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A common type problem of optimization is to find simultaneously n parameters
that globally minimize an objective function of n variables. Such problems are
seen in signal and image processing and in various applications of mathematical
analysis of several complex variables and Clifford algebras. Objective functions
are usually assumed to be Lipschitzian with maybe unknown Lipschitz con-
stants. A number of methods have been established to discard the sets called
“bad sets” in a partition that is impossible to contain any optimal point, as well as
to treat the unknown Lipschitz bound problem along with the algorithm. In the
present paper, a simple criterion of eliminating bad sets is proposed for the first
time. The elimination method leads to a concise and rigorous proof of conver-
gence. The algorithm, on the range space side, converges to the global minimum
with an exponential rate, while on the domain space side, converges with equal
accuracy to the set of all the global minimizers. To treat the unknown Lips-
chitz constant dilemma, we propose a practical pseudo-Lipshitz bound process.
The methodology is of fundamental nature with straightforward mathematical
formulation applicable to multivariate objective functions defined on any com-
pactly connected manifolds in higher dimensions. The method is tested against
an extensive number of benchmark functions in the literature. The experimental
results exhibit considerable effectiveness and applicability of the algorithm.
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1 INTRODUCTION

The objective functions that we study in this work are of the form 𝑓 (x), where 𝑓 is a real-valued Lipschitz continuous
function with the variables x = (x1, · · · , xn) ranging in a connected compact (bounded and closed) set C of a real- or
complex- n-dimensional Euclidean space. Precisely, the function is required to satisfy the Lipschitz condition: There exists

The first author invented the theory. The second author, being considered to give equal contribution to the paper, realized the algorithm and conducted
the enormous experimental examples.
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QIAN ET AL.

a constant L such that |𝑓 (x + Δx) − 𝑓 (x)||Δx| ≤ L. (1)

We call the difference quotient quantity on the left-hand side of (1) as relative variation, and L a Lipschitz bound of 𝑓 .
The infimum of the Lipschitz bounds L is denoted by L0 and called the Lipschitz constant of 𝑓 . There hold the relations

L0 =min{L ∶ L is an upper bound of the relative variations}

= sup
{|𝑓 (x + Δx) − 𝑓 (x)||Δx| ∶ x, x + Δx ∈ C,Δx ≠ 0

}
.

A point x∗ is said to be a global minimizer of the function 𝑓 (x) defined on C, if x∗ ∈ C and 𝑓 (x∗) ≤ 𝑓 (x) for all x ∈ C. In such
case,𝑓 (x∗) is called the global minimum of𝑓 on C and denoted as𝑓min. In below we denote v = 𝑓min. Lipschitzian functions
are surely continuous but may not be differentiable. In this study, in addition to satisfying the Lipschitz condition, no
other global information about the problem (such as Lipschitz constant, gradient, and convexity) is needed.

The proposed algorithm is inspired partially by our continuing study on the open problem of finding best n kernel
approximation in certain reproducing kernel Hilbert spaces,1–3 and partially by the granular computing idea in artificial
intelligence.4–6 It is thus named as granular sieving (GrS) algorithm. It is seen that the type of optimization problems for
objective functions defined on open or even unbounded open sets can possibly adopt our GrS algorithm or some existing
Lipschitz global optimization algorithms if the boundary values are well controlled.

The related study on Lipschitz bounds shows that when L1 is less than the Lipschitz constant, L0, accuracy of the
solution increases as L1 approaches the Lipschitz constant from below. On the other hand, when L1 is greater than the
Lipschitz constant, the computational efficiency increases as L1 approaches the Lipschitz constant from above. In applica-
tions, one seeks for Lipschitz bounds L that are close to their infimum value L0 (close Lipschitz bounds). Seeking for close
Lipschitz bounds can be independent research, it is, however, often associated with the algorithm in use.7–9 To realize
the GrS algorithm with unknown Lipschitz constant one can adopts the existing methods for estimating close Lipschitz
bounds, which is mostly adequate for the algorithm. This includes, for instance, at the beginning of the algorithm, esti-
mating close Lipschitz bounds in the whole domain.10,11 In the literature, it is more common and more effective if one
adaptively re-estimates it during the search at each iteration.12–14 As examples, the DIRECT method15 and the GOSH7

method use, at each iteration, several estimates of the Lipschitz constant simultaneously. The proposed GrS can also do
the re-estimating along with its iterative progress. On top of the commonly used methods, in this study, we incorporate
what we called pseudo-Lipschitz process. The particular feature of the method is: Along with finding the optimization
solution, it judges whether a constant L1 is a suitable replacement of L0 in the algorithm. One also keeps in mind that in
the differentiable case the global minimum normally occurs at points with locally small Lipschitz bounds.

Here is a short description of the pseudo-Lipschitz bound process as part of our algorithm when the Lipschitz is
unknown. The proposed process is based on the following result (see Theorem 2): Any positive number L1 one attempts
to replace the Lipschitz constant L0 in the algorithm guaranteed by Theorem 1 can lead to a solution. The algorithm, as
a matter of fact, does not require L1 to be a true bound of the relative variations of the objective function. It is shown that
for any L1 > 0 the GrS algorithm converges; and if L1 < L2, then vL1 ( 𝑓 ) ≥ vL2 ( 𝑓 ), where vL1 ( 𝑓 ) denotes the resulted
pseudo-global minimum of 𝑓 by using L1 as a replacement of L0 (a pseudo-Lipschitz bound) in the algorithm. A constant L1
that gives rise to the right global minimum is said to be a suitable pseudo-Lipschitz bound. Based on these results the stabil-
ity given by vL1 ( 𝑓 ) = vL2 (𝑓 ) is a necessary condition, and thus an indication of suitability of L1. To summarize, besides the
theoretical brevity and clarity, uniformness for dimensions and shapes of domains, and uniform fast convergence to the
global minimum, GrS is incorporated with a pseudo-process to solve the unknown Lipschitz constant black-box problem.

In the application aspect, the authors were motivated by the classical problem of best rational approximation to func-
tions in the Hardy space of the unit disc D by using rational functions of degrees not exceeding n, and generalizations to
various types of analytical reproducing kernel Hilbert spaces. In particular, this topic recently has been extended to Clif-
ford algebra. n-best parameters selection has deep and wide connections to the current learning theory used to signal and
image processing, to system identification, as well as to numerical solutions of ordinary and partial differential solutions.
In many cases, including the weighted Bergman and the weighted Hardy spaces, existence of n-kernel best approxima-
tion has been proved. In contrast, however, an algorithm to ultimately find a practical best set of n parameters even in the
Hardy space case has yet been remained as an open problem. The analytical methods recently developed in Wang and
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QIAN ET AL.

Qian16 now can help to reduce the n best rational problem originally posted in the open unit disc D to a compact disc inside
D and thus to solve the algorithm problem by means of the introduced GrS method. This will be our forthcoming work.

The paper is structured as follows. In Section 2, the GrS algorithm is introduced and the convergence of the algorithm
is proved. Multiple estimation process in relation to pseudo-Lipschitz bounds is presented in Section 3. Numerical
experiments and results analysis are described in Sections 4 and 5. Conclusions are drawn in Section 6.

2 LITERATURE REVIEW

A great amount of literature have devoted to the Lipschitzian global optimization problems.7,9,11,15,17–28

The common idea is to use different partition strategies to eliminate, based on certain criteria, the “bad” sets in each
of a sequence carefully designed partitions of the domain, or the corresponding remaining parts of the domain, in which
there is no possibility to have global minimizers. In the eliminating process what are left, the “good” sets, are for further
analysis to extract out the minimizers.

We recall that Lera and Sergeyev recently carried out an interesting study of Lipschitz global optimization that is
based on the abstract and classical mathematical object Peano space-filling curves.7 The study effectively reduces the
higher dimensional problems to the one-dimensional ones, but with the cost of reduction of the Lipschitz continuity
(with unknown Lipschitz constant) to one of the Hölder type continuities (with unknown Hölder constant as well),
which is caused from the fractal nature of the space-filling curves. It is noted that the Hölder continuity does not imply
boundedness of gradients when differentiable.

In particular, Al-Dujaili et al. under their bound-constrained black-box global optimization (BCBBGOP) formulation
proposed MSO (Multi-scale optimization) scheme dividing the similar problems into two groups of which one depends
on precise information of smoothness of the objective function, including for example, LO, DOO, and the other does not
require precise information of the smoothness, including DIRECT, MCS, SOO, etc. In the BCBBGOP dividing, the pro-
posed GrS algorithm falls into the second category. The GrS algorithm, however, has the character that the bad and good
sets are justified by a single and yet simple inequality criterion and, as a result, leads to a half-page concise and rigorous
mathematical proof for the convergence, being applicable to any connected compact set as domain of the objective func-
tion. The proof in particular indicates that the kth level good sets converge to the entire solution set, and the evaluations
of the points in the kth level good sets are all within an error, to the global minimum, less than C𝛿k for some 𝛿 ∈ (0, 1∕2].

3 THE GRS ALGORITHM

We will be working with a real-valued continuous objective function with real variables. For complex variables the the-
ory and algorithm are similar. Let C, being the domain of the objective function under study, be a compact (closed and
bounded) path-wise connected set in the Euclidean space Rn. The algorithm will construct a decreasing sequence of com-
pact sets C = C1 ⊃ · · · ⊃ Ck ⊃ · · · in the domain C of the objective function with the following properties. For each
k = 1, · · ·, one constructs a partition of Ck, Nk = {C(k)

l ∶ l = 1, · · · , lk}, such that Ck = ∪lk
l=1C(k)

l . For each fixed k the
pairs (k, l), l = 1, · · · , lk, and no others, are called k-admissible sets, or just admissible sets, in brief. The sets C(k)

l satisfy the
following conditions:

(i) When k grows larger, Nk becomes finer in the sense that a set C(k+1)
l′ is either entirely contained in C(k)

l or has empty
overlap with the interior of C(k)

l .
(ii) The maximal diameter of C(k)

l , l = 1, · · · , lk, denoted as 𝛿k, tends to zero along with k → ∞. The diameter is defined
as the maximal distance between any two points in the set.

(iii) Each set C(k)
l is compact whose boundary can have non-empty overlap with the boundaries of the other C(k′)

l′ .
(iv) Along with the construction we name in each C(k)

l a representative point x(k)l . When C(k)
l is geometrically symmetric

we may select x(k)l as the geometrical center of C(k)
l . For this reason we, in below, call x(k)l as “center” of C(k)

l , although
they are not necessarily the centers, but only representative points of C(k)

l .

We will be using mappings between sets defined as

𝑓 (A) = {b ∈ R ∶ ∃a ∈ A, b = 𝑓 (a)}, A ⊂ C,
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QIAN ET AL.

where R stands for the set of real numbers.
As a fundamental result of a continuous function defined in a compact set, there exists a non-empty compact set C̃ on

which the function takes the global minimum v, that is𝑓 (C̃) = {v}. The purpose of the algorithm is to inductively construct
the set Ck+1 through some sets in the partitionNk = {C(k)

l ∶ l = 1, · · · , lk} of Ck, and to realize C̃ = ∩∞
k=1Ck, and 𝑓 (C̃) = {v}.

The proposed GrS algorithm for finding the global minimum v and at the same time all the global minimizers is given
below: For each fixed level k the set Ck is expressible by the sets in its partition: Ck = ∪lk

l=1C(k)
l ,C(k)

l ∈ Nk, l = 1, · · · , lk. For
the fixed k, exam all the function values at the center points x(k)l of the k-level sets C(k)

l , and select the minimum one among
the function values 𝑓 (x(k)l ) denoted by vk. If a center x(k)l′ satisfies the relation 𝑓 (x(k)l′ ) > vk, we can determine by using the
Lipschitz condition whether there would be some function values 𝑓 (x), x ∈ C(k)

l′ , that can possibly be equal to, or below
vk. The k-level sets C(k)

l′ that are of such possibility will be called “good sets.” If there are no function values that could be
equal to or below the value vk, then we simply delete the whole set C(k)

l′ . The deleted sets C(k)
l′ are referred as “bad sets.”

The union of the “good sets” is defined to be our next generation set Ck+1. The algorithm consists of iteration of the above
sorting process that forms Ck+1 as union of the good subsets in Nk of the partition of Ck. Figure 1 shows, as an example,
the first three consecutive partitions of a two-dimensional function. Figure 1A shows the first partition, and Figure 1B,C
illustrates that only those classified as “good sets” are collected and further partitioned, expressed as the light-blue boxes
in Figure 1B and the dark-blue boxes in Figure 1C. Finally one takes ∩∞

k=1Ck, which is non-empty giving rise to the global
minimum v. Below is a more detailed explanation of the algorithm.

Carrying out the above mentioned sorting at the level k = 1 is based on constructing a partition N1 of C = C1. The
partition should be fine enough so that the maximal diameter 𝛿1 of all C(1)

l makes the quantity 𝛿1L0 strictly smaller than
the largest possible variation of the function values 𝑓 (x(1)l ) from their minimum value v1, where

v1 = min{𝑓 (x(1)l ) ∶ l = 1, · · · , l1}. (2)

We divide the sets in the C1-partition N1 into two non-overlap subclasses: N1 = B1 ∪G1.
The subclass B1, as the collection of the “bad” sets, consists of the sets C(1)

l whose centers x(1)l satisfy

𝑓 (x(1)l ) > v1 + 𝛿1L0. (3)

Notice that for any C(1)
l the quantity 𝛿1L0 is the greatest possible variation of the function values in the set C(1)

l from its
center. The inequality (3) sorts out those C(1)

l in which any function value cannot reach the minimum level v1, let alone
below it. The corresponding set C(1)

l then should be deleted. If no sets are classified into B1, it means that the partition N1
is not fine enough, or 𝛿1 is not fine enough.

The subclass G1, as the collection of the “good” sets, consists of those C(1)
l whose centers x(1)l satisfy the opposite

inequality
𝑓 (x(1)l ) ≤ v1 + 𝛿1L0. (4)

FIGURE 1 An example of the first
three consecutive partition processes of
a two-dimensional function. The black
dots represent the centers of the boxes
[Colour figure can be viewed at
wileyonlinelibrary.com]
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QIAN ET AL.

If a set C(1)
l belongs to the collection G1, due to the inequality (4), one cannot exclude the possibility that some function

values of x ∈ C(1)
l can possibly reach or even below the minimum vk. Those sets C(1)

l should be kept and further analyzed.
We eliminate all the sets in the subclass B1 of the bad sets and union those in the subclass G1 of the good sets. Define

C2 = ∪{C(1)
l ∶ C(1)

l ∈ G1}, and construct a partition N2 of C2 finer than what is inherited from N1.
With a suitable partition N2,C2 = ∪l2

l=1C(2)
l . Let 𝛿2 be the maximal diameter of the subsets in the partition N2. We define

v2 = min{𝑓 (x(2)l ) ∶ l = 1, · · · , l2}. (5)

Using the criteria
𝑓 (x(2)l ) > v2 + 𝛿2L0 (6)

and
𝑓 (x(2)l ) ≤ v2 + 𝛿2L0 (7)

we divide the sets C(2)
l in the partition N2 into a bad set subclass B2 and a good set subclass G2, respectively. Eliminate

all the bad sets C(2)
l whose centers satisfying the inequality (6) and keep all the good sets as the collection G2. Define

C3 = ∪{C(2)
l ∶ C(2)

l ∈ G2} and construct N3 as a finer partition of C3, and so on. Figure 2 shows the granular sieving
process of a one-dimensional function at the kth and(k + 1)th partition levels.

Repeating this process inductively with Ck+1 = ∪C(k)
l ∈Gk

C(k)
l and making use the condition 𝛿k → 0, one has

Theorem 1. ∩∞
k=1Ck = C̃ ≠ ∅, and 𝑓 (C̃) = {v}.

Proof of Theorem 1. We note that for each k, the set C(k)
l ∈ Gk if and only if

𝑓 (x(k)l ) ≤ vk + 𝛿kL0. (8)

FIGURE 2 Demonstration diagram of
the granular sieving process of a
one-dimensional function at the kth and
(k + 1)th partition levels. On the x axis,
the gray dots are centers of the granule
sets in the partition sets. The yellow and
black intervals and function graphs
represent, respectively, the “good” and
“bad” sets in the domain and the
corresponding function values. The red
and blue diamonds represent the
function values of the partition centers
of the “good” and “bad” sets,
respectively. The “good sets” are those
with partition centers below the red
dotted line, while the “bad sets” are
those with partition centers above the
red dotted line [Colour figure can be
viewed at wileyonlinelibrary.com]
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QIAN ET AL.

We also have,

|𝑓 (x) − 𝑓 (x(k)l )| ≤ 𝛿kL0. (9)
They imply

𝑓 (C(k)
l ) ⊂ [vk − 𝛿kL0, vk + 2𝛿kL0] = IL0

k .

Therefore,

𝑓 (Ck+1) = 𝑓 (∪C(k)
l ∈Gk

C(k)
l ) = ∪lk

l=1𝑓 (C
(k)
l ) ⊂ IL0

k .

There holds
𝑓 (∩∞

k=1Ck+1) = ∩∞
k=1𝑓 (Ck+1) ⊂ ∩∞

k=1IL0
k .

Since the compact sets sequence C2 ⊃ C3 ⊃ · · ·Ck+1 ⊃ · · · has the finite-non-empty-intersection property, C ⊃ C̃ =
∩∞

k=1Ck+1 ≠ ∅.29 On the other hand, v ∈ IL0
k for each k, and |IL0

k | = 3𝛿kL0 → 0, we have {v} = ∩∞
k=1IL0

k . Therefore,

𝑓 (C̃) = {v}.

The proof is complete.

4 MULTIPLE ESTIMATION PROCESS UNDER PSEUDO-LIPSCHITZ
BOUNDS

The above process requires the partitions N1,N2, · · · ,Nk, · · · to satisfy that for each k both the inequalities

𝑓 (x(k)l ) − vk ≤ 𝛿kL0 and 𝑓 (x(k)l ) − vk > 𝛿kL0 (10)

have solutions for some l = 1, · · · , lk. Analytically, this requires 𝛿k to satisfy

Ak < 𝛿k < Bk, (11)

where

Ak =
min{𝑓 (x(k)l ) − vk ∶ l = 1, · · · , lk}

L0
and

Bk =
max{𝑓 (x(k)l ) − vk ∶ l = 1, · · · , lk}

L0
.

When 𝛿k satisfies (11) and is small so to get close to Ak one has more bad sets to delete and less good sets to keep. In such
case in the k-iteration step, the positions of the global minimizers are more accurately located, but as compensation, the
algorithm has a greater computational cost. When 𝛿k is large so to get close to Bk, one has more good sets to keep and less
bad sets to delete. In such case at the k-iteration step, the global minimizers are not so well located, but the computation
cost is lower.

As analyzed in the last section, the design of the partition Nk is crucial. A design needs to balance the computation
complexity, the algorithm effectiveness and its efficiency: At each sorting process, one wishes to delete a sufficient amount
of bad sets so to quickly reduce the area of the set containing the minimizers. In practice, for simplicity, we divide the
remaining set Ck, (k > 1) into the same number of equal parts and take 𝛿k to be one proportional to m−k for some integer
m (see the parameter settings in the following section). In this situation, the diameter 𝛿k of the partition sets in the domain
space and the interval |IL0

k | = 3𝛿kL0 of the function values in the range space decrease exponentially.
An important issue to be addressed is related to the values L that are actually used in the algorithm. In the algorithm,

the least upper bound L0 of the bounds of the relative variations is crucial but maybe unknown in the practice. Deter-
mination of the least bound L0, or even any bound L, is a similar problem. This is, in fact, a common problem for all
Lipschitz-constant-dependent algorithms: If the Lipschitz constant is not known, one does not know what L should be
used in the algorithm.
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QIAN ET AL.

This L0-paradox may be solved through a concept called empirical-, or pseudo-L, that we now formulate. We can use
an arbitrary positive number L > 0, not necessarily a bound of the relative variations, to replace L0 in the algorithm
described by Theorem 1. We call such attempted L a pseudo-L. We will show that the algorithm with a pseudo-L, as
substitution of L0, may still be carried on and convergent. The corresponding algorithm is denoted as L that converges
on the domain of 𝑓 side to a set C̃L, called the set of L-pseudo minimizers of 𝑓 ; and a single point vL on the range of 𝑓
side, called the L-pseudo minimum of 𝑓 . The following theorem reveals the dynamic relation between the pseudo-L's and
their corresponding algorithm outcomes.

Theorem 2. (i) For any L > 0, the algorithm L converges to a compact set C̃L and a single value vL such that 𝑓 (C̃L) =
{vL}; and, (ii) If L1 < L2, then vL1 ≥ vL2 . Consequently, if L ≥ L0, then C̃L = C̃L0 = C̃, and 𝑓 (C̃L) = {vL0} = {v}.

Proof of Theorem 2. (i). No matter how large or small L is, the algorithm procedure given in Theorem 1 converges
on the domain side to a non-empty compact set C̃L, and on the range side to a single point vL. In fact, in the
self-explanatory notation, due to the non-empty intersection property of the sequence of the compact sets {CL

k}
∞
k=1,

there holds ∅ ≠ C̃L = ∩∞
k=1CL

k , and

∅ ≠ 𝑓 (C̃L) = 𝑓 (∩∞
k=1CL

k ) ⊂ ∩∞
k=1𝑓 (C

L
k ) ⊂ ∩∞

k=1IL
k .

The set 𝑓 (C̃L) can contain only one point, vL, because

lim
k→∞

|IL
k | = lim

k→∞
3𝛿kL = 0.

(ii). First we note that the results of AL is independent of the partitions in use. Assume L1 < L2. By using the same
partitions at every k-step, with the pseudo-bounds L1,L2, respectively, we throw away the bad sets CL𝑗 ,(k)

l satisfying the
condition

𝑓 (x(k)l ) > vk + 𝛿kL𝑗 , 𝑗 = 1, 2.

Since for 𝑗 = 1 the set CL𝑗 ,(k)
l is easier to satisfy the above inequality, or, in other words, easier to be bad, hence CL1

k+1
collects less sets than CL2

k+1. As a consequence, vL1
k+1 ≥ vL2

k+1. By taking limit k → ∞, we have vL1 ≥ vL2 . The proof is
complete.

On one hand, L0 is difficult to find. On the other hand, L0 is not necessarily to be found. In order to produce the correct
global minimum of the objective function a pseudo-L does not necessarily reach L0. It is easily observed that large relative
variations may not present around the global, or even local, minimizers or maximizers.

To treat the paradox, the GrS algorithm is combined with a pseudo-L scheme involving a finite sequence of pseudo-Li's,
that is L1 < · · · < Ln. The starting L1 and the ending Ln, however, are the art part of the method. L1 in our examples may
be estimated through the first partitions. With concrete problems although gradients are not directly used, their global
bounds may be used to derive a practical bound of the relative variations. Such example include n-best kernel approxi-
mation in reproducing kernel Hilbert spaces (Saitoh and Sawano30 and references therein where the open domain of the
objective function can also be reduced to a compact domain set). The stopping Ln may be decided based on observation
of non-improving of the optimizing result: when the values vLn become stable, one can decide to end the process. Actual
use of pseudo-L's in concrete questions is empirical, crucial, and is the true art part of the algorithm that requires further
and deep studies.

In practice, solving a global optimization problem is a trade-off problem: It is to find balance between accuracy and
cost.22 When employing the same set of consecutive partitions for a larger L, the convergence of L may be slower due to
the fact that at each iteration step a less number of bad sets are thrown away. Larger pseudo-L's result in better accuracy
but rise higher computational costs. Small pseudo-L's on the other hand may not give the right results but have fast
convergence. The executable description of the GrS algorithm is shown in Algorithm 1.
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QIAN ET AL.

5 NUMERICAL EXPERIMENTS

5.1 Benchmark functions
Typical test functions for general optimization problems are provided in the specialized reports by Gavana31 and Jamil
and Yang et al.32 We selected the test functions commonly referenced in the above two reports to ensure that they have
well-defined standards and properties. In total, there are 141 commonly referred test functions. For comparison with other
optimization algorithms, we also tested the top 10 hardness optimization functions reported in Gavana,31 seven of which
are already included in the 141 aforementioned functions. We added three additional functions and resulted in a pool of
144 functions. Of the 144 functions, nine functions are discontinuous (including functions Corana, Csendes, Damavandi,
Helical Valley, Keane, PenHolder, SchmitVetters, Step, and Tripod), and one has inconsistent numbers of variables and
dimensions (function: Cola). Hence, these functions are excluded from our test function pool. We tested all the remaining
134 functions, which cover the characteristics of differentiability, separability, scalability, and modality.

Each of the 134 benchmark functions is defined by a formula in which some are dependent on a dimension parameter
n. By letting n be concrete and different positive integers, we have a pool of more than 134 formulas, each of which we
call a sample formula. The testing is performed on the sample formulas. As to the value of n, we set the following rule:
if the GrS algorithm can find the optimization result in 4000 s, then we consider the sample formula as tested. In our
experiments, the highest dimension parameter of all the tested sample formulas is 12. In total, 248 sample formulas were
tested by automatic implementation under the same parameter settings.

In the experiments, we found that 61 out of 248 sample formulas (corresponding to 33 functions) provided by Gavana31

and Jamil and Yang32 had some problems. The problems can be classified into the following four categories.

(I) The minimum does not match the function value at the provided minimizer(s). This case can be verified by directly
inputting the minimizer(s) into the function.

(II) The minimizers provided are incomplete. We found more minimizers and verified them too.
(III) Our algorithm found a strictly smaller minimum than the provided value.31,32 The new minimum is also verified.
(IV) The given formula is incorrect. We found this problem by comparing Gavana31 to Adorio and Diliman.33

Table 1 illustrates the 134 benchmark functions in the experiments and the problem types are labelled on the problem-
atic functions. The functions for which our algorithm was unsuccessful are marked with * (for a function, as long as one
of the dimensions is unsuccessful, the function is marked as unsuccessful).

5.2 Experimental settings
The experiments were performed with MATLAB R2017b on a desktop computer with an Intel Core i9-10920X CPU at
a 3.5 GHz clock frequency. In the experiments, for all the 2- and 3-dimensional functions, the side length along each
dimension was split into 60 equal segments. For all the functions with more than three dimensions, the side length along
each dimension was split into two equal segments. The stopping criteria on each Li, (i = 1, 2, · · · ,n)was set to 𝛿kLi ≤ 0.001
or 𝛿k ≤ 0.001 holds for the first time.

7502

 10991476, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.8254 by C

ochrane M
acao, W

iley O
nline L

ibrary on [20/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



QIAN ET AL.

Index Functions
1-3 Ackley Adjiman *Alpine01
4-6 Alpine02 (I) BartelsConn Beale
7-9 Bird Bohachevsky BoxBetts
10-12 Branin01 Branin02 Brent
13-15 Brown Bukin02 (III) Bukin04
16-18 Bukin06 CarromTable Chichinadze
19-21 Colville CosineMixture (III) CrossInTray
22-24 *CrossLegTable Cube Deb01 (III)
25-27 Deb02 DeckkersAarts *DeVilliersGlasser01
28-30 *DeVilliersGlasser02 DixonPrice (I) Dolan (III)
31-33 Easom EggCrate EggHolder
34-36 ElAttarVidyasagarDutta Exp2 (I) Exponential
37-39 FreudensteinRoth Giunta GoldsteinPrice
40-42 *Griewank Gulf Hansen (III)
43-45 Hartman3 Hartman6 *Himmelblau (I)
46-48 HolderTable (I) Hosaki JennrichSampson
49-51 Langermann Leon Matyas
52-54 McCormick MieleCantrell Mishra01 (II)
55-57 Mishra02 Mishra03 (III) Mishra04 (I)
58-60 Mishra05 Mishra06 (III) *Mishra07 (II)
61-63 Mishra08 Mishra09 Mishra10
64-66 Mishra11 (II) *Parsopoulos *Pathological
67-69 Paviani Pinter Powell
70-72 Price01 Price02 Price03 (I)
73-75 *Price04 Qing Quadratic
76-78 *Quintic (II) Rana (III) Ripple01
79-81 Ripple25 Rosenbrock RosenbrockModified (III)
82-84 RotatedEllipse01 RotatedEllipse02 Salomon
85-87 Sargan Schaffer01 Schaffer02
88-90 *Schaffer03 (I) Schaffer04 (III) Schwefel01
91-93 Schwefel02 Schwefel04 Schwefel06
94-96 Schwefel20 Schwefel21 Schwefel22
97-99 Schwefel36 Shekel05 (III)(IV) Shekel07 (III)(IV)
100-102 Shekel10 (III)(IV) Shubert01 Shubert03 (III)
203-105 Shubert04 (I)(III) SineEnvelope (I)(II)(III) SixHumpCamel
106-108 Sphere StyblinskiTang TestTubeHolder (II)
109-111 ThreeHumpCamel Treccani Trefethen
112-114 Trid *Trigonometric01 *Trigonometric02
115-117 Ursem01 Ursem03 Ursem04
118-120 UrsemWaves VenterSobiezcczanskiSobieski Watson (I)
121-123 Wavy WayburnSeader01 *WayburnSeader02 (II)
124-126 Weierstrass (I) Whitley Wolfe
127-129 Xinsheyang01 XinSheYang02 XinSheYang03
130-132 XinSheYang04 Zacharov Zettl
133-134 Zimmerman (IV) Zirilli

TABLE 1 List of benchmark
functions in alphabetical order
including the problematic functions
labelled with problem types

Tested Successful Success rate (%)
Functions 134 119 88.81
Formulas 248 224 90.32

TABLE 2 Success rates of the GrS algorithm in finding the global minimizers

An initial L1 is estimated with the maximum absolute value of the first-order difference quotients about all the center
points at the first partition level. To find a suitable upper bound L, multiple runs of the GrS algorithm are executed on
pseudo-upper bounds L = L1,L2, · · · ,Ln,where Li = 2i−1L1, (i = 2, 3, · · · ,n). In fact, based on Theorem 2, after a finite
number of steps, Ln−1 will become larger than L0, and the minimum values between two consecutive GrS runs will no
longer decrease; i.e., vLn = vLn−1 . When vLn is observed to have such stability, the multiple runs can cease. In practice, to
ensure the correctness of the results, when vLn = vLn−1 is observed, a few more GrS runs can be applied to ensure optimality.

7503

 10991476, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.8254 by C

ochrane M
acao, W

iley O
nline L

ibrary on [20/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



QIAN ET AL.

TABLE 3 Test results for the top 10 hardness optimization functions listed in Gavana31

Hardness ranking Benchmark function Overall success rate against ground truth (%) Result of GrS
1 DeVilliersGlasser02 0.00 Failure
2 Damavandi 0.25 Discontinuous
3 CrossLegTable 0.83 Failure
4 XinSheYang03 1.08 Success
5 SineEnvelope∗ 2.17 Success
6 Whitley 4.92 Success
7 Zimmerman∗ 4.92 Success
8 Griewank 6.08 Failure
9 Trefethen 6.58 Success
10 Bukin06 6.83 Success

Note: Test functions with ∗ indicate that there is a problem with the formula or its ground truth.

FIGURE 3 Statistical results on the
characteristics of the test functions. The
bars with different colors correspond to
different types of characteristics. The
blue bars represent differentiable,
separable, scalable and unimodal types,
respectively. The orange ones represent
non-differentiable, non-separable,
non-scalable and multimodal types. The
gray ones are with unmentioned types.
The yellow one is the partially-separable
type. The white numbers with red
background are the corresponding test
function numbers [Colour figure can be
viewed at wileyonlinelibrary.com]

TABLE 4 Characteristics of the Jones test set

Index Function Dimension Domain Number of local minimizers Number of global minimizers
1 Shekel 5 4 [0,10]4 5 1
2 Shekel 7 4 [0,10]4 7 1
3 Shekel 10 4 [0,10]4 10 1
4 Hartman 3 3 [0,1]3 4 1
5 Hartman 6 6 [0,1]6 4 1
6 Branin RCOS 2 [−5,10]×[0,15] 3 3
7 Goldstein and Price 2 [−2,2]2 4 1
8 Six-Hump Camel 2 [−5,5]2 6 2
9 2D Shubert 2 [−10,10]2 760 18

In our experiments, one more run is applied on Ln+1 = (2n−1 + 1)L1. This is a trade-off process because the computational
cost rapidly increases as the GrS iteration number increases. In summary, if vLn+1 = vLn = vLn−1 , then the multiple runs of
the GrS algorithm finally stop. In this situation, GrS is ran at least three times in our experiments.

5.3 Results and discussions on benchmark functions
Among all the tested formulas, GrS correctly yielded both the minimum and minimizers for 224 sample formulas, cor-
responding to 119 functions. In the experimental results of 11 functions (19 sample formulas), the minimums yielded
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QIAN ET AL.

FIGURE 4 Visualization of four
two-dimensional functions on the Jones
test set. The original function graphs are
shown on the left, while the graphs on
the right display the final granules,
algorithm minimizers and global
minimizers [Colour figure can be viewed
at wileyonlinelibrary.com]

by GrS approximate the ground truths, but the minimizers are incorrect. The analysis shows that this inconsistency is
caused by an improperly set termination threshold or an underestimated pseudo-L value. By employing smaller termina-
tion thresholds or larger L values, or by allowing computing times greater than 4000 s, the problem of the inconsistency
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QIAN ET AL.

can be solved. The experimental results of four other functions are different from both the reference provided mini-
mum and minimizers. The analysis of the geometric nature of the function graphs shows that the failures are mostly
caused by the first estimation of the pseudo-L in use. This suggests that a larger pseudo-L should be used to increase
the effectiveness of the algorithm. With the improved L values, one can successfully find the correct solutions. The suc-
cess rates of the benchmark functions and formulas are 88.81% and 90.32%, respectively, as listed in Table 2. If, like
the other studies,19,27,31 only finding the global minimum is regarded as a success, then our success rate on testing
formulas is 98%.

To compare our algorithm with existing ones, in Table 3, we illustrate our test results on the top 10 benchmark opti-
mization functions listed in the “Hardness” table of Gavana,31 which provides algorithm comparison among 12 popular
global optimization algorithms. The overall success rates in the table were reported to be obtained by running all the
available global optimizers against all the test functions for a collection of 100 random starting points and then averag-
ing the successful minimizations across all the optimizers.31 As presented in Table 3, the hardest function for which our
algorithm succeeds is XinSheYang03 (No. 4 in the top 10 “Hardness” list), and the overall success rate for XinSheYang03
is merely 1.08% for all the other 12 global optimizers mentioned in Gavana.31 The non-differentiability of the function
makes unavailability of the gradient-dependent methods. This is one of the reasons for the low success rate. This example
shows that the gradient-free GrS is an effective algorithm regardless differentiability properties of the objective function.
By adding the overall success rate of the top 10 hardest functions in Table 2, we can conclude that the overall success rate
of the other 12 popular optimizers on the average of the 10 hardest problems is 3.366%, while the overall success rate of
GrS on the average of the 10 hardest problems is 60%.

Apart from the continuity and finite-L0 property, the GrS algorithm does not require any other properties from
the objective functions. Our benchmark functions include non-differentiable, non-separable, scalable and multimodal
types, for which global minimizers are generally difficult to obtain.32 The detailed statistical results on the suc-
cess rate are presented in Figure 3. In total, 131 functions that are commonly referred by Jamil and Yang32 and
Gavana31 are listed. The characteristics of the exceptional three functions from Table 3 are not labeled so that they are
not counted.

Pseudo-L is an important parameter used and estimated along with the algorithm process. In 201 out of 224 successfully
tested formulas, L is estimated thrice. Among all the tested sample formulas, the maximal number of estimations for L is
11. The detailed experiment results on all the sample formulas can be found in the webpage of the Experiment Results†.

5.4 Results and discussions on the Jones test set
We select nine classical functions, that is the commonly used Jones test set, from the 134 benchmark functions to demon-
strate the performance of GrS against benchmark functions. The significant characteristics of the Jones test set are
illustrated in Table 4. All the nine functions are multimodal with at least three local minimas. Among them, 2D Shubert
has the most global minimizers which number is 18.

The GrS algorithm showed excellent performance for the nine functions and successfully found all the global mini-
mizers. Figure 4 shows the visualization results of the last four two-dimensional functions in Table 4. The left graphs
displays the morphological characteristics of four benchmark functions. The right graphs compare the position difference
between our found minimizers and the global minimizers, which are marked with red stars and yellow squares on the
two-dimensional coordinate planes, respectively. The blue circles are the final remaining granules when the algorithm
terminates. The visualization results indicate the feasibility of the GrS algorithm when facing a single global minimizer
or multiple global minimizers.

Table 5 exhibits the final numerical results calculated by the GrS algorithm on the Jones test set. The global minima are
referred from,34 and the global minimizers are referred from Jamil and Yang32 and Gavana.31 The smaller value between
the global minimum and the algorithm minimum is in bold. In addition to the four two-dimensional functions, our
algorithm also shows satisfactory performance on the other functions. Moreover, it is noticed that the GrS algorithm
found a smaller minimum than the given global minimum for Hartman 3.

†https://www.fst.um.edu.mo/personal/lmzhang/experiment_results.
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QIAN ET AL.

6 CONCLUSIONS

The proposed GrS method is based on intuitive and simple mathematical formulation and has an easily implementable
algorithm. The algorithm is effective and efficient for any finite dimension, offering the complete set of solutions within
the prescribed accuracy. If the Lipschitz constant L0 is known, then the algorithm has theoretically no limitation. If the
Lipschitz constant is unknown, GrS is incorporated with a pseudo-Lipschitz process to solve the black-box Lipschitzian
problem. However, it practically requires a large but relative moderate computer storage capacity. Significant topics for
future studies would include finding effective pseudo-L's and deeper relations between the used L and GrS.
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