corrupted with the Gaussian white noise. Figures in the left side show the joint time-frequency representation of the MAFD. Figures in the right side show the joint
time-frequency representation of the MSWT. (a) The input SNR is 0 dB. (b) The input SNR is 5 dB. (c) The input SNR is 10 dB.

Fig. 8. Comparison of the localization power ratios between the MAFD, the
MNCMD, the MVMD, the MEMD, the MSWT, the MPWD and the MFDM
for the AM and FM signals under different noise levels. The dot points and the
shadow areas show the averaged localization power ratios and the corresponding
95% confidence intervals.

and 12 Hz. Each stimulus is presented in 25 trials of each
phases. The detailed information on these signals is available
in [41]. In previous studies [21], [22], [24], [42], owing to the
fast energy convergence of the AFD, the AFD performs well
in the signal compression and denoising of the single-channel

signals. The following examples are to verify the signal com-
pression and denoising performances of the proposed MAFD.
Note that these examples do not focus on proposing novel
compression or denoising schemes, and thus only follow the
fundamental compression and denoising schemes shown in [22]
and [43].

1) EEG Signal Compression: The proposed MAFD is com-
pared with the MWT shown in [2]. In the comparisons, we
select coefficients of first several decomposition components as
compressed data. The number of decomposition components
is controlled to make the REE smaller than 0.1. Under this
condition, Fig. 9 as an example shows that the MAFD and
the MWT both can reconstruct the original signal with very
small error. The compression efficiency is measured by the
compression ratio (CR), which is defined as CR = bin

bout
where

bin and bout are the numbers of values in the original data and
the compressed data respectively. Fig. 10 compares the CRs of
the proposed MAFD and the MWT for 54 subjects individually
and cumulatively. Due to individual differences, the CRs are
not exactly the same for all subjects. In this comparison, the
proposed method can always provide better CRs.

2) EEG Signal Classification: The proposed MAFD is com-
pared with the independent component analysis (ICA). The ICA
is a conventional blind source separation method and has shown
good denoising performance for EEG signals [43], [44]. The
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Fig. 9. Comparisons between the original EEG signal at Oz channel and the corresponding reconstructed signals. (a) Reconstructed signal of the MAFD. (b)
Reconstructed signal of the MSWT.

Fig. 10. Comparisons between compression ratios of the MAFD and the MWT. (a) Individual comparisons. (b) Cumulative comparisons of all subjects. The
heights of bars show the averaged compression ratios. The vertical error bars denote the corresponding 95% confidence intervals.

Fig. 11. Comparisons between SSVEP classification accuracies with the MAFD-based denoising, with the ICA-based denoising, and without denoising. (a)
SSVEP classification accuracies of the offline training phase. (b) SSVEP classification accuracies of the online test phase. The dot points and the shadow areas
show the averaged classification accuracies and the corresponding 95% confidence intervals.

denoising performance is evaluated by the classification ac-
curacy (CA) defined as CA = ncorr

ntotal
where ncorr and ntotal are

numbers of correct and total trials respectively. The standard
canonical correlation analysis (CCA)-based SSVEP classifica-
tion method is applied to categorize SSVEP signals [41], [45].
Fig. 11 shows the comparisons of the CA under different window
lengths. Compared to the ICA, the proposed method can provide
better CAs, especially for the small time window lengths, i.e.,
0.2 s, 0.3 s, 0.4 s, and 0.5 s. In these time window lengths,
Bonferroni corrected t-test results indicate that the CCA with
the MAFD performs significantly better than the CCA with the
ICA (all p-values are smaller than 0.001).

V. DISCUSSION

A. Comparisons of Basis Components

Unlike the single channel AFD, the MAFD generates common
basis components for all channels. In each decomposition level,
the single channel AFD searches the basis components by only
considering the energy distribution of the single channel signal.
However, the MAFD considers the energy distribution of signals
in all channels. Fig. 12 shows the energy distributions of the
synthetic multi-channel signal applied in Section IV-A. When
the energy distributions of different channels are different as
shown in Fig. 12(b) and (c), the basis components obtained
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Fig. 12. E{Bn}(a) distributions of the synthetic multi-channel signal defined in Section IV-A at n = 1. (a) E{Bn} of the MAFD. (b) E{Bn} of the single
channel AFD for the first channel. (c) E{Bn} of the single channel AFD for the second channel.

Fig. 13. Inner functions obtained from the MAFD and the single channel unwinding AFD for the synthetic multi-channel signal defined in Section IV-A at n = 1.
(a) Inner function obtained from the first channel signal. (b) Inner function obtained from the second channel signal.

from the single channel AFD will also be different as shown
in Fig. 1. In addition, since the energy distribution of the whole
multi-channel signal is similar to the energy distribution of the
first channel signal as shown in Fig. 12(a) and (b), the basis
components obtained by the MAFD are also similar to the basis
components obtained by the single channel AFD for the first
channel signal as shown in Fig. 1.

The above simulations are all based on the proposed imple-
mentation of the MAFD illustrated in Algorithm 1. There are
two important notices for the searching process of the inner
functions. First, although we assume that signals in different
channels have common inner functions to propose the multi-
channel unwinding AFD, multi-channel signals that satisfy such
assumption are very rare. Most multi-channel signals that do
not satisfy the assumption of the multi-channel unwinding AFD
should be analyzed by the multi-channel core AFD. Therefore, in
the proposed implementation of the MAFD, the inner functions
will not be applied to construct the basis components when the
common inner function cannot be found. Second, as mentioned
in Section III-B, the parameters of inner functions should sat-
isfy (25) but they are estimated by (27) in practice. Although
rn,h estimated by (27) can achieve |〈Gc,n, 1

1−rn,hejt
〉| < ε ∀ c ∈

{1, . . . , C}, there may be little differences between the esti-
mated solutions and the real solutions of (25). Fig. 13 shows
the inner functions obtained from the MAFD and the single
channel unwinding AFD for the synthetic multi-channel signal
applied in Section IV-A at the first decomposition level. The
inner functions searched by the single channel unwinding AFD
can be considered as the real inner functions of the single channel
signals. It can be seen that, the second channel signal do not
have the inner function but the MAFD still provide the common

inner function, which is due to the mentioned estimation error.
In this situation, the decomposition based on the common basis
components provided by the MAFD is not exactly factorization
for the second channel signal. Although there is the estimated
error, the estimated solutions still can achieve Gc,n(rn,h) ≈
0 ∀ c ∈ {1, . . . , C}. Therefore, such small estimated error does
not affect the fast energy convergence as illustrated in Fig. 3,
and thus is acceptable.

B. Computation Complexity

As mentioned in Section III, the objective functions of search-
ing the basis parameter are reformulated and computed by the
FFT for discrete signals. Such modifications can improve the
computational efficiency by reducing the computation complex-
ity of searching basis parameters, which is analyzed in this
section. The computation complexity of the basis searching
process is related to the total number of channels C, the total
number of sampling points K, and the number of magnitude
values M in the discrete searching dictionary. Suppose that the
phase values in the searching dictionary follow the sampling
time, then the number of phase values in the searching dictionary
is also K.

First, before searching the basis parameters, all evaluators
need to be generated. For the original objective function ex-
tended from the continuous MAFD and shown in (15), all
evaluators em,l[k] of m ∈ [1, . . . ,M ], l ∈ [1, . . . ,K], and k ∈
[1, . . . ,K] need to be computed, which requires O(MK2)
computation steps. After the modification as shown in (18),
only evaluators at one phase value are required. The compu-
tation complexity of generating evaluators em,1[l] is reduced
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TABLE III
COMPUTATIONAL TIMES (IN SECONDS) OF DIFFERENT NUMBER OF AMPLITUDE

VALUES IN SEARCHING DICTIONARIES (C = 4 AND K = 300)

TABLE IV
AVERAGED COMPUTATIONAL TIMES (IN SECONDS) OF DIFFERENT CHANNEL

NUMBERS (K = 300 AND M = 48)

to O(MK). Then, in each decomposition level, the objective
function values need to be computed. For the original objective
function extended from the continuous MAFD, the number
of objective function values in each channel is same as the
number of evaluators. Therefore, O(CMK2) is required for
computing objective function values. After the modification,
the objective function values can be calculated by the FFT and
the inverse FFT, which reduces the computation complexity to
O(CMK(2 log2K + 1)) in each decomposition level. Based
on the above analysis, the computation complexity of the discrete
MAFD based on the modified objective function is lower than
that based on the original objective function extended from the
continuous MAFD.

To quantitatively compare the computational efficiency, the
computational times of different methods are measured. As men-
tioned in above analysis, the channel number, sampling number
in each channel and the sizes of the searching dictionaries have
large effects on the computational efficiency of the MAFD. For
each simulation, 30 independent trials are carried out to avoid the
influences of the stochastic effects. Then, computational times
of 30 trials are averaged. The sizes of the searching dictionaries
in the AFD and the MAFD are determined by M . The effects
of M are shown in Table III where the computational times of
the MAFD before the FFT based modification (original MAFD)
and the MAFD after the FFT based modification (FFT-MAFD)
as well as the conventional AFD before the FFT based modifi-
cation (original AFD) and the conventional AFD after the FFT
based modification (FFT-AFD) are compared. The effects of the
channel number C and the sampling number per channel K are
illustrated in Tables IV and V where the proposed MAFD is
compared with the conventional AFD, the MEMD, the MVMD,
the MNCMD, and the MFDM. All implementations are carried
in MATLAB R2019a with an Intel Xeon Gold 6128 processor

TABLE V
COMPUTATIONAL TIMES (IN SECONDS) OF DIFFERENT SAMPLING NUMBER PER

CHANNEL (C = 4 AND M = 48)

@ 3.40 GHz. Observe that, for the MAFD and the AFD, the
modifications based on the FFT can significantly reduce the
computational times. As the sizes in the searching dictionaries,
the channel number and the sampling number increase, the
reduction effects of the FFT based modifications become more
significant, which matches the above analysis of the computation
complexities. When applying the AFD channel by channel,
the searching dictionaries and the evaluators are required to
be generated for each channel respectively, which makes the
computational times of the AFD larger than the computational
times of the MAFD in most cases, especially for large channel
numbers. Compared with other multivariate adaptive methods
including the MVMD, the MEMD, the MNCMD, and the
MFDM, although the FFT based modifications can make the
computational times of the MAFD become similar with or even
lower than others, the MAFD still cannot provide the significant
benefit on the computational efficiency. Moreover, when the
numbers of points in the searching dictionaries, the channel num-
ber and the sampling number increase, there are large increments
of the required computing resources and computational times
for the MAFD. For example, as illustrated in Table V, when
the sampling number is increased to 1200, the MAFD becomes
slower than the MEMD and the MVMD. However, the MAFD
has several benefits that empirical decomposition methods do not
contain, which is discussed in Section V-C. Compared with the
non-adaptive decomposition method, i.e., the MWT, although
the MAFD is much slower, the MAFD has many advantages,
such as the adaptive basis and the fast energy convergence, and
thus can provide better performance on analyzing nonlinear and
non-stationary signals.

C. Comparison With Empirical Decomposition Methods

In Sections IV and V-B, the proposed MAFD are compared
with several novel multivariate empirical decomposition meth-
ods including the MNCMD, the MVMD, the MEMD and the
MFDM. The decomposition processes of the proposed MAFD
and these empirical decomposition methods are all data-driven
and thus can achieve adaptive to the processed signals. However,
compared with these empirical decomposition methods, the
MAFD has several advantages.

Firstly, the MAFD is extended from the AFD and has the rig-
orous mathematical foundation. Therefore, the decomposition
components provided by the MAFD have the explicit mathe-
matical expression. This characteristic of the MAFD ensures the

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on April 20,2023 at 07:36:53 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: ADAPTIVE FOURIER DECOMPOSITION FOR MULTI-CHANNEL SIGNAL ANALYSIS 917

stable decomposition process and can provide the mathematical
support for further interpreting and analyzing decomposition
components [34]. As illustrated in Fig. 6 and Fig. 8, when the
noise levels decrease, the localization power ratios are expected
to increase, which is also satisfied by the proposed MAFD.
However, in some cases, the performances of the MNCMD
and the MEMD do not follow this rule, which is hard to be
explained. Secondly, the basis components of the MAFD are
the modified Blaschke products that have several good char-
acteristics, which is hard to be achieved in empirical decom-
position methods [29]: i) The components in different decom-
position levels are orthogonal, which avoids the mode-mixing
problem in the mathematical theorem; ii) The decomposition
components only contain non-negative phase derivatives, which
leads the meaningful instantaneous frequency analysis. Thirdly,
compared with the MVMD and the MNCMD, the number of
required decomposition parameters in the MAFD is less. The
key optimization problems in the MVMD and the MNCMD
are based on the augmented Lagrangian functions in which the
penalty parameters have large affects on the decomposition re-
sults and are normally hard to determined. The proposed MAFD
only needs the searching dictionaries of the basis parameters as
shown in Algorithm 1. For general signals, how to generate such
searching dictionaries have been discussed in Sections III-A and
III-B.

Although there are several advantages of the MAFD, the
proposed MAFD cannot totally replace the empirical decompo-
sition methods. The proposed MAFD and the empirical methods
belong two different categories. The decomposition processes
of the empirical methods are directly fully derived from the
processed signals and are not limited by basis. As illustrated in
Fig. 3, Fig. 8 and comparisons of computational times in Sec-
tion V-B, the empirical methods can provide faster computation,
faster energy convergence or better time-frequency localization
performance in some cases. Therefore, suppose the processed
signals need to be divided into several empirical modes without
further mathematical analysis, empirical methods can provide
good performance. However, for some applications that requires
the signal modeling and/or detailed mathematical interpretation
of decomposition results, the proposed MAFD would be the
good choice.

VI. CONCLUSION

We propose the MAFD, including the multi-channel core
AFD and the multi-channel unwinding AFD. Compared to
the conventional AFD and the conventional multi-channel sig-
nal decomposition methods, the MAFD applies the common
basis components to decompose all channel signals and thus
achieve the alignment of common or joint frequency components
across channels in one decomposition level. Meanwhile, being
a generic extension of the AFD, the proposed MAFD inherits
all advantages and flaws of the original AFD.

The advantages of the AFD, i.e. the adaptive basis and the fast
energy convergence as well as decomposition components that
only have non-negative phase derivatives and non-overlapping
frequencies across decomposition levels, are maintained in the
proposed MAFD. The proposed joint TTFD also inherits good
mathematical properties of the conventional TTFD. Owing to
the mode-alignment property of the MAFD and advantages in-
herited from the AFD, simulations in this study show promising
results in real world examples.

Some challenges of applying the original AFD in real applica-
tions are also observed in the proposed MAFD: i) Although the
FFT based modifications can improve the computational effi-
ciency, the computational times are still long when the numbers
of total sampling points and points in the searching dictionaries
are large; ii) The physical meaning of basis parameters has not
been fully explored; iii) When the decomposition level is finite,
there is the problem of dealing with low-energy components.
Since the studies and the applications of the MAFD are still
at their infancy, as more deep studies of the AFD and the
MAFD, novel solutions to these shortcomings are expected. For
specific applications, detailed studies focusing on combining
characteristics of both processed signals and basis components
to regular the selection region of the basis parameters would
further improve the performance of the MAFD.
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