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Abstract 

In conventional PID-type iterative learning control (ILC) designs, to determine the learning control 
gains involved, relevant model knowledge on the controlled systems is often dependent. In this paper, 
two completely data-driven ILC laws, the extended PD-type ILC law and the extended P-type ILC 

law, are designed in frequency domain for linear discrete-time (LDT) single-input single-output (SISO) 
systems. The designs of the proposed ILC laws are based on the approximation/identification to unknown 
transfer function with a novel adaptive Fourier decomposition (AFD) technique. As a result, the strictly 
monotonic convergence of ILC tracking error is guaranteed in a deterministic way. A numerical example 
on a four-axis robot arm is performed to illustrate the effectiveness of the proposed data-driven ILC 

algorithms 
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. Introduction 

Iterative learning control (ILC) is an effective control methodology for reducing tracking
rrors from trial-to-trial for dynamical systems that execute a given tracking task repeatedly
ver a finite time interval. During an ILC process, the control inputs are updated iteratively af-
er each trial by using previous or current tracking errors such that the tracking performance of
he controlled system is improved progressively. Recent three decades have witnessed consid-
rable achievements in ILC theoretical development [ 1 , 5 , 7 , 14 , 15 ] with extensive applications
n robot manipulators [ 2 , 32 ], batch processes [3] , and 3-D crosswind flight [4] , etc. 

Hitherto, the existing ILC techniques can be roughly classified as PID-type and adaptive-
ype algorithms. The PID-type ILC algorithms were normally derived by the contraction

apping-based designs [ 8 , 10 , 29 ], 2-D analysis techniques [ 5 , 9 , 30 ], and norm-optimal meth-
ds [ 1 , 6 , 13 ], etc. However, to determine the learning gains involved in the PID-type ILC
lgorithms, relevant model information or parameter ranges of the controlled system are often
equired. As for the adaptive ILC algorithms, they have been mainly designed for linearly
arameterized systems [ 17 , 20 , 21 ] and non-parameterized nonlinear systems [ 22 , 23 ]. The lin-
arly parameterized systems are heavy model-dependent since they are modeled as a linear
ombination of some unknown parameters with respective to known nonlinear functions. The
on-parameterized nonlinear systems based adaptive ILC algorithms normally use neural net-
orks or fuzzy systems to approximate some unknown nonlinear dynamics such that a perfect

LC tracking performance is hardly achieved due to the approximation errors from the neural
etworks or fuzzy systems. Moreover, in the adaptive ILC algorithms [ 17 , 20–23 ], the control
irections of the controlled systems are normally required to be invariable and known a prior.
otably, in many practical engineering processes, it is very difficult or expensive to obtain the

xact or estimated information on mathematical model of the controlled systems. Therefore,
 fully data-driven ILC approach, in which the input-output data of the controlled system is
nvolved only, is expected. 

On the other hand, the existing ILC algorithms have been mainly designed in time domain
2–5] . From an engineering point of view, a frequency-domain based ILC technique is some-
imes preferable as it may exhibit the spectrum characteristics of system signals and provide
he lower computation burden for convolution operation of time-domain signals. However,
ompared with the fruitful ILC results in time domain, the frequency-domain based ILC de-
igns are very limited [12–15] . In [12] , for linear continuous-time single-input single-output
SISO) systems, convergence conditions for the anticipatory learning control were obtained in
erms of the lead-time and anticipatory learning gain. In [13] , for linear discrete-time (LDT)
ISO systems, a frequency-domain based ILC design was developed, which was combined
ith basis functions to cope with variations in tracking trajectory. In [14] , three different
ultirate ILC algorithms using a lower sampling rate from a feedback system to update the

ontrol input were proposed for LDT SISO systems. In [15] , according to the frequency
pectrum features derived from the Fourier analysis to the average energy of ILC tracking
rror, sufficient and necessary conditions for monotonic convergence of the ILC tracking error
ere demonstrated for linear continuous-time systems. It is worth noting that just like the

LC designs in time domain, the relevant model knowledge of the controlled systems plays
n important role in applying the frequency-domain based ILC laws [12–15] . 

This article aims to present completely data-driven ILC algorithms for LDT SISO systems
n frequency domain. Recently, a novel adaptive Fourier decomposition (AFD) technique
as utilized to identify the unknown transfer function of LDT SISO system [16] . AFD-type
2446 



W.-Y. Fu, X.-D. Li and T. Qian Journal of the Franklin Institute 359 (2022) 2445–2462 

t  

s  

t  

i  

a  

g  

S  

p  

c  

b  

a  

d  

A  

t  

c  

t  

 

 

 

 

 

 

 

 

 

 

g  

d  

p

N

 

o

echniques outperform other system identification techniques with a fast convergence rate of
eries for approximation and a direct representation to poles of the transfer function [33] since
he basis functions of AFD are selected adaptively. In this article, according to [16] , the
nput-output data of the LDT SISO system at the first repetition/cycle is utilized to constitute
n AFD approximator. Then, two data-driven ILC algorithms with determining the learning
ains from the AFD approximator are presented, in which the input-output data of LDT
ISO system is merely dependent, and no model knowledge except for the linear minimum
hase characteristic of the controlled system is required. As a result, the strictly monotonic
onvergence of the ILC tracking error is guaranteed in a deterministic way, which has not
een realized by most time-domain based PID-type ILC algorithms [ 5 , 10 ] and adaptive ILC
lgorithms [ 17 , 23 ]. In this regard, it is noted that two AFD based ILC laws with data-driven
etermining techniques for learning gains were ever presented in [24] . However, the used
FD approximation method in [24] was combined with support vector machine such that

he convergence of ILC tracking error was derived in statistical learning sense, and then, the
onvergent probability of ILC tracking error is dependent on the AFD approximating error to
ransfer function. The key features and contributions of the paper are summarized as follows:

(1) In this paper, two AFD based ILC algorithms are proposed for LDT SISO systems,
in which an AFD representation is utilized to approximate the unknown transfer func-
tion. No model knowledge except for the linear minimum phase characteristic of the
controlled system is required. 

(2) A prominent advantage of the two proposed AFD based ILC designs over many PID-
type ILC and adaptive ILC algorithms is that the strictly monotonic convergence of ILC
tracking errors can be guaranteed, which is a very strong and desirable property of ILC
algorithms. 

(3) Compared to the AFD based ILC work presented in [24] , the strictly monotonic conver-
gence of ILC tracking error obtained in this paper is in a deterministic way. The AFD
approximating error to transfer function only affects the selection ranges of learning
gains, and doesn’t affect the monotonic convergence of ILC tracking error. 

The rest of the paper is organized as follows: Preliminaries and problem formulation are
iven in Section 2 . Section 3 presents the data-driven ILC designs using AFD in frequency
omain. The simulation example is illustrated in Section 4 . Finally, Section 5 concludes this
aper. 

omenclature 

C Complex space 
R Real space 
D Unit disc in C 

H 

2 (D ) Hardy space 
〈 ·, ·〉 Inner product of two functions in Hardy space 

In this paper, the sign | ·| represents the module of a complex number, and the used norm

f the complex function f ( e jη) is defined as ‖ f ( e jη) ‖ = 

√ 

1 
2π

∫ 2π

0 | f ( e jη) | 2 dη as in [25] . 
2447 



W.-Y. Fu, X.-D. Li and T. Qian Journal of the Franklin Institute 359 (2022) 2445–2462 

2

2

B  

w  

o  

f  

f

F  

w  

F  

F  

 

h

L∥∥
 

w

 

s  

i

∣∣
 

 

S

2

 

o{
 

. Preliminaries and problem formulation 

.1. Mathematical foundation of AFD 

Let the set of functions { B m 

( z −1 ) } be defined by 

 m 

(
z −1 
) = 

⎧ ⎨ 

⎩ 

e { a m } 
(
z −1 
) m−1 ∏ 

j=1 

z −1 −a j 
1 −ā j z −1 , m = 2, 3 , 4, ... 

e { a 1 } 
(
z −1 
)
, m = 1 

(1)

here z ∈ D , a j ∈ D , and e { a j } ( z 
−1 ) = 

√ 

1 −| a j | 2 
1 −ā j z −1 , ( j = 1 , 2, ..., m). According to the AFD the-

ry [18] , for any sequence { a j } in D , { B m 

( z −1 ) } constitutes a set of orthogonal basis functions
or AFD. Specifically, if all { a j } are taken to be 0, { B m 

( z −1 ) } yields a set of Fourier basis
unctions [19] . 

For any F ( z −1 ) ∈ H 

2 (D ) , it can be represented by the following AFD form [18] : 

 

(
z −1 
) = 

+ ∞ ∑ 

m=1 

c m 

B m 

(
z −1 
) = 

M ∑ 

m=1 

c m 

B m 

(
z −1 
)+ R F 

(
z −1 , M 

)
(2)

here c m 

= 〈 F m 

( z −1 ) , e { a m } ( z 
−1 ) 〉 ∈ C and F m 

( z −1 ) = 

F m−1 ( z −1 ) −〈 F m−1 ( z −1 ) , e { a m−1 } ( z 
−1 ) 〉 e { a m−1 } ( z 

−1 ) 

z −1 −a m−1 
1 −ā m−1 z 

−1 

with

 1 ( z −1 ) = F ( z −1 ) and a m 

= arg max 

a∈ D 
{ | 〈 F m 

( z −1 ) , e { a} ( z −1 ) 〉 | 2 } , ( m = 1 , 2, ..., M). R F ( z −1 , M ) =
 M+1 ( z −1 ) ·∏ M 

m=1 
z −1 −a m 
1 −ā m z −1 denotes the standard remainder for AFD with the Mth partial sum.

Regarding the AFD representation Eq. (2) with the standard remainder R F ( z −1 , M ) , we
ave the following Lemma 1 . 

emma 1. [ 26 ]. Let F ( z −1 ) ∈ H 

2 (D ) be represented as AFD in Eq. (2) . Then, there is 

R F 
(
z −1 , M 

)∥∥ ≤ L g √ 

M 

(3)

here 
+ ∞ ∑ 

m=1 
| c m 

| ≤ L g with 0 < L g < + ∞ . 

It is noted that the calculation of ‖ R F ( z −1 , M ) ‖ is somewhat complicated. To facilitate the
equent applications of the bound on the standard remainder R F ( z −1 , M ) in ILC designs, it
s proved in Appendix that ‖ R F ( z −1 , M ) ‖ ≤ L g √ 

M 

is equivalent to 

R F 
(
z −1 , M 

)∣∣ ≤ L g √ 

M 

(4)

According to Lemma 1 , the larger M leads to the smaller standard remainder R F ( z −1 , M ) .
pecifically, lim 

M→ + ∞ 

R F ( z −1 , M ) = 0. 

.2. ILC and AFD based approach 

Consider the ILC issue of the following LDT SISO system performing repetitive operation
ver the discrete-time instants { 0, 1 , 2, ..., N } , 
x k ( n + 1 ) = A x k ( n ) + B u k ( n ) , 

y k ( n ) = C x k ( n ) + D u k ( n ) , 
(5)
2448 
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d  
here the subscript k = 0, 1 , 2, · · · · · · indicates the iteration/repetition index, and n ∈
 0, 1 , 2, ..., N } is the discrete-time instant. x k (n) ∈ R 

n , u k (n) ∈ R 

1 , and y k (n) ∈ R 

1 denote
he system state, input, and output, respectively. A , B, C, and D (normally, D = 0) are system

atrices with appropriate dimensions. The reference trajectory of the LDT SISO system ( 5 )
s y d (n) , n ∈ { 0, 1 , 2, ..., N } . Then the ILC tracking error at the k-th iteration is defined as 

 k ( n ) = y d ( n ) − y k ( n ) (6)

The initial iterative output of the LDT SISO system ( 5) is supposed to satisfy y k (0) =
 d (0) = 0 for k = 0, 1 , 2, · · · · · · . Then the LDT SISO system ( 5) can be transferred to the
ollowing form in frequency domain. 

 k 
(
z −1 
) = G 

(
z −1 
) · U k 

(
z −1 
)

(7)

here U k ( z −1 ) and Y k ( z −1 ) represent the Z-transformation to u k (n) and y k (n) , respectively, i.e.,
 k ( z −1 ) = Z[ u k (n) ] and Y k ( z −1 ) = Z[ y k (n) ] . G ( z −1 ) = C ( z −1 I − A ) −1 B + D is the transfer

unction of the LDT SISO system ( 5) . 
The goal of ILC design is to update U k ( z −1 ) or u k (n) iteratively such that lim 

k→ + ∞ 

E k ( z −1 ) =
or lim 

k→ + ∞ 

e k (n) = 0 at n ∈ { 0, 1 , 2, ..., N } , where E k ( z −1 ) = Z 

−1 [ e k (n) ] = Y d ( z −1 ) − Y k ( z −1 )

ith Y d ( z −1 ) = Z[ y d (n) ] . 

emark 1. For the LDT SISO system ( 5) , if a conventional PID-type ILC law is used, it is
ormally not difficult to estimate necessary parameter values to determine the learning gains,
.g., the input-output coupling scalar CB for a P-type ILC law in [30] . However, for this
urpose, the initial state condition x k (0) = 0 ∈ R 

n or x k (0) = x k+1 (0) is usually required. In
ractical applications, for an unknown LDT SISO system ( 5) , the observability and accurate
ositioning on the initial state x k (0) are often not met. Therefore, it is necessary to investigate
n estimated transfer function based ILC approach for the unknown LDT system ( 5) . 

For the LDT SISO system ( 7 ) in frequency domain, the transfer function G ( z −1 ) is sup-
osed to be completely unknown in this paper. As a result, an input-output data set based
pproximating technique in frequency domain is needed. Fortunately, a novel AFD technique
o identify the unknown transfer function G ( z −1 ) was ever presented in [16] , which involves
 two-step approximating process. To explain the AFD identifying technique, the following
emma 2 is used, 

emma 2. Let G ( z −1 ) , z ∈ D be a transfer function of the LDT SISO system ( 5) . As the
requency-domain based input-output data set Q = { ( ϑ r , G ( e j ϑ r ) ) , r = 0, 1 , ..., N̄ − 1 } is ob-
ained by sampling the frequency response of the LDT SISO system ( 5) with impulse input
ignal δ(n) , where ϑ r = 

2πr 
N̄ 

and N̄ denotes the number of sampling points in the boundary
f unit disc D . I f 

ˆ 
 

(
z −1 , N̄ 

) = 

1 

N̄ 

N̄ −1 ∑ 

r=0 

( 

G 

(
e j ϑ r 
)
e j ϑ r 

e j ϑ r − z −1 

) 

(8)

hen, lim 

N̄ → + ∞ 

ˆ G ( z −1 , N̄ ) = G ( z −1 ) . 

The transfer function G ( z −1 ) , z ∈ D is continuous on | z| = 1 , so Lemma 2 can be directly
erived from the definition of Riemann integration [27] . In terms of the function 

ˆ G ( z −1 , N̄ )
2449 
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n Eq. (8) , according to [16] , there is 

G 

(
z −1 
)− ˆ G 

(
z −1 , N̄ 

)∣∣∣ < sup 

r=0, 1 ,..., ̄N −2 

∣∣∣G 

(
e j 

2π

N̄ 
( r+1 ) 

)
− G 

(
e j 

2πr 
N̄ 

)∣∣∣ (9)

etting F ( z −1 ) = 

ˆ G ( z −1 , N̄ ) , and combining Eq. ( 4 ) with Eq. ( 9 ), there is ∣∣∣∣∣G 

(
z −1 
)−

M ∑ 

m=1 

c m 

B m 

(
z −1 
)∣∣∣∣∣ < 

∣∣∣G 

(
z −1 
)− ˆ G 

(
z −1 , N̄ 

)∣∣∣+ 

∣∣∣∣∣ ˆ G 

(
z −1 , N̄ 

)−
M ∑ 

m=1 

c m 

B m 

(
z −1 
)∣∣∣∣∣

< σ + 

L g √ 

M 

:= φ (10)

here σ = sup 

r=0, 1 ,..., ̄N −2 

| G ( e j ϑ r+1 ) − G ( e j ϑ r ) | . 

emark 2. In fact, Eq. ( 10 ) represents a two-step approximation process to the unknown
ransfer function G ( z −1 ) by AFD. Firstly, G ( z −1 ) is approximated by the data set based
unction 

ˆ G ( z −1 , N̄ ) . Then, the known function 

ˆ G ( z −1 , N̄ ) is expanded as AFD representation
 M 

m=1 c m 

B m 

( z −1 ) . Notably, since the transfer function G ( z −1 ) is completely unknown, its AFD
epresentation cannot be gotten directly from G ( z −1 ) . 

emark 3. The approximation error φ = σ + 

L g √ 

M 

in Eq. ( 10 ) includes a residual er-

or σ and a standard remainder L g √ 

M 

to 

ˆ G ( z −1 , N̄ ) by using the AFD representa-

ion 

∑ M 

m=1 c m 

B m 

( z −1 ) . The residual error σ = sup 

r=0, 1 ,..., ̄N −2 

| G ( e j ϑ r+1 ) − G ( e j ϑ r ) | can be eas-

ly gotten from the data set Q = { ( ϑ r , G ( e j ϑ r ) ) , r = 0, 1 , ..., N̄ − 1 } with ϑ r = 

2πr 
N̄ 

. The

tandard remainder L g √ 

M 

can be derived by setting M as a given value and L g =
nf { L F : ˆ G ( z −1 , N̄ ) ∈ H 2 ( D, L F ) } [26], where D := { e { a m } ( z −1 ) , a m 

∈ D } and H 2 ( D, L F ) :=
 

ˆ G ( z −1 , N̄ ) = 

∑ + ∞ 

m=1 c m 

B m 

( z −1 ) | e { a m } ( z −1 ) ∈ D, 
∑ + ∞ 

m=1 | c m 

| < L F } with B m 

( z −1 ) defined in ( 1) .
s a consequence, the value of φ is computable for approximating the unknown transfer func-

ion G ( z −1 ) . 

For subsequent ILC analysis, Assumption 1 is imposed on the LDT SISO system ( 5 ) or
q. ( 7 ), which is often used in frequency-domain based ILC designs [11 , 12] . 

ssumption 1. The LDT SISO system ( 5) or ( 7 ) is of minimum phase, and there exists a
inimum phase inverse for it. 

Based on the AFD approximation ( 10) and Assumption 1, two data-driven ILC designs
ith unknown transfer function are produced in the following Section. 

. ILC designs using AFD in frequency domain 

To clearly exhibit the AFD based ILC approach, a simplified design procedure of ILC in
requency domain is depicted in Fig. 1 . 

.1. The extended PD-type ILC design 

In this section, based on the AFD approximation to the unknown transfer function G ( z −1 ) ,
he following extended PD-type ILC law is applied to the LDT SISO system (5) at n ∈
2450 
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⎧⎪⎨
⎪⎩  
 0, 1 , 2, ..., N − 1 } , 

 k+1 ( n ) = u k ( n ) + Z 

−1 

⎡ 

⎣ 

(
λz −1 + μ − λ

)( 

M ∑ 

m=1 

c m 

B m 

(
z −1 
)) −1 

· E k+1 
(
z −1 
)⎤ 

⎦ (11)

here z −1 = e jωT with sampling period T to continuous-time signal, Z 

−1 [ ·] stands for the
nverse of Z-transformation, 

∑ M 

m=1 c m 

B m 

( z −1 ) is the AFD approximation to G ( z −1 ) , and λ,
∈ R are learning gains. 

Fig. 1. AFD based ILC design procedure. 

Correspondingly, the extended PD-type ILC law ( 11) in frequency domain is written as 

 k+1 
(
z −1 
) = U k 

(
z −1 
)+ 

(
λz −1 + μ − λ

)( 

M ∑ 

m=1 

c m 

B m 

(
z −1 
)) −1 

· E k+1 
(
z −1 
)

(12)

emark 4. According to Assumption 1, G ( z −1 ) � = 0, z ∈ D . Therefore, from Eq. (10) , we
now that only if M in 

∑ M 

m=1 c m 

B m 

( z −1 ) and the number N̄ of sampling points are large
nough, 

∑ M 

m=1 c m 

B m 

( z −1 ) can sufficiently approach G ( z −1 ) such that 
∑ M 

m=1 c m 

B m 

( z −1 ) � = 0.
ubsequently, the factor ( 

∑ M 

m=1 c m 

B m 

( z −1 ) ) −1 involved in the extended PD-type ILC law ( 11)
r ( 12) is achievable. 

Then, the convergence condition for the extended PD-type ILC law ( 11) or ( 12) is presented
n the following Theorem 1 . 

heorem 1. For the LDT SISO system ( 5) with Assumption 1, utilize the extended PD-type
LC law ( 11) or ( 12) . If the learning gains μ and λ in Eq. ( 11) or ( 12) make that 
 

 

 

 

 

μ > λ > 0, 

| μ + 1 − 2λ| − max 

{ 

∣∣∣∣∣
(

M ∑ 

m=1 
c m 

B m 

(
z −1 
))−1 

∣∣∣∣∣
} 

· μφ > 1 , 
(13)

or 
 

 

 

 

 

μ + 1 < λ < 0, 

| μ + 1 − 2λ| + max 

{ 

∣∣∣∣∣
(

M ∑ 

m=1 
c m 

B m 

(
z −1 
))−1 

∣∣∣∣∣
} 

· μφ > 1 , 
(14)
2451 
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here φ defined in Eq. ( 10 ) is the approximation error of 
∑ M 

m=1 c m 

B m 

( z −1 ) to G ( z −1 ) , then,
he ILC tracking error E k ( z −1 ) converges strictly monotonically to zero as the iteration number

goes to infinity. 
Proof . The ILC tracking error at the ( k + 1 )th trial for the LDT SISO system ( 5) is

epresented as 

 k+1 
(
z −1 
) = Y d 

(
z −1 
)− Y k+1 

(
z −1 
) = E k 

(
z −1 
)− (Y k+1 

(
z −1 
)− Y k 

(
z −1 
))

= E k 
(
z −1 
)− G 

(
z −1 
) · (U k+1 

(
z −1 
)− U k 

(
z −1 
))

(15)

Substituting ( 12) into ( 15) , we have 

 k+1 
(
z −1 
) = E k 

(
z −1 
)− G 

(
z −1 
)(

λz −1 + μ − λ
)( 

M ∑ 

m=1 

c m 

B m 

(
z −1 
)) −1 

E k+1 
(
z −1 
)

(16)

Furthermore, it yields ∣∣E k+1 

(
z −1 
)∣∣

= 

∣∣E k 

(
z −1 
)∣∣∣∣∣∣∣1 + G 

(
z −1 
)(

λz −1 + μ − λ
)( M ∑ 

m=1 
c m B m 

(
z −1 
))−1 

∣∣∣∣∣
= 

∣∣E k 

(
z −1 
)∣∣∣∣∣∣∣1 + 

(
λz −1 + μ − λ

)+ 

(
G 

(
z −1 
)−

M ∑ 

m=1 
c m B m 

(
z −1 
))(

λz −1 + μ − λ
)( M ∑ 

m=1 
c m B m 

(
z −1 
))−1 

∣∣∣∣∣
≤

∣∣E k 

(
z −1 
)∣∣∣∣∣∣∣

∣∣λz −1 + μ − λ + 1 
∣∣−
∣∣∣∣∣
(

G 

(
z −1 
)−

M ∑ 

m=1 
c m B m 

(
z −1 
))(

λz −1 + μ − λ
)( M ∑ 

m=1 
c m B m 

(
z −1 
))−1 

∣∣∣∣∣
∣∣∣∣∣

≤
∣∣E 1 

(
z −1 
)∣∣∣∣∣∣∣

∣∣λz −1 + μ − λ + 1 
∣∣−
∣∣∣∣∣
(

G 

(
z −1 
)−

M ∑ 

m=1 
c m B m 

(
z −1 
))(

λz −1 + μ − λ
)( M ∑ 

m=1 
c m B m 

(
z −1 
))−1 

∣∣∣∣∣
∣∣∣∣∣
k (17)

On the other hand, consider the following mathematical relation ∣∣λz −1 + μ − λ
∣∣ = 

∣∣λe jωT + μ − λ
∣∣ = 

| λ cos ( ωT ) + jλ sin ( ωT ) + μ − λ| 
= 

√ 

( λ cos ( ωT ) + μ − λ) 2 + λ2 sin 

2 ( ωT ) 

= 

√ 

λ2 + ( μ − λ) 2 + 2λ( μ − λ) · cos ( ωT ) 

here z −1 = e jωT , ω ∈ [ 0, π/T ) . It is noted that 
√ 

λ2 + ( μ − λ) 2 + 2λ( μ − λ) · cos ( ωT )
s a monotonic function on ω ∈ [ 0, π/T ) . As ω = π/T , there
s 
√ 

λ2 + ( μ − λ) 2 + 2λ( μ − λ) · cos ( ωT ) = 

√ 

λ2 + ( μ − λ) 2 − 2λ( μ − λ) = 

 μ − 2λ| , and as ω = 0, there is 
√ 

λ2 + ( μ − λ) 2 + 2λ( μ − λ) · cos ( ωT ) =
 

λ2 + ( μ − λ) 2 + 2λ( μ − λ) = | μ| . Therefore, we obtain 

λz −1 + μ − λ
∣∣ ∈ [ min 

{ | μ| , | μ − 2λ| } , max 

{ | μ| , | μ − 2λ| } ] (18)

λz −1 + μ − λ + 1 

∣∣ ∈ [ min 

{ | μ + 1 

| , | μ + 1 − 2λ| } , max 

{ | μ + 1 

| , | μ + 1 − 2λ| } ] (19)
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Subsequently, there is 

∣∣λz −1 + μ − λ + 1 
∣∣−
∣∣∣∣∣∣
(
λz −1 + μ − λ

)( 

M ∑ 

m=1 

c m 

B m 

(
z −1 )) −1 

φ

∣∣∣∣∣∣
> min { | μ + 1 | , | μ + 1 − 2λ| } − φ · max 

⎧ ⎨ 

⎩ 

∣∣∣∣∣∣
( 

M ∑ 

m=1 

c m 

B m 

(
z −1 
)) −1 

∣∣∣∣∣∣
⎫ ⎬ 

⎭ 

· max { | μ| , | μ − 2λ| } (20)

If the learning gains μ and λ in Eq. (11) or Eq. (12) make

 

μ > λ > 0, 

| μ + 1 − 2λ| − max { | ( ∑ M 

m=1 c m 

B m 

( z −1 ) ) 
−1 | } · μφ > 1 , 

we have λ( λ − μ) < 0and

( λ − μ − 1 ) < 0. As a result, 4 λ2 − 4μλ + μ2 < μ2 and 4 λ2 − 4μλ − 4λ + μ2 + 2μ + 1 <
2 + 2μ + 1 . Equivalently, there are | μ − 2λ| < | μ| and | μ + 1 − 2λ| < | μ + 1 | . Thus, 

min 

{ | μ + 1 

| , | μ + 1 − 2λ| } − φ · max 

⎧ ⎨ 

⎩ 

∣∣∣∣∣∣
( 

M ∑ 

m=1 

c m 

B m 

(
z −1 )) −1 

∣∣∣∣∣∣
⎫ ⎬ 

⎭ 

· max 

{ | μ| , | μ − 2λ| } 

= 

| μ + 1 − 2λ| − max 

⎧ ⎨ 

⎩ 

∣∣∣∣∣∣
( 

M ∑ 

m=1 

c m 

B m 

(
z −1 
)) −1 

∣∣∣∣∣∣
⎫ ⎬ 

⎭ 

· μφ > 1 (21)

Similarly, if the learning gains μ and λ in Eq. (11) or Eq. (12) make

 

μ + 1 < λ < 0, 

| μ + 1 − 2λ| + max { | ( ∑ M 

m=1 c m 

B m 

( z −1 ) ) 
−1 | } · μφ > 1 , 

we obtain λ( λ − μ − 1 ) < 0and

( λ − μ) < 0, Furthermore, 4 λ2 − 4μλ − 4λ + μ2 + 2μ + 1 < μ2 + 2μ + 1 and 4 λ2 −
μλ + μ2 < μ2 , which lead to | μ + 1 − 2λ| < | μ + 1 | and | μ − 2λ| < | μ| . Consequently,
he result of Eq. (21) can also be derived by the following procedure, 

min 

{ | μ + 1 

| , | μ + 1 − 2λ| } − φ · max 

⎧ ⎨ 

⎩ 

∣∣∣∣∣∣
( 

M ∑ 

m=1 

c m 

B m 

(
z −1 
)) −1 

∣∣∣∣∣∣
⎫ ⎬ 

⎭ 

· max 

{ | μ| , | μ − 2λ| } 

= 

| μ + 1 − 2λ| − φ · max 

⎧ ⎨ 

⎩ 

∣∣∣∣∣∣
( 

M ∑ 

m=1 

c m 

B m 

(
z −1 
)) −1 

∣∣∣∣∣∣
⎫ ⎬ 

⎭ 

· | μ| 

= 

| μ + 1 − 2λ| + max 

⎧ ⎨ 

⎩ 

∣∣∣∣∣∣
( 

M ∑ 

m=1 

c m 

B m 

(
z −1 
)) −1 

∣∣∣∣∣∣
⎫ ⎬ 

⎭ 

· μφ

> 1 . 

hat is, whether the learning gains μ and λ are selected according to Eq. (13) or Eq. (14) ,
he result of Eq. (21) holds. 

Combining Eq. (20) with Eq. (21) , and considering Eq. (10) , we have 

∣∣λz −1 + μ − λ + 1 

∣∣−
∣∣∣∣∣∣
( 

G 

(
z −1 )−

M ∑ 

m=1 

c m 

B m 

(
z −1 )) (

λz −1 + μ − λ
)( 

M ∑ 

m=1 

c m 

B m 

(
z −1 )) −1 

∣∣∣∣∣∣
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U  
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f

T  

I⎧⎪⎨
⎪⎩  

w  

t  

k

> 

∣∣λz −1 + μ − λ + 1 

∣∣−
∣∣∣∣∣∣
(
λz −1 + μ − λ

)( 

M ∑ 

m=1 

c m 

B m 

(
z −1 
)) −1 

φ

∣∣∣∣∣∣
> 1 . (22)

t last, taking limitation on two sides of Eq. (17) , and considering Eq. (22) , we have 

lim 

→ + ∞ 

E k 
(
z −1 
) = 0 (23)

Notably, it is seen from Eq. (17) that | E k+1 ( z −1 ) | < | E k ( z −1 ) | , which means the conver-
ence of E k ( z −1 ) is strictly monotonic. This completes the proof of Theorem 1 . 

emark 5. In Theorem 1 , the convergent condition Eq. (13) or Eq. (14) for the ILC tracking
rror E k ( z −1 ) reveals that the selection of learning gains μ and λ is closely related to the
pproximating error φ of the AFD representation 

∑ M 

m=1 c m 

B m 

( z −1 ) to G ( z −1 ) . From Eq.

13) , we have { μ > λ > 0 

| μ+1 −2λ|−1 
μ

· ( max { | ( ∑ M 

m=1 c m 

B m 

( z −1 ) ) 
−1 | } ) −1 > φ

and from Eq. (14) , we have

 

μ + 1 < λ < 0 

| μ+1 −2λ|−1 
−μ

· ( max { | ( ∑ M 

m=1 c m 

B m 

( z −1 ) ) 
−1 | } ) −1 > φ

due to −μ > 1 . Clearly, it can be seen

hat the smaller the approximating error φ is, the larger the feasible ranges of μ and λ can
e selected. 

.2. The extended P-type ILC with feedback design 

In this section, the following extended P-type ILC law with feedback is applied to the
DT SISO system Eq. (5) at n ∈ { 0, 1 , 2, ..., N − 1 } 

 k+1 ( n ) = u k ( n ) + Z 

−1 

⎡ 

⎣ 

( 

M ∑ 

m=1 

c m 

B m 

(
z −1 
)) −1 (

αE k 
(
z −1 
)+ βE k+1 

(
z −1 
))⎤ 

⎦ (24)

here z −1 = e jωT , Z 

−1 [ ·] stands for the inverse of Z-transformation, 
∑ M 

m=1 c m 

B m 

( z −1 ) is the
FD approximation to G ( z −1 ) , and α, β ∈ R stand for the learning gains. Accordingly, the

xtended P-type ILC law Eq. ( 24 ) in frequency domain is given by 

 k+1 
(
z −1 
) = U k 

(
z −1 
)+ 

( 

M ∑ 

m=1 

c m 

B m 

(
z −1 
)) −1 (

αE k 
(
z −1 
)+ βE k+1 

(
z −1 
))

(25)

hen, the convergence of the extended P-type ILC law ( 24) or Eq. ( 25) is guaranteed by the
ollowing Theorem 2 . 

heorem 2. For the LDT SISO system ( 7) with Assumption 1, utilize the extended P-type
LC law ( 24) or Eq. ( 25) . If the learning gains α and β in ( 24) or Eq. ( 25) make that 
 

 

 

 

 

0 < 

α
β

< 1 , 

| 1 + β| − | β| φ · max 

{ 

∣∣∣∣∣
(

M ∑ 

m=1 
c m 

B m 

(
z −1 
))−1 

∣∣∣∣∣
} 

> 

β+ α

β−α
, 

(26)

here φ defined in Eq. (10) is the approximation error of 
∑ M 

m=1 c m 

B m 

( z −1 ) to G ( z −1 ) , then,
he ILC tracking error E k ( z −1 ) converges strictly monotonically to zero as the iteration number

goes to infinity. 
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E

 

m

∣∣∣∣  
Proof. Substituting the extended P-type ILC law ( 25) into Eq. (15) , we have 

 k+1 
(
z −1 
) = E k 

(
z −1 
)− G 

(
z −1 
)( 

M ∑ 

m=1 

c m 

B m 

(
z −1 
)) −1 (

αE k 
(
z −1 
)+ βE k+1 

(
z −1 
))

. 

Subsequently, there is 

∣∣E k+1 
(
z −1 )∣∣ = 

∣∣∣∣∣∣∣∣∣
1 − α · G 

(
z −1 
)( M ∑ 

m=1 
c m 

B m 

(
z −1 
))−1 

1 + β · G 

(
z −1 
)( M ∑ 

m=1 
c m 

B m 

(
z −1 
))−1 

∣∣∣∣∣∣∣∣∣
· ∣∣E k 

(
z −1 )∣∣

= 

∣∣∣∣∣∣∣∣∣
1 − α · G 

(
z −1 
)( M ∑ 

m=1 
c m 

B m 

(
z −1 
))−1 

1 + β · G 

(
z −1 
)( M ∑ 

m=1 
c m 

B m 

(
z −1 
))−1 

∣∣∣∣∣∣∣∣∣

k 

· ∣∣E 1 
(
z −1 
)∣∣ (27)

If the learning gains α and β satisfy ( 26) , there are 0 < | α
β
| < 1 and | 1 + β| − | β| φ ·

ax { | ( ∑ M 

m=1 c m 

B m 

( z −1 ) ) 
−1 | } > 

β+ α

β−α
= 

| 1+ 

α
β
| 

1 −| α
β
| > 0. As a result, 

α

β

∣∣∣∣+ 

∣∣∣1 + 

α
β

∣∣∣∣∣∣∣∣| 1 + β| − | β| φ · max 

{ 

∣∣∣∣∣
(

M ∑ 

m=1 
c m 

B m 

(
z −1 
))−1 

∣∣∣∣∣
} 

∣∣∣∣∣
< 1 (28)

On the other hand, we have ∣∣∣∣∣∣∣∣∣
1 − α · G 

(
z −1 
)( M ∑ 

m=1 
c m 

B m 

(
z −1 
))−1 

1 + β · G 

(
z −1 
)( M ∑ 

m=1 
c m 

B m 

(
z −1 
))−1 

∣∣∣∣∣∣∣∣∣

= 

∣∣∣∣∣∣∣∣∣
−α

β
+ 

1 + 

α
β

1 + β · G 

(
z −1 
)( M ∑ 

m=1 
c m 

B m 

(
z −1 
))−1 

∣∣∣∣∣∣∣∣∣
≤
∣∣∣∣αβ
∣∣∣∣+ 

∣∣∣1 + 

α
β

∣∣∣∣∣∣∣∣1 + β · G 

(
z −1 
)( M ∑ 

m=1 
c m 

B m 

(
z −1 
))−1 

∣∣∣∣∣
= 

∣∣∣∣αβ
∣∣∣∣+ 

∣∣∣1 + 

α
β

∣∣∣∣∣∣∣∣1 + β + β ·
(

G 

(
z −1 
)−

M ∑ 

m=1 
c m 

B m 

(
z −1 
))( M ∑ 

m=1 
c m 

B m 

(
z −1 
))−1 

∣∣∣∣∣
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A

k

 

g

R  

o  

a  

F  

C  
< 

∣∣∣∣αβ
∣∣∣∣+ 

∣∣∣1 + 

α
β

∣∣∣∣∣∣∣∣| 1 + β| − | β| ·
∣∣∣∣∣
(

G 

(
z −1 
)−

M ∑ 

m=1 
c m 

B m 

(
z −1 
))( M ∑ 

m=1 
c m 

B m 

(
z −1 
))−1 

∣∣∣∣∣
∣∣∣∣∣

(29)

Noting that | 1 + β| − | β| φ · max { | ( ∑ M 

m=1 c m 

B m 

( z −1 ) ) 
−1 | } > 

β+ α

β−α
> 0 from Eq. (26) , and

 G ( z −1 ) −∑ M 

m=1 c m 

B m 

( z −1 ) | < φ in (10), we have 

| 1 + β| − | β| ·
∣∣∣∣∣∣
( 

G 

(
z −1 
)−

M ∑ 

m=1 

c m 

B m 

(
z −1 
)) ( 

M ∑ 

m=1 

c m 

B m 

(
z −1 
)) −1 

∣∣∣∣∣∣
> 

| 1 + β| − | β| φ ·
∣∣∣∣∣∣
( 

M ∑ 

m=1 

c m 

B m 

(
z −1 
)) −1 

∣∣∣∣∣∣
> 

| 1 + β| − | β| φ · max 

⎧ ⎨ 

⎩ 

∣∣∣∣∣∣
( 

M ∑ 

m=1 

c m 

B m 

(
z −1 
)) −1 

∣∣∣∣∣∣
⎫ ⎬ 

⎭ 

> 0. (30)

According to Eqs. (30) and (28) , the following can be derived from Eq. (29) , ∣∣∣∣∣∣∣∣∣
1 − α · G 

(
z −1 
)( M ∑ 

m=1 
c m 

B m 

(
z −1 
))−1 

1 + β · G 

(
z −1 
)( M ∑ 

m=1 
c m 

B m 

(
z −1 
))−1 

∣∣∣∣∣∣∣∣∣
< 

∣∣∣∣αβ
∣∣∣∣+ 

∣∣∣1 + 

α
β

∣∣∣∣∣∣∣∣| 1 + β| − | β| φ · max 

{ 

∣∣∣∣∣
(

M ∑ 

m=1 
c m 

B m 

(
z −1 
))−1 

∣∣∣∣∣
} 

∣∣∣∣∣
< 1 . (31)

t last, taking limitation on two sides of Eq. (27) , and considering Eq. (31) , we have 

lim 

→ + ∞ 

E k 
(
z −1 ) = 0. 

In addition, it is seen from Eq. (27) that | E k+1 ( z −1 ) | < | E k ( z −1 ) | . Therefore, the conver-
ence of E k ( z −1 ) is strictly monotonic. This completes the proof of Theorem 2 . 

emark 6. Similar to Remark 5 for Theorem 1 , the relation of feasible ranges
f the learning gains α and β in the proposed ILC law (24) with the AFD
pproximation error φ can be analyzed from the convergent condition (26).

rom (26), it is derived that { 
0 < 

α
β

< 1 

| 1+ β|− β+ α
β−α

| β| · ( max { | ( ∑ M 

m=1 c m 

B m 

( z −1 ) ) 
−1 | } ) −1 > φ

.

onsequently, there is { β > α > 0 

( 1 − 2α
β( β−α) 

) · ( max { | ( ∑ M 

m=1 c m 

B m 

( z −1 ) ) 
−1 | } ) −1 > φ

or
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β < α < 0, β ≤ −1 

( 1 − 2 
α−β

) · ( max { | ( ∑ M 

m=1 c m 

B m 

( z −1 ) ) 
−1 | } ) −1 > φ. 

Obviously, to get larger feasible ranges

f α and β, a smaller value of φ is expected. 

emark 7. It is worth noting that the proposed extended PD-type and P-type ILC laws with
onvergence conditions are fully based on the AFD approximation to the unknown transfer
unction G ( z −1 ) , which does not require any knowledge except for the linear minimum phase
haracteristic of the system model (5). The learning gains involved in the proposed ILC
aws can be easily derived by solving corresponding convergent conditions (13), (14), and
26). Therefore, Theorems 1 and 2 exploit an input-output data set based ILC technique in
requency domain to unknown LDT SISO systems, which guarantees a strictly monotonic
onvergence of ILC tracking errors. 

. Simulation example 

In this section, a simulation example is given to illustrate the effectiveness of the proposed
FD based ILC designs in frequency domain for LDT SISO systems. 

xample. Consider the ILC issue of a four-axis, closed loop DC servo selectively compliance
ssembly robot arm (SCARA) robot, SEIKO TT 3000 [31] , which is discretized with sampling
eriod T = 0. 01 s into the following LDT SISO system, 

 

(
z −1 
) = 

0. 04109 z −1 + 0. 03571 

z −2 − 1 . 58 z −1 + 0. 657 

(32)

The system (32) is assumed to work repetitively over a finite time duration { 0, 1 , 2, ..., N }
ith N = 100. The desired output is chosen as y d (n) = 

∑ 51 
l=1 a l [ 1 − cos ( b l n ) ] , where b 1 =

. 1 π , b l = 2( l − 1 ) π , ( l = 2, 3 , 4, ..., 51 ), and a l = 80 e −b l , ( l = 1 , 2, 3 , ..., 51 ). 
Assume that the initial iterative output of the system (32) is set as y k (0) = 0. To verify

he AFD based ILC designs in frequency domain, the accuracy of ILC tracking is evaluated
y the following index M E 

(k) on the mean error in frequency domain, 

 E 

( k ) = 

1 

p 

p ∑ 

i=1 

∣∣Y d 
(
e j ω i T 

)− Y k 
(
e j ω i T 

)∣∣ (33)

here ω i , ( i = 1 , 2, 3 , ..., p) is evenly sampled at [ 0, 2π/T ) with p = 200. It is noted
hat according to the sampling theorem in frequency domain [28] , the value of p should
e selected to satisfy p ≥ N . In the AFD based ILC designs, the function 

ˆ G ( z −1 , N̄ )

n (11) is firstly needed, which is computed from the frequency-domain based data
et Q = { ( ϑ r , G ( e j ϑ r ) ) , r = 0, 1 , ..., N̄ − 1 } with ϑ r = 

2πr 
N̄ 

and N̄ = 200. As a result,

= sup 

r=0, 1 ,..., ̄N −2 

| G ( e j 
2π

N̄ 
( r+1 ) ) − G ( e j 

2πr 
N̄ ) | = 0. 1854 is gotten. Then, with the parameter

etting of M = 8 and L g = 5 . 12, the estimated transfer function 

∑ M 

m=1 c m 

B m 

( z −1 ) =
 F 1 ( z −1 ) , e { a 1 } ( z 

−1 ) 〉 e { a 1 } ( z −1 ) + 

∑ 8 
m=2 〈 F m 

( z −1 ) , e { a m } ( z 
−1 ) 〉 e { a m } ( z −1 ) 

∏ m−1 
j=1 

z −1 −a j 
1 −ā j z −1 in AFD

orm is obtained, where the values of a m 

, ( m = 1 , 2, 3 , ..., 8 ) are given in Table 1 . As
n illustration for approximation result, the curves of 

∑ M 

m=1 c m 

B m 

( e jωT ) and G ( e jωT ) at
 ∈ [ 0, π/T ) with T = 0. 01 s are depicted in Fig. 2 . 

Based on the above AFD approximation to the transfer function (32), our ILC simulation
onsists of the following two parts: 
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Table 1 
The values of a m for m = 1 , 2, ..., 8 . 

a 1 a 2 a 3 a 4 

0.9000 0.6614 + 0.3743j 0.8810– 0.1841j 0.8097 + 0.2585j 
a 5 a 6 a 7 a 8 
0.8141–0.3069j –0.0899 + 0.0046j 0.9088– 0.0468j 0.4469– 0.35377j 

Fig. 2. Curves of 
M ∑ 

m=1 
c m B m ( e jωT ) and G ( e jωT ) at ω ∈ [ 0, π/T ) . 

Fig. 3. ILC tracking error index M E 

(k) at different iterations by using the two proposed AFD based ILC laws. 

 

 

 

 

 

1) The extended PD-type ILC law (11) with the initial control input u 1 (n) = 5 . 84n is applied
to the system (32). According to Theorem 1 , the values of learning gains μ and λ in the
ILC law (11) are chosen as μ = 3 . 75 and λ = 3 . 66 from Eq. (14) . Consequently, the solid
line in Fig. 3 presents the profile of the ILC tracking error index M E 

(k) by using the
extended PD-type ILC law (11). In Fig. 4 , the tracking performance of the system output
2458 
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Fig. 4. Tracking performance of the system output y k (n) to the desired trajectory y d (n) at iterations k = 1 , k = 2, 
and k = 6 , respectively, with the extended PD-type ILC law (11). 

Fig. 5. Tracking performance of the system output y k (n) to the desired trajectory y d (n) at iterations k = 1 , k = 2, 
and k = 6 , respectively, with the extended P-type ILC law ( 24) . 

 

 

 

 

 

 

 

 

 

 

y k (n) to the desired y d (n) at different iterations is shown. Clearly, the extended PD-type
ILC law (11) surely drives the ILC tracking error to zero strictly monotonically as the
iteration number k increases. Figs. 3 and 4 are consistent with the theoretical results of
the extended PD-type ILC law (11) in Theorem 1 . 

2) The extended P-type ILC law (24) with the initial control input u 1 (n) = 5 . 84n is applied
to the system (32). On the basis of Theorem 2 , the values of learning gains α and β in the
ILC law (24) are taken as α = 1 . 75 and β = 3 . 75 from Eq. (26) . As a result, the dashed
line in Fig. 3 presents the profile of the ILC tracking error index M E 

(k) by using the
extended P-type ILC law (24). And Fig. 5 shows the tracking performance of the system
output y k (n) to the desired y d (n) at different iterations. Surely, the extended P-type ILC
law (24) drives the ILC tracking error to zero strictly monotonically as the iteration number
2459 
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k increases. Figs. 3 and 5 verify the theoretical results of the extended P-type ILC law
(24) in Theorem 2 . 

Regarding the comparisons of the two AFD based ILC laws (11) and (24), the computa-
ional burden of the two ILC laws is almost identical. Thanks to the efficient integration of
he AFD approximation into the ILC laws, simulation results in Figs. 2 –5 show no significant
ifferences between the two AFD based ILC laws in terms of the convergence speed and the
ransient performance of the controlled system. Both the convergence speed of the two AFD
ased ILC laws are very fast. 

. Conclusion 

To avoid the dependence of traditional ILC methods on the system model information to
ome extent, two completely data-driven ILC designs in frequency domain have been put
orward with verification of some numerical results for the LDT SISO systems with unknown
ransfer functions. The designs of the proposed data-driven ILC laws are divided into two
teps. During the first repetition/iteration process of ILC, the input–output data set of the LDT
ISO system with a pulse signal input is used to model the unknown transfer function into an
FD representation. Then, two AFD representation based extended PD-type and P-type ILC

aws with data-driven determining techniques for learning gains are presented. It has been
emonstrated by mathematical proof and numerical simulation that using the two proposed
ata-driven ILC algorithms, the strictly monotonic convergence of ILC tracking error can be
chieved in a deterministic way. 

eclaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal
elationships that could have appeared to influence the work reported in this paper. 

cknowledgment 

This work is supported in part by the National Natural Science Foundation of China under
rant 62173354, in part by the Science and Technology Plan Project of Guangzhou under
rant 202102080656 , and in part by the Science and Technology Development Fund of Macao
AR FDCT0123/2018/A3 . 

ppendix. Equivalence of ‖ R F ( z −1 , M ) ‖ ≤ L g √ 

M 

to | R F ( z −1 , M ) | ≤ L g √ 

M 

Proof. According to the definition of norm on complex function, we have 

R F 
(
z −1 , M 

)∥∥ = 

∥∥R F 
(
e jη, M 

)∥∥ = 

√ 

1 

2π

∫ 2π

0 

∣∣R F 
(
e jη, M 

)∣∣2 dη, (A.1)

here z −1 = e jη with η ∈ [ 0, 2π) . 

As | R F ( z −1 , M ) | ≤ L g √ 

M 

, from Eq. (A.1) , we have ‖ R F ( z −1 , M ) ‖ ≤
√ 

1 
2π

∫ 2π

0 
L 2 g 

M 

dη = 

L g √ 

M 

. 

On the other hand, as ‖ R F ( z −1 , M ) ‖ ≤ L g √ 

M 

, if | R F ( z −1 , M ) | ≤ L g √ 

M 

is not true, then,

here is | R F ( z −1 , M ) | > 

L g √ 

M 

. Consequently, ‖ R F ( z −1 , M ) ‖ = 

√ 

1 
2π

∫ 2π

0 | R F ( e jη, M ) | 2 dη >
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. It contradicts ‖ R F ( z −1 , M ) ‖ ≤ L g √ 
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. Therefore, ‖ R F ( z −1 , M ) ‖ ≤ L g √ 
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is

quivalent to | R F ( z −1 , M ) | ≤ L g √ 
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. This completes the proof. 
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