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Abstract Positive-instantaneous frequency representation for transient signals
has always been a great concern due to its theoretical and practical importance,
although the involved concept itself is paradoxical. The desire and practice of
uniqueness of such frequency representation (decomposition) raise the related
topics in approximation. During approximately the last two decades there has
formulated a signal decomposition and reconstruction method rooted in har-
monic and complex analysis giving rise to the desired signal representations.
The method decomposes any signal into a few basic signals that possess posi-
tive instantaneous frequencies. The theory has profound relations to classical
mathematics and can be generalized to signals defined in higher dimensional
manifolds with vector and matrix values, and in particular, promotes kernel
approximation for multi-variate functions. This article mainly serves as a sur-
vey. It also gives two important technical proofs of which one for a general
convergence result (Theorem 3.4), and the other for necessity of multiple kernel
(Lemma 3.7).

Expositorily, for a given real-valued signal f one can associate it with a
Hardy space function F whose real part coincides with f. Such function F has
the form F = f + iHf, where H stands for the Hilbert transformation of the
context. We develop fast converging expansions of F in orthogonal terms of
the form

F =
∞∑

k=1

ckBk,

where Bk’s are also Hardy space functions but with the additional properties

Bk(t) = ρk(t)eiθk(t), ρk � 0, θ′k(t) � 0, a.e.
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The original real-valued function f is accordingly expanded

f =
∞∑

k=1

ρk(t) cos θk(t)

which, besides the properties of ρk and θk given above, also satisfies

H(ρk cos θk)(t) = ρk(t) sin θk(t).

Real-valued functions f(t) = ρ(t) cos θ(t) that satisfy the condition

ρ � 0, θ′(t) � 0, H(ρ cos θ)(t) = ρ(t) sin θ(t)

are called mono-components. If f is a mono-component, then the phase deriva-
tive θ′(t) is defined to be instantaneous frequency of f. The above described
positive-instantaneous frequency expansion is a generalization of the Fourier se-
ries expansion. Mono-components are crucial to understand the concept instan-
taneous frequency. We will present several most important mono-component
function classes. Decompositions of signals into mono-components are called
adaptive Fourier decompositions (AFDs). We note that some scopes of the stud-
ies on the 1D mono-components and AFDs can be extended to vector-valued or
even matrix-valued signals defined on higher dimensional manifolds. We finally
provide an account of related studies in pure and applied mathematics.

Keywords: Möbius transform, blaschke product, mono-component, hilbert
transform, hardy space, inner and outer functions, adaptive fourier decompo-
sition, rational orthogonal system, nevanlinna factorization, beurling-lax theo-
rem, reproducing kernel hilbert space, several complex variables, clifford alge-
bra, pre-orthogonal AFD
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1 Introduction

It is a common sense among analysts that “On the unit circle it is harmonic
analysis; and inside the unit circle is complex analysis” [40], and the same is
true for a manifold and its neighborhood regions. In general, the following
mechanism may be regarded as complex analysis method of harmonic analysis.
When studying analysis on the boundary of a region, say for instance, in an
Euclidean space, one can at the cost of one more (or p-more) dimension (dimen-
sions), imbed the region together with its boundary into the larger space, while
the latter is equipped with a Cauchy complex structure, including the Cauchy
Theorem, Cauchy kernel and the Cauchy formula, etc. That is, one treats the
boundary of the region as a co-dimension 1 (or co-dimension p) manifold in
the larger space with a Cauchy complex structure. With the complex structure
one can define complex Hardy spaces consisting of “good” complex holomor-
phic functions in the regions divided out by the manifold. By “good” here we
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in particular mean the complex-Hardy functions defined on the regions having
non-tangential boundary limits as projections into the corresponding function
spaces on the manifold. Conversely, each function in an appropriate function
class on the manifold can be be made to correspond with one of those Hardy-
non-tangential boundary limits, the latter being called analytic signals. Those
ideas appeared in the lectures of Cheng and Deng given in Peking University
[10], in the book of Gorusin translated by Chen [41], in works of A. McIntosh
and, separately, of C. Kenig and other authors, in relation to complex Hardy
spaces, singular integrals, boundary value problems and related topics on Lip-
schitz curves and surfaces. This article serves as a survey on the study that
the author and his collaborators have been undertaking by implementing the
complex analysis method to harmonic and signal analysis.

The study can be divided into two parts of which one is mono-component
function theory, dealing with signals possessing a non-negative instantaneous
frequency function; and the other is approximation to arbitrary function with
appropriate mono-components. Note that the monomials zn, n = 0, 1, . . . , are
particular mono-components, while the Fourier series expansion is a mono-
component approximation. The study that we are to explore is a generalization
of the Fourier theory into the scope of the Beurling-Lax Theorem-related direct
sum decomposition of the Hardy spaces into the forward shift and backward
shift invariant subspaces.

The study at beginning was motivated by the tentative definition of the
concept instantaneous frequency (IF), or, in brief, the frequency function, by
Gabor [35]. It is still a controversial concept up to the present time. People
tend to believe that for a general signal there is a certain “frequency” at each
moment of time. This belief is supported by sinusoidal functions that possess
constant frequencies. Justification of existence of a frequency function crucially
depends on how to define IF. Unfortunately, except for the sinusoidal functions
the IF concept itself appears to be paradoxical: “frenquency” is the oscillation
number (or in the averaging sense) per unit time duration, hence a time inter-
val is required in order to determine it; while “instantaneous” involves only a
time moment. The concept is also contradictory with the uncertainty principle.
There would be no uniformly accepted theory: A variety of engineering defi-
nitions of IF have been proposed of which, in the author’s opinion, all vague
and self-contradictory. None of the theory, nor the applications, are satisfied
neither by mathematicians, nor by physicians, and nor by signal analysts as
[8, 16]. The author’s view is that there may not exist an anticipated IF concept
for a general signal. One can, however, propose a mathematical and conceptual
definition of instantaneous frequency based on which signals can be effectively
analyzed. The proposed definition of IF is based on the Möbius transforma-
tion that, by its beauty in mathematics, has been ready to be used for the IF
definition. A coherent theory that has delicate and profound relations to clas-
sical mathematics and great potential in applications has been initialized. As
a new trend of Fourier analysis it emphasizes on non-linear phase phenomenon
and consists of two parts: defining the IF concept, and decomposing general
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signal into those possessing IF. We call the signals possessing an IF function
as mono-components (or MCs). Signals that do not possess an IF are called
multi-components. There are classical function classes belonging to the mono-
component function class. There are also newly constructed interesting and
significant function classes belonging to the mono-component function class.
The mono-component function theory is a combined effort by harmonic and
signal analysts (see Section 2 and the related literature in the references).

For mono-component approximation we note that Weiss and Weiss pub-
lished a paper in 1962 re-proving the Nevanlinna factorization theorem in the
complex Hardy spaces of one complex variable. The factorization result is a
crucial tool in the complex Hardy spaces theory. Directly related to the ap-
proximation, Coifman and Nahon developed the non-linear phase unwinding
algorithm (UWA) to expand any analytic signal into a series of Blaschke prod-
ucts [63]. In their 2016 paper [12] Coifman and Steinerberger formally published
the UWA theory and algorithm, and further developed some aspects initialized
in [63]. A later paper by those authors together with Wu developed the practi-
cal use of the unwinding method to functions of finite energy along with their
computation method of the IFs [13]. More recently a new paper by Coifman
and Peyriére studies invariant subspace decompositions including the Schauder
basis property of the unwinding series [11]. Being unaware of Nahon’s thesis,
Qian independently studied the UWA method and proved its H2-convergence in
Remark 4.4, [71], and independently uses the same English word “unwinding”
to call it in [81]. It is noted that UWA is a special case of UWAFD, the latter
being incorporated with a sifting process using a generalized backward shifting
operator together, as well as a maximal selection principle [71, 84].

As already mentioned unwinding method is only one of the two main ones in
the adaptive approximation methodology. The other one is base on the so called
maximal selection principle (MSP). The terminology adaptive Fourier decom-
position (AFD), as a matter of fact, at the very beginning started from the MSP
type [84], and further extended to the UWA type. The 1D maximal selection
type AFD heavily depends on the factorization properties of one complex vari-
able. For multi-variables cases, either with the several complex variables or the
Clifford algebra settings, the AFD methods are not directly applicable. In our
latest studies we extend the AFD idea to reproducing kernel Hilbert spaces with
certain boundary vanishing property, called pre-orthogonal AFD, or POAFD
in brief. The mono-component function theory and the related AFD approx-
imation theory have found significant applications, including those in system
identification, signal and image processing, etc. [27, 59, 61, 95, 125]. We will
include some literature with short descriptions on engineering applications.

The writing of the paper is organized as follows (Fig. 1). In Section 2
we present the main results of mono-component function theory, including the
definition of mono-component function, the inner function type, the Bedrosian
type, and the starlike type mono-components. In Section 3 we give an account
on various kinds of AFD algorithms in the classical setting, as well as in repro-
ducing kernel Hilbert spaces. In Section 4 we provide information on related
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studies and applications.

Fig. 1 Complex harmonic analysis method in analyzing signals

2 Mono-component function theory

2.1 Mono-component and IF

In 1946 Gabor proposed his analytic signal approach [38]. Throughout this
article we restrict ourselves to only signals with finite energy, or L2-functions.
The theory on the unit circle is parallel with that on the real line. To explain
the idea we most time restrict ourselves to the unit circle case. We occasionally
jump into the upper-half space context, including for instance when we describe
the ideas in relation to the Bedrosian type results in terms of Fourier transform.
Let s(t) be a real-valued signal of finite energy on the unit circle ∂D where D
denotes the unit disc. The associated analytic signal, denoted by s+(t), is
defined

s+(eit) =
1
2

(
s(eit) + iH̃s(eit) + c0

)
, (1)

where H̃ is the circular Hilbert transformation, and c0 is the 0-th Fourier coef-
ficient, or average of s on the circle. That is

H̃s(eit) =
1
2π

p.v.
∫ 2π

0
f(eiu) cot

(
t− u

2

)
du, c0 =

1
2π

∫ 2π

0
f(eiu)du.
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We note s+ is the non-tangential boundary limit of the Cauchy integral of s
(the Plemelj formula):

s+(eit) = lim
z→eit

1
2π

∫ 2π

0

f(eiu)
z − eiu

eiudu, a.e.

The fact that s is real-valued makes the Hilbert transform part 1
2H̃f in Eq.

(1) the purely imaginary part of s+, and s = 2Res+ − c0. There also holds
the following relation that in the real line context corresponds to the Laplace
transform

s+(eit) =
∞∑

k=0

cke
ikt.

What is important is that s+(eit) has a holomorphic continuation into the
interior of the disc

s+(z) =
∞∑

k=0

ckz
k, |z| < 1,

as a Hardy H2(D) function in the sense that whose non-tangential boundary
limit coincides with s+(eit). The Fourier multiplier of the circular Hilbert trans-
formation is −isgn, that is, if

s(eit) =
∞∑

k=−∞
cke

ikt, ck =
1
2π

∫ 2π

0
s(eiu)e−ikudu,

where sgn(k) = 1, if k > 0, and sgn(k) = −1, if k < 0, and sgn(0) = 0, then

H̃s(eit) =
∞∑

k=−∞
(−i)sgn(k)ckeikt.

In the sequel we drop the tilde sign above H̃ and write it simply as H.
This Fourier multiplier form of the Hilbert transform gives rise to the Hilbert

transform characterization of the Hardy spaces. If restricted to the L2 cases, it
is: A function s of finite energy belongs to the Hardy H2 space if and only if
Hs = −is [67]. This result holds in general contexts including the upper-half
space cases in one and higher dimensions ([22, 23, 25]).

In writing s+(eit) = ρ(t)eiθ(t), Gabor defined that the derivative of the phase
function, θ′(t), to be the instantaneous frequency of s(eit). In commenting on
this definition we would say that the definition is “good”, because if we take
the example that for a positive integer n, s(eit) = cos(nt), then in such way,
s+(eit) = eint, and the phase derivative is n, being complementary with the
common sense. Gabor’s definition, however, is not valid for general signals
s ∈ L2(∂D), but only tentative, due to the following reasons. First s, and thus
s+ as well, is an equivalent class of Lebesgue square-integrable functions that
cannot be expected to be smooth and thus have phase derivative; and secondly,
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the derivative, if exists, cannot be expected to be non-negative, as required in
physics, and thus cannot stand as a qualified instantaneous frequency function.
It is the signal analysts who decided that the IFs should be non-negative and
thus can be effectively analyzed with applications. The primary importance is
that the instantaneous frequency concept is generated from physics practice:
it is an extension of the vibrating frequency. In the average sense the phase
derivative of an analytic signal is non-negative as read out from the relation

1
2π

∫ 2π

0
θ′(t)|s+(eit)|2dt =

∞∑
k=0

k|ck|2

[16, 29]. Pointwisely, however, the phase derivative of an analytic signal can
be negative. For instance, for any non-trivial outer function in the complex
Hardy space we have a set of positive Lebesgue measure on which the phase
derivatives are strictly less than zero [70].

The strategy is to define a function set that exactly contains the signals
having well defined non-negative analytic phase derivatives. It is the set of the
functions called mono-components.
Definition (Qian [69]) Let s be a real- or complex-valued signal on the unit
circle of finite energy. We call s a mono-component, or real-mono-component, if
its analytic signal, or equivalently its projection into the Hardy space H2, viz.,
s+(t) = 1

2 (s(t) + iHs(t) + c0) , in its phase-amplitude representation s+(t) =
ρ(t)eiθ(t) satisfies θ′(t) � 0, a.e., where the phase derivative θ′(t) is defined
through the non-tangential limit of the same quantity from inside of the region.
Precisely, in the unit circle case,

θ′(t) = lim
r→1−

θ′r(t), a.e.,

where s+(reit) = ρr(t)eiθr(t) is the holomorphic continuation inside the unit
disc. When s is a mono-component we call s+ a complex-mono-component, or
simply mono-component as well. When and only when s is a mono-component
it has an instantaneous frequency function defined as its non-negative analytic
phase derivative θ′(t).

Since s+ is the non-tangential boundary limit of a Hardy space function
inside the unit disc, θ′r(t) everywhere exists, and

θ′r(t) = Re{re
its+

′(reit)
s+(reit)

}.

We note that the class of mono-component functions is closed under the multi-
plication operation but not the addition.

2.2 The inner function type mono-components

The above definition allows a number of interesting mono-component sub-
classes. First we will mention the class of inner functions. It is easily observed
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that the boundary function of the canonical Möbius transform mapping a ∈ D
to zero, that is,

ea(eit) =
eit − a

1 − az
= eiθa(t)

is an analytic signal whose phase derivative θ′a is the Poisson kernel for the
disc [38, 68, 78]. This early study along this direction was joined by Chen
and Li. This implies that finite Blaschke products (Blaschke products with
finitely many zeros) are all mono-components. The question is whether infinite
Blaschke products are mono-components. As an application of the Julia-Wolff-
Carathéodory Theorem the following result on general inner functions (contain-
ing finite and infinite Blaschke products and singular inner functions) is proved
[70].

Theorem 2.1 (Qian [70]) Let θ be a real-valued Lebesgue measurable function
on the unit circle. Then the phase function eiθ is a mono-component if and only
if eiθ is the non-tangential boundary limit of an inner function, or, equivalently,
if and only if H(eiθ) = −ieiθ.

The earlier study in [111] gives good observations and partial results. It
is noted that in the earlier digital signal processing (DSP) literature the fact
that Blaschke products possess positive phase derivative functions were stated
without valid proof, as far as being aware by the author [14]. DSP scholars
and engineers have been using the concept physically realizable signals with
minimum phase that are outer functions without rigorous proof either. The
minimum phase phenomenon is based on the fact that all boundary values of
inner functions have non-negative phase derivative. The reference [70] proves
the opposite property for outer functions: Under mild conditions that guarantee
existence of the phase derivative function θ′(t) for an outer function there holds

∫ 2π

0
θ′(t)dt = 0.

The inner and outer functions are thus characterized in terms of sign prop-
erties of their phase derivatives.

2.3 The bedrosian type mono-components

The second class of mono-components is called the Bedrosian type. The
Bedrosian theorem asserts the relation

H(fg) = fHg

under two forms of conditions, both being based on Fourier spectrum property
of the functions. The first form of the conditions is that there exists σ > 0
such that suppf̂ ⊂ [−σ, σ], and supp ĝ ⊂ (−∞, σ] ∩ [σ,∞). The second form of
the conditions is that both functions f and g are in the Hardy H2 space. In
the language of the Fourier spectrum, by recalling the Paley-Wiener Theorem
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for the Hardy space functions the second form of the conditions is equivalent
with f, g ∈ L2, suppf̂ ⊂ [0,∞) and supp ĝ ⊂ [0,∞). The idea of using the
Bedrosian type results is as follows. Suppose that eiθ is an analytic signal
with the property θ′(t) � 0, a.e. This kind of functions now have all been
characterized by Theorem 2.1. One wishes to find a non-negative function ρ(t)
that makes the Bedrosian type relation H(ρ(t)eiθ = ρH(eiθ) hold. For such a
function ρ there holds

H(ρeiθ) = ρH(eiθ) = (−i)ρeiθ.

By recalling the Hilbert transform characterization of the Hardy space functions
the last equality implies that ρeiθ is an analytic signal, and, due to the positivity
of the phase derivative θ′(t), it is a mono-component.

However, the original Bedrosian theorem cannot be directly used. The first
form of the conditions refers to bandlimiting properties of the functions f and
g. That, unfortunately, are not our case: The inner functions g do have the
full spectrum range. The second form of the conditions would require that the
amplitude function itself is the boundary limit of some Hardy space function.
But it is not the case either (see the example given in Eq. (2)).

In order to enrich the mono-component class new conditions for the Bedrosian
identity to hold were seeking by mainly a group of Chinese harmonic and signal
analysts, including Chen, Tan, Wang, Wang, Xu, Yan, Yang, Yu, Zhang, Yan,
etc., as well as the author ([82, 92, 105, 113, 120, 122], etc.), with Fourier anal-
ysis methods and complex analysis methods. The most successful result along
this line is based on the following observation.

The essential structure of Bedrosian type mono-components is as follows:

s(eit) =
(

1
1 − a1eit

+
1

1 − a1e−it

)
eit − a1

1 − a1eit
eit − a2

1 − a2eit
. (2)

On the circle it is a real-valued function multiplied with an order-2 Blaschke
product. In verifying that s(eit) is a Bedrosian type mono-component, the key
point is that

1
1 − a1z

z − a1

1 − a1z

z − a2

1 − a2z

is an analytic function in the disc; and for |z| = 1, the product

1
1 − a1z

z − a1

1 − a1z

z − a2

1 − a2z

has an analytic continuation to the interior part of the disc. As result, s(z)
is a bounded analytic function. Since 1

1−a1eit + 1
1−a1e−it is real-valued and has

finitely many sign-change pints on |z| = 1, it is, therefore, a so called generalized
amplitude on the circle. We have the following general result ([82], the finite
order Blaschke products case is proved in [106]).
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Theorem 2.2 Let φ(eit) be an infinite Blaschke product, where a1, . . . , an, . . .
are the totality of its zeros, the multiples being all counted. Then (1) ρ(t) is
a real-valued function such that ρ(t)φ(eit) ∈ Hp(∂D), 1 � p � ∞, if and only
if ρ is the real part of some function in the backward-shift-invariant subspace
induced by the Blaschke product φ(eit), that is ρ ∈ Re{Hp(∂D)∩φ(eit)Hp(∂D)};
and (2) For 1 < p <∞, ρ ∈ Re{Hp(∂D)∩φ(eit)Hp(∂D)} if and only if, in the
Lp norm sense,

ρ(t) = Re

{ ∞∑
k=1

ckBk(eit)

}
,

where ck = 〈ρ(t), Bk(eit)〉 = 1
2π

∫ 2π

0
ρ(t)Bk(eit)dt, k = 1, 2, . . . , and {Bk}∞k=1 is

the rational orthonormal system (or TM-system) generated by a1, . . . , ak, . . . ,
that is

Bk(z) =

√
1 − |ak|2
1 − akz

k−1∏
l=1

z − al

1 − alz
. (3)

2.4 The non-bedrosian type mono-components: the starlike and boundary
starlike type

The third type of mono-components is called the non-Bedrosian type which
contains all p-starlike as well as boundary starlike functions in one complex
variable. This kind of mono-components explores a different type of connections
between mono-components and conformal mappings. Let f denote a univalent
conformal mapping that, with f(0) = 0, maps the unit disc together with
its continuous and thus rectifiable boundary. Obviously f(eit) is a complex
mono-component as its phase function is increasing along with increasing of
the angular variable t. Below we will denote by S ∗ the set of such starlike
functions. Next we define several other likewise function classes including p-
starlike functions as follows.
Definition Let p be any positive integer. Denote by S (p) the set of p-valent
holomorphic functions satisfying the following conditions:
(i) There exists r : 0 < r < 1, such that for all z : r < |z| < 1, there holds
Re{zf ′(z)

f(z) } > 0; and

(ii)
∫ 2π
0 Re{zf ′(z)

f(z) }dt = 2pπ for all z : r < |z| < 1. Functions belonging to S (p)
are called p-starlike functions.

Definition A function f is said to be a weak p-valent starlike function, and
denoted f ∈ Sw(p), if and only if it is holomorphic in D with precisely p zeros
in D (including multiples) and with the expression

f(z) = [h(z)]p
p∏

k=1

(z − ak)(1 − akz)
z

,

where h ∈ S ∗.
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With p = 1 and a1 = 0 we obtain Sw(1) = S (1). The article [43] shows
that S (p) is a proper subset of Sw(p). The advantage of the latter is that
functions in Sw(p) have an explicit representation formula. In order to reveal
the essential structure we assume the convenient property that functions under
study have a holomorphic continuation to an open neighborhood of the closed
unit disc. Denote by A the set of such holomorphic functions, one can show
A ∩S (p) = A ∩Sw(p) [82]. To describe the relation between mono-components
and the starlike function family we need two more definitions.
Definition [54] A univalent function is said to be a boundary starlike function
with respect to the origin if f is holomorphic in D, limr→1− f(r) = 0, f(D) is
starlike with respect to the origin, and Re{eiαf(z)} > 0 for some real number
α and all z ∈ D. Denote by G ∗ the set of all boundary starlike functions with
respect to the origin.

The following definition specifies a class of mono-components.
Definition Let f(eit) = ρ(t)eiθ(t) ∈ Lp(∂D), p � 1. Then f is called a Hilbert-
n, or H-n atom, if it satisfies the following conditions:
(1) H(ρ cos θ) = ρ sin θ;
(2) ρ � 0, θ′ � 0 a.e.; and
(3)

∫ 2π
0 θ′(t)dt = nπ.

Note that due to (1) f has a holomorphic continuation into the unit disc
as a Hardy space function. In (2) the phase derivative θ′ takes the sense given
in . The condition (3) refers to the multivalent degree of f. The concept H-p
atom was first proposed in [69] for p = 2 with the result that a function f
is a H-2 atom if and only if f is a starlike function about the origin. Some
further studies along this line for p = 2n are give in [106]. The following result
ultimately presents the relation between the H atoms and the starlike-boundary
starlike functions.

Theorem 2.3 Assume that f is holomorphic in D having p zeros in the open
disc D. Then f(eit) is a H-n atom, n � 1, if and only if

f2(z) =

[
p∏

i=1

hi(z)

]2 n−2p∏
j=1

g2
j (z)

=

[
p∏

k=1

(z − ak)
(

1
z
− ak

)]2 [n−2p∏
k=1

(z − bk)
(

1
z
− bk

)]
[h(z)]n,

where {ak}p
k=1 are the zeros of f(z) inside the unit disc, {bk}n−2p

k=1 are the zeros
of f(z) on the unit circle (both can be with multiples), h(z) ∈ S ∗, hi ∈ Sw(1),
and gj(bjz) ∈ G ∗ are all holomorphic in D, i = 1, . . . , p, j = 1, . . . , n− 2p.

The results on mono-component functions in all the three categories, viz.,
the inner function type, the Bedrosian type, and the starlike type, are not only
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Fig. 2 Basic types of mono-component functions

important results in the mono-component function theory, but also new un-
derstanding to related topics in the classical harmonic and complex analysis
(Fig. 2).

3 Adaptive fourier approximations

In this part we will give expository descriptions of adaptive Fourier approxi-
mations (AFD). In the one complex variable cases AFD gives rise to positive
frequency expansions of signals into holomorphic rational functions, while in
higher dimensions AFD offers at the moment at least fast converging rational
approximations.

3.1 Mono-component decomposition of signals in general

The idea of positive frequency decompositions of signals is not new, it goes back
to more than two hundreds years ago in relation to the name Jean Baptiste
Joseph Fourier and other names. Fourier series will be exactly a particular case
of the general theory that we are now to present.

Let s be a real-valued function defined on the unit circle ∂D with finite
energy. We recall that its Hardy H2 space projection is s+ = 1

2(s+ iHs + c0).
The simple relation s = 2Re{s+}− c0 implies that a complex-mono-component
decomposition s+(eit) =

∑∞
k=1 ρk(t)eiθk(t) (The possible coefficients ck are ab-

sorbed by the corresponding amplitudes ρk and the phases θk) will gives rise to
a real-mono-component decomposition, or positive-frequency decomposition of
s : s(eit) = −c0 +

∑∞
k=1 ρk(t) cos θk(t). We are hence reduced to decomposing

the complex Hardy space function s+.
The philosophy is to find intrinsic constructing blocks of positive-time

varying-instantaneous frequency. Here “intrinsic” has profound meaning. Un-
der the present setting we understand it as “fast converging”. In [80] we show
that for any Hardy space function s+ and any ε > 0, there exist a constant c
and two 1-starlike functions m1 and m2 such that

‖s+ − (c+m1 +m2)‖ � ε.



Positive-instantaneous frequency and approximation 349

The two starlike functions m1 and m2 are not unique, and, according to their
construction, are very irregular. Deeper and more thorough consideration sug-
gests that one would better use function systems of a certain type consisting of
well behaved mono-components with explicit expressions such as rational func-
tions, and better with monotonously increasing frequencies. In order to obtain
intrinsic decomposition fast convergence would be desired.

3.2 One dimensional core-adaptive fourier decomposition (Core-AFD) and its
variations

It did not take much time for the researcher to decide to use the rational
orthonormal system or TM system. The difference with the traditional use of
the system is that now it has to be adaptive: One must select parameters for
the intrinsic construction concern, that means fast convergence. The system
was already been introduced in Theorem 2.2. We note that TM systems in
general cannot be avoided for they are Gram-Schmidt (G-S) orthogonalization
of the partial fractions with poles outside the closed unit disc, the latter being
fundamental constructive building blocks of rational functions in the Hardy
spaces. TM systems consist of functions of positive frequency due to their
construction in (finite) Blaschke products.

In the sequel we change our function notation s+ in the Hardy H2(D)
to f. In the unit circle context we have f(z) =

∑∞
l=1 clz

l,
∑∞

l=1 |cl|2 < ∞.
Now we seek a decomposition of f into a TM system with adaptively selected
parameters. The collection of the functions

ea(z) =

√
1 − |a|2
1 − az

, a ∈ D

consists of normalized Szegö kernels of the disc. Set f = f1. First write

f(z) = 〈f1, ea1〉ea1(z) +
f1(z) − 〈f1, ea1〉ea1(z)

z−a1
1−a1z

z − a1

1 − a1z
.

We note that in this stage a1 can be any complex number in the unit disc and
the above is an identity. Denoting

f2(z) =
f1(z) − 〈f1, ea1〉ea1(z)

z−a1
1−a1z

,

calling it the reduced remainder, the identity is re-written as

f(z) = 〈f1, ea1〉ea1(z) + f2(z)
z − a1

1 − a1z
. (4)

We call the operator mapping f1 to f2 the generalized a1-backward shift
operator and f2 the generalized a1-backward shift of f1. The terminology is a
generalization of the classical backward shift operator

S(f)(z) = a1 + a2z + · · · + ck+1z
k + · · · =

f(z) − f(0)
z

.
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Recognizing that f(0) = 〈f, e0〉e0(z), the operator S is the generalized 0-
backward shift operator.

Notice that the Szegö kernel is the Cauchy kernel under the arc-length
measure and thus has the reproducing kernel property. Due to the orthogonality
in the Hilbert space and the modular one property of the Möbius transform,
we have the energy relations

‖f‖2 = ‖〈f1, ea1〉ea1‖2 + ‖f2‖2 = (1 − |a1|2)|f1(a1)|2 + ‖f2‖2.

The purpose now is to extract the maximal energy portion from the term
〈f1, ea1〉ea1(z). It is reduced to maximize (1− |a1|2)|f1(a1)|2 among all a1 ∈ D.
Although D is an open set we are fortunate that there exists a1 in D such that

a1 = arg max{(1 − |a|2)|f1(a)|2 : a ∈ D}

[84]. The existence of such maximal selection is called Maximal Selection Prin-
ciple. Selecting such a1 and repeating the process for f2, and so on. We call
the process from f1 to get f2 through a maximal selection a1 as maximal sifting
from f1 to f2 through a1. After n siftings one gets

f(z) =
n∑

k=1

〈fk, eak
〉Bk(z) + fn+1

n∏
k=1

z − ak

1 − akz
,

where for k = 1, . . . , n,

ak = arg max{(1 − |a|2)|fk(a)|2 : a ∈ D},

Bk(z) = B{a1,...,ak}(z) =

√
1 − |ak|2
1 − akz

k−1∏
l=1

z − al

1 − alz
,

and for k = 2, . . . , n + 1, fk is the maximal sifting of fk−1 through ak−1, that
is,

fk(z) =
fk−1(z) − 〈fk−1, eak−1

〉eak−1
(z)

z−ak−1

1−ak−1z

.

We have the following convergent theorem.

Theorem 3.4 For any given function f in the Hardy H2 space, by applying
the maximum sifting process at each step we have

f(z) =
∞∑

k=1

〈fk, eak
〉Bk(z).

This result was first proved in [84] based on the complex modula 1 property of
the Möbius transform. Below we provide a new proof releasing the modular 1
requirement for the system functions but only based on maximal selections of
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the parameters. The essence of the proof is contained in several proofs of [73],
also see [96].
Proof We prove the convergence by contradiction. Assume that through a
sequence of maximally selected parameters a = {a1, . . . , an, . . .} we arrive

f =
∞∑

k=1

〈fk, eak
〉Bk + h, h 	= 0. (5)

The routine argument by using the Riesz-Fisher Theorem shows that both
the functions

∑∞
k=1〈fk, eak

〉Bk and h are in H2. We note that from the Hilbert
space property h is orthogonal with all Bk, as well as with

∑∞
k=1〈fk, eak

〉Bk.
The relation (5) can be re-written

f =

(
M∑

k=1

+
∞∑

k=M+1

)
〈fk, eak

〉Bk + h,

where by our notation,

gM+1 =
∞∑

k=M+1

〈fk, eak
〉Bk + h = GM+1 + h.

To proceed we note that

〈fk, eak
〉 = 〈f,Bk〉 = 〈gk, Bk〉, (6)

where gk = f −∑k−1
l=1 〈fl, eal

〉Bl is the k-th standard remainder.
Therefore, we have

gM+1 =
∞∑

k=M+1

〈gk, Bk〉Bk + h.

Due to the density of the function set {ea}a∈D in H2, there exists a ∈ D such
that δ � |〈h, ea〉| > 0. We can in particular choose a to be distinguished from
all the selected ak’s. We are now to explore a contradiction in relation to the
selections of aM+1 for large M. Now, on one hand, by the Bessel inequality
applied to the infinite series part in Eq. (5), we have

|〈gM+1, BM+1〉| → 0, as M → 0. (7)

On the other hand we will show, for large M ,

|〈gM+1, B
a
M+1〉| >

δ

2
. (8)

This is then clearly a contradiction.
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The rest part of the proof is devoted to showing Eq. (8). Due to the
relations

|〈gM+1, B
a
M+1〉| � |〈h,Ba

M+1〉| − |〈GM+1, B
a
M+1〉| (9)

and

|〈GM+1, B
a
M+1〉| � ‖GM+1‖ → 0, as M → ∞, (10)

for large M the lower bounds of |〈gM+1, B
a
M+1〉| depend on the quantity of

|〈h,Ba
M+1〉|. Now for any positive integer M denote Xa

M+1 the (M + 1)-
dimensional space spanned by {ea, B1, . . . , BM}. We have two ways to compute
the energy of the projection of h into Xa

M+1, denoted ‖h/Xa
M+1‖2. One way is

based on the orthonormality of {B1, . . . , BM , B
a
M+1}. In such way, due to the

orthogonality of h with B1, . . . , BM , we have

‖h/Xa
M+1‖2 = |〈h,Ba

M+1〉|2.

The other way is based on the orthonormalization of the (M + 1)-tuple in the
order {ea, B1, . . . , BM}. Then we have

‖h/Xa
M+1‖2 � |〈h, ea〉|2 = δ2.

Hence we have, for any M , |〈h,Ba
M+1〉| � δ. In view of this last estimation

and (9), (10), we arrive at the contradiction given by (7), (8). The proof is
complete.

Remark It is noted that the selected parameters a1, . . . , an, . . . according the
maximal principle may not satisfy the hyperbolic non-separable condition

∞∑
k=1

(1 − |ak|) = ∞

and thus the generated TM system {Bk} may not be a basis. By doing such
decomposition one is not interested in whether the resulted TM system is a
basis, but only in whether it can effectively expand the given signal f. One is
indeed able to do so, and, in fact, achieves fast convergence.

Remark For arbitrary selections of a1, . . . , an, . . . , we arrive a pre-mono-
component decomposition: All entries in the infinite sum after being multi-
plied by eit become mono-components. If we choose a1 = 0, then all Bk’s are
mono-components, and AFD offers a mono-component decomposition.

Remark AFD is different from any existing greedy algorithm [24] for the fol-
lowing reasons. (i) On the algorithm side AFD is incorporated with a general-
ized backward-shift operation, or a sifting process, that changes the standard
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remainder to reduced remainder; (ii) The reduced remainder allows multiple se-
lections of parameters for optimal approximation at each of the iteration steps;
and (iii) The backward-shift operation automatically generates an orthonormal
system, or a TM system without using the Gram-Schmidt process.

Remark Restricted to a practical subclass the convergence rate for AFD is
M/

√
n where n is the order of the AFD partial sum. One has to note that this

is a good convergence rate for it is for non-smooth functions (boundary limits
of Hardy space functions). The classical convergence theorems may look better
but they are for smooth functions.

3.3 Unwinding AFD (UWAFD)

Let f = hg, where f, g are Hardy H2(D) functions, and h is an inner function.
Let f and g be expanded into their respective Fourier series, viz.,

f(z) =
∞∑

k=0

ckz
k, g(z) =

∞∑
k=0

dkz
k.

The Plancherel Theorem and the modula 1 property of inner functions assert
that

∞∑
k=0

|ck|2 = ‖f‖2 = ‖g‖2 =
∞∑

k=0

|dk|2.

In digital signal processing (DSP) there is following result: for any n,

∞∑
k=n

|ck|2 �
∞∑

k=n

|dk|2

(see, for instance [14, 26]).

In DSP this is referred to be energy front loading property of minimum phase
signals among physically realizable signals. This amounts to saying that after
factorizing out the inner function factor, the convergence rate of the Fourier
series of the remaining outer function speeds up. This suggests that the AFD
process would be better to incorporate a factorization process for speeding up
the convergence. This is reasonable: when a signal by its nature is of high
frequency, one should first perform “unwending” before extracting out from
it a maximal portion of lower frequency. We proceed it as follows [71, 81].
First we do factorization f = f1 = I1O1, where I1 and O1 are, respectively,
the inner and outer factors of f. The factorization is based on Nevanlinna’s
factorization theorem, also see [115]. The outer function has the explicit integral
representation

O1(z) = e
1
2π

R 2π
0

eit+z

eit−z
log |f1(eit)|dt

.
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The boundary value of the outer function is computed by using the boundary
value of f1. On the boundary the above integral is taken to be of the principal
integral sense. The imaginary part of the integral reduces to the circular Hilbert
transform of log |f1(eit)|. Next, we do a maximum sifting to O1. That gives

f(z) = I1(z)
[
〈O1, ea1〉ea1(z) + f2(z)

z − a1

1 − a1z

]
,

where f2 is the maximal shifting of O1 through a1 :

f2(z) =
O1(z) − 〈O1, ea1〉ea1(z)

z−a1
1−a1z

.

By factorizing f2 into its its inner and outer factors, f2 = I1O2, we have

f(z) = I1(z)
[
〈O1, ea1〉ea1(z) + I2(z)O2(z)

z − a1

1 − a1z

]
.

We next proceed a maximum sifting to O2, and so on. In such way we arrive
at the unwinding AFD decomposition [71]:

Theorem 3.5 The above procedure gives rise to the unwinding AFD (UWAFD)
decomposition

f(z) =
n∑

k=1

k∏
l=1

Il(z)〈Ok , eak
〉Bk(z) + fn+1(z)

n∏
k=1

z − ak

1 − akz

n∏
l=1

Il(z),

where fk+1 = Ik+1Ok+1 is the maximal shifting of Ok through ak, k = 1, . . . , n,
and Ik+1 and Ok+1 are respectively the inner and outer functions of fk+1. Fur-
thermore,

f(z) =
∞∑

k=1

k∏
l=1

Il(z)〈Ok, eak
〉Bk(z).

Remark Like AFD, unwending AFD (UWAFD) is a mono-component or pre-
mono-component decomposition. Experiments show that among various AFD
type algorithms UWAFD seems to converge most rapidly, that is in particular
on singular inner functions [81].

Remark If we do not incorporate the maximal sifting process as in UWAFD,
the algorithm falls into UWA, as first developed in [63]. Below we denote by
φk Blaschke products, with finite or infinite zeros, denote by ψk products of a
singular inner function and an outer function, and denote by fk H

2 functions,
where f = f1, fk(z) = ψk−1(z)−ψk−1(0), k = 2, . . . , ck = ψk(0), k = 1, 2, . . . . It
proceeds as

f(z) = f1(z) = φ1(z)ψ1(z)
= φ1(z) (ψ1(z) − ψ1(0) + ψ1(0))
= c1φ1(z) + φ1(z)f2(z)
= c1φ1(z) + φ1(z)φ2(z) (ψ2(z) − ψ2(0) + ψ1(0))
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= c1φ1(z) + c2φ1(z)φ2(z) + φ1(z)φ2(z)f3(z)
= · · ·
=

∞∑
k=1

ckφ1(z) · · · φk(z).

The convergence in H2 was first proved in Remark 4.4, [71], and several gen-
eralized convergence results were proved in [12]. In the recent paper [108] we
studied the computation aspect of UWA.

3.4 Cyclic AFD for n-best rational approximation

In Core-AFD the parameters a1, . . . , ak, . . . are selected one by one to construct
an optimal sequence of Blaschke forms to approximate the given function

n∑
k=1

〈f,B{a1,...,ak}〉B{a1,...,ak}(z). (11)

Now we change the question to the following: Given f ∈ H2(D) and a fixed
positive integer n, find n parameters a1, . . . , an such that the associated n-
Blaschke form (11) best approximate f, that is

‖f −
n∑

k=1

〈f,B{a1,...,ak}〉B{a1,...,ak}(z)‖ (12)

= min{‖f −
n∑

k=1

〈f,B{b1,...,bk}〉B{b1,...,bk}(z)‖ : {b1, . . . , bn} ∈ Dn}. (13)

This amounts an optimal but simultaneous selection of n parameters that is
obviously better than selections in the one by one manner. Simultaneous selec-
tion of the parameters in an approximating n-Blaschke form is equivalent with
the so called optimal approximation by rational functions of order not larger
than n. The latter problem was phrased as n-best rational approximation. It
has been a long standing open problem, presented as follows.

Let p and q denote polynomials of one complex variable. We say that (p, q)
is an n-pair if p and q are co-prime, both of degrees less than or equal to n,
and q does not have zero in the unit disc. Denote by Rn the set of all n-pairs.
If (p, q) ∈ Rn, then the rational function p/q is said to be a rational function of
degree less or equal n. Let f be a function in the Hardy H2 space in the unit
disc. To find an n-best rational approximation to f is to find an n-pair p1, q1)
such that

‖f − p1/q1‖ = min{‖f − p/q‖ : (p, q) ∈ Rn}.
Existence of such a minimum solution was proved many decades ago [112], a
practical algorithm to get a solution, however, has been an open problem till
now. The best n-Blaschke form approximation is essentially equivalent with the
n-best rational approximation. There is a separate proof for existence of the
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minimum in Eq. (12) [85]. We wish to take the advantages of the Blaschke form
to get an practical algorithm for the classical n-best rational approximation
problem. By using cyclic AFD algorithm we can easily get a solution of the
above mentioned problem if there is only one critical point for the objective
function [76]. In general, cyclic AFD offers a conditional solution depending
on the initial values to star with. Besides cyclic AFD there previously existed
an algorithm, RARL2, by the French institute INRIA, that again can only get
a conditional solution [4]. Both the theory and algorithm of cyclic AFD are
explicit. It directly finds out the poles of the approximating rational function.
The other rational approximation models mostly use the coefficients of p and
q as parameters in order to set up and solve the problem. Using coefficients
of polynomials, which is double amount of the parameter number of the best-n
Blaschke form setting, involves tedious analysis and computation. The ultimate
solution of the optimization problem lays on optimal selection of an initial status
to start with. Finding an optimal initial status itself is an NP hard problem.

For any given natural number n the objective function for the n-Blaschke
optimization problem is

A(f ; a1, . . . , an) = ‖f‖2 −
n∑

k=1

|〈f,Bk〉|2. (14)

Definition An n-tuple (a1, . . . , an) is said to be a coordinate-minimum point
(CMP) of the objective function A(f ; z1, . . . , zn) if for any chosen k among
1, . . . , n, whenever we fix the rest n − 1 variables, being z1 = a1, . . . , zk−1 =
ak−1, zk+1 = ak+1, . . . , zn = an, and select the kth variable zk to minimize the
objective function, we have

ak = arg min{A(f ; a1, . . . , ak−1, zk, ak+1, . . . , an) : zk ∈ D}.
In the Core-AFD algorithm we progress the following procedure: For a (k −

1)-tuple {a1, . . . , ak−1} in D we produce the reduced remainders f2, . . . , fk,
and for fk we apply the Maximal Selection Principle to find an ak giving rise
to max{|〈fn, ea〉| : a ∈ D}. The proposed cyclic AFD algorithm repeats such
procedure always for k = n : For any permutation P of 1, . . . , n, for the first
(n−1) parameters in the order aP (1), . . . , aP (n−1) we produce the corresponding
reduced remainders f2, . . . , fn, and then use the Maximal Selection Principle to
select a new and optimal aP (n).

The proposed cyclic AFD algorithm is validated in the following theorem.

Theorem 3.6 Suppose that f is not an m-Blaschke form for any m < n. Let
s0 = {b(0)1 , . . . , b

(0)
n } be any n-tuple of parameters inside D. Fix some n − 1

parameters of s0 and make an optimal selection of the single remaining pa-
rameter according to the Maximal Selection Principle based on the objective
function (14). Denote the obtained new n-tuple of parameters by s1. We repeat



Positive-instantaneous frequency and approximation 357

this process and make cyclic optimal selections over the n parameters. We thus
obtain a sequence of n-tuples s0, s1, . . . , sl, . . . , with decreasing objective func-
tion values dl that tend to a limit d � 0, where, in the notation and formulation
of (14),

dl = A(f ; b(l)1 , . . . , b(l)n ) = ‖f‖2 −
n∑

k=1

(1 − |b(l)k |2)|f (l)
k (b(l)k )|2. (15)

Then, (i) If s, as an n-tuple, is a limit of a subsequence of {sl}∞l=0, then s is in
D; (ii) s is a CMP of A(f ; . . .); (iii) If the correspondence between a CMP and
the corresponding value of A(f ; . . .) is one to one, then the sequence {sl}∞l=0
itself converges to the CMP, being dependent of the initial n-tuple s0; (iv) If
A(f ; . . .) has only one CMP, then {sl}∞l=0 converges to a limit s in D at which
A(f ; . . .) attains its global minimum value.

We refer the reader to [76] for further details and examples of cyclic AFD.
In a recent paper the algorithm is further developed [88].

3.5 Pre-Orthogonal adaptive Fourier decomposition (POAFD) for reproduc-
ing kernel Hilbert spaces

The theory and algorithm that will be developed in this section, as a matter
of fact, can be extended to more general contexts. To explain just the idea we
restrict ourselves to the simplest cases, including the weighted Bergman spaces
and weighted Hardy spaces, etc. In the said simple setting the Hilbert space H
consists of functions defined in an open connected region E (can be unbounded)
in the complex plane, and the reproducing kernel ka is a real-analytic function
of the variable a in E satisfying the relation

f (l)(a) = 〈f,
(
∂

∂a

)l

ka〉, l = 1, 2, . . . . (16)

Let {a1, . . . , an, . . .} be a finite or infinite sequence. For a fixed n we define the
multiple of an, denoted by l(an), to be the repeating times of an in the n-tuple
{a1, . . . , an}. With this definition, for instance, the multiple of a1 is just 1, and
the multiple of a2 will depend on whether a2 = a1. If yes, then l(a2) = 2, and,
if not, l(a2) = 1, and so on. Note that it is a little abuse of notation for it
is not dependent on the value of an but on the repeating times of an in the
corresponding n-tuple. We accordingly define

k̃an �
[(

∂

∂a

)l(an)−1

ka

]
a=an

�
(
∂

∂a

)l(an)−1

kan . (17)

We further assume the following boundary vanishing condition, implying the
Maximal Selection Principle in every individual context, as follows: Let a1, . . . ,
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an−1 be previously given, and {B1, . . . , Bn−1} be the Gram-Schmidt orthonor-
malization of {k̃a1 , . . . , k̃an−1}, then for every f ∈ H , the pre-orthogonal system
has the property

lim
a→∂H

〈f,Ba
n〉 = 0, (18)

where {B1, . . . , Bn−1, B
a
n} is the Gram-Schmidt orthonormalization of {k̃a1 , . . . ,

k̃an−1 , ka}, with a 	= ak, k = 1, . . . , n − 1. We note (4) if a → ∂H then a is
different from any ak, k = 1, . . . , n− 1, when a gets close to the boundary; and
(5) in any case the limit a→ ∂H is in the sense of the topology of the one-point-
compactification of the complex plane while the “one point” takes to be ∞.
With this boundary vanishing assumption we conclude the Maximal Selection
Principle of POAFD: Under the assumption (18), through a compact argument
using the Bolzano-Weierstrass theorem, there exists a sequence {bj}∞j=1 such
that none of the bj’s take any values a1, . . . , an−1, and limj→∞ bj = an ∈ E ,
and

lim
j→∞

|〈f,Bbj
n 〉| = max{|〈f,Ba

n〉| : a ∈ H }. (19)

Under those conditions we can prove the following lemma.

Lemma 3.7
lim
l→∞

B
bj
n = Ban

n ,

where {B1, . . . , Bn−1, B
an
n } is the Gram-Schmidt orthonormalization of {k̃a1 , . . . ,

k̃an−1 , k̃an}.

Proof If an does not coincide with any ak, k = 1, . . . , an−1, then limj→∞B
bj
n =

Ban
n , where {B1, . . . , Bn−1, B

an
n } is the Gram-Schmidt orthonormalization of

{k̃a1 , . . . , k̃an−1 , kan} = {k̃a1 , . . . , k̃an−1 , k̃an}. Now consider the case that an co-
incides with some of the earlier a1, . . . , an−1, or in other words, l(an) > 1.
That means that, in the notation (17), the (l − 1) functions kan ,

∂
∂akan , . . . ,(

∂
∂a

)(l−2)
kan have already appeared in the sequence {k̃a1 , . . . , k̃an−1}. As a con-

sequence, the function

Tl−2(bj , an) = kan +
∂
∂akan

1!
(bj − an) + · · · +

(
∂
∂a

)(l−2)
kan

(l − 2)!
(bj − an)l−2,

as the order-(l − 2) Taylor expansion of the function ka(z) in bj about an, is
already in the linear span of B1, . . . , Bn−1. This last atatement amounts to the
relation

Tl−2(bj , an) −
n∑

k=1

〈Tl−2(bj , an), Bk〉Bk = 0. (20)
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Since bj ’s are different from all ak, k = 1, . . . , n, we have,

B
bj
n (z) =

kbj
(z) −∑n−1

k=1〈kbj
, Bk〉Bk(z)

‖kbj
−∑n−1

k=1〈kbj
, Bk〉Bk‖

. (21)

Inserting (20) into (21), and dividing by (bj − an)l−1 and |bj − an|l−1 to the
numerator and the denominator parts, respectively, we have

B
bj
n (z) = e−(l−1)θ

kbj
(z)−Tl−2(kbj

,an)(z)

(bj−an)l−1
−∑n−1

k=1

〈
kbj

−Tl−2(bj ,an)(z)

w−an)l−1 , Bk

〉
Bk(z)∥∥∥∥kbj

(z)−Tl−2(bj ,an)(z)

(bj−an)l−1
−∑n−1

k=1

〈
kbj

(z)−Tl−2(bj ,an)(z)

(bj−an)l−1
, Bk

〉
Bk

∥∥∥∥
,

(22)

where eiθ is the tangential direction of the limiting bj → an. We can, in fact,
take any direction, including θ = 0. Letting bj → an with θ = 0, and using the
Lagrange type remainder of the Taylor expansion, we obtain

lim
j→∞

B
bj
n (z) =

k̃an(z) −∑n−1
k=1〈k̃an , Bk〉Bk(z)

‖k̃an −∑n−1
k=1〈k̃an , Bk〉Bk‖

.

Therefore, {B1, . . . , Bn−1, B
an
n } is the Gram-Schmidt orthonormalization of

{k̃a1 , . . . , k̃an−1 , k̃an}, as desired.

Remark The essence of the proof is contained in [72] and [73]. The proof for
the one complex variable case as presented here first appears in [96].

We have the pre-orthogonal adaptive Fourier decomposition (POAFD) con-
vergence theorem as follows.

Theorem 3.8 Selecting {a1, . . . , an, . . .} according to the Maximal Selection
Principle set by (19), we have

f =
∞∑

k=1

〈f,Bn〉Bn,

where for any positive integer n, {B1, . . . , Bn−1, Bn} is the Gram-Schmidt or-
thonormalization of {k̃a1 , . . . , k̃an−1 , k̃an}.

One can adopt the same proof for the AFD convergence (Theorem 3.4) in
which only the standard remainders gk’s are concerned. As a matter of fact,
the sifting process and the role of the induced remainders are taken place by
the pre-orthogonal process.

Remark For Repeating selection of parameters and POAFD we refer the reader
to the references [72, 73, 85, 90]. was previously called POGA or PreOGA, etc.
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n

Fig. 3 Various Adaptive Fourier Decomposition Methods

The previous names do not reflect the crucial role of the complex holomorphic
function methods (Fig. 3).

4 Related studies and applications

4.1 Aspects in relation to beurling-lax shift-invariant subspaces

The AFD type expansions is, in a great extent, related to the Beurling-Lax
shift-invariant subspaces of the Hardy H2 spaces. In the unit disc case,

H2(D) = span{Bk}∞k=1 ⊕ φH2(D), (23)

where {Bk}∞k=1 is the TM system generated by a sequence {a1, . . . , an, . . .},
where multiples are counted, and φ is the Blaschke product with the zeros
{a1, . . . , an, . . .} including the multiples. Note that when φ can be defined with
the ak’s as its zeros, there holds the condition

∞∑
k=1

(1 − |ak|) <∞,

and the associated TM system is not a basis. Although this has been well know
its relations with adaptive expansions, as far as being aware by the author,
are for the first time explored. Lately TM systems being Schauder system
were proved [77]. The space decomposition relation (23) was extended to Hp

spaces, where p 	= 2. Relations between backward shift invariant subspaces and
bandlimited functions and Bedrosian identity [83] were studied. There are open
problems such as whether for p 	= 2 there exist adaptive and fast converging
expansions by using TM systems, and for p = 2 how far one can extend Eq.
(23) to higher dimensions. The study has a great room to be further developed.
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4.2 Extra-strong uncertainty principle

The phase and frequency studies in the mono-component function theory lay
necessary foundations for digital signal processing. In the related studies what
is called extra-strong uncertainty principle

σ2
t σ

2
ω � 1

4
+
(∫ ∞

−∞
|t− 〈t〉||φ(t) − 〈ω〉||f(t)|2dt

)2

(24)

was established, where f is a real-valued signal, σ2
t and σ2

ω are the standard
deviations with respect to, respectively, the time and the Fourier frequency, and
〈t〉 and 〈ω〉 are the corresponding means [20]. An uncertainty principle of the
same type was given by L. Cohen

σ2
t σ

2
ω � 1

4
+ |
∫ ∞

−∞
(t− 〈t〉)(φ(t) − 〈ω〉)|f(t)|2dt|2,

which is obliviously weaker. We further extend the above result to multi-
dimensional contexts [20, 21, 28, 29, 30].

4.3 The dirac-type time-frequency distributions based on mono-component
decompositions

The Dirac type time-frequency distribution (D-TFD) of the form

P (t, ω) = ρ2(t)δ(ω − θ′(t)) (25)

has been ultimate destiny of signal analysts. There have existed several time-
frequency distributions, including windowed Fourier transform and Wagner-
Ville transform, etc., of which none are satisfied. The existing time-frequency
distributions do not give explicit and clear frequency components, and often
depend on parameter selections. Positive-frequency decompositions of signals
offered by the AFD decompositions naturally give rise to Dirac-type time-
frequency distributions. For a single mono-component m1(t) = ρ1(t) cos θ1(t)
the corresponding D-TFD according to Eq. (25) is the graph (t, θ′1(t)) of the
function ω = θ′1(t) in the ω-t plane, while the weight ρ2

1(t) may be represented
by colors continuously changing along with changing of the values ρ2

1(t). If a
signal f is expanded into a series consisting of its “intrinsic composing” mono-
components, then its D-TFD is the bunch of color-weighted graphs of which
each is made from a composing mono-component [27, 125]. This definition has
been interested and being paid attention by prominent signal analysts includ-
ing Leon Cohen and Lorenzo Galleani, etc., and has been used in practice (see
below the application section).

4.4 Higher dimensional AFDs

To develop an AFD like approximation theory in higher dimensions a Cauchy
type structure is necessary, that is mainly for use of the reproducing kernel
property in deducing Maximal Selection Principle in the underlying space. By
using the Cauchy structure in Clifford algebra or in several complex variables
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we achieved the AFD type theories and algorithms for functions of several real
variables on the plane (Clifford Hardy spaces and Hardy spaces on tubes), and
on the real spheres, and of several complex variables on the n-torus, and on
the n-complex spheres [90, 91, 102, 114]. With Alpay, Colombo, Sabadini we
achieved analogous theory involving matrix valued Blaschke products [1, 2].
This study has impact in general to rational approximation in a number of
spaces [6].

4.5 Fourier spectrum characterization of Hardy spaces: analytic signals re-
vised

The Paley-Wiener Theorem for the classical HardyH2 space over the upper-half
complex space addresses the fact that if f ∈ L2(R), then further f ∈ H2(C+)
if and only if suppf̂ ⊂ [0,∞). This result is systematically extended to Hp(C+)
for all p ∈ [1,∞], where the Fourier transform can be defined at least in the
distribution sense [67, 93]. The results are summarized as: Letting f ∈ Lp(R),
then f is further the non-tangential boundary limit of some function in the
complex Hardy space Hp(C+) if and only if f̂ = χ+f̂ , where is the indicator
(characteristic) function of the right-half-real line, and the Fourier transform
may take the distribution sense. The generalization to the Hardy spaces on
tubes (extending the p = 2 case in [104] to 1 � p � ∞) was published in [47].
The results of the same type but with the Clifford algebra setting is now on line
[25] proving that a Clifford-valued function f ∈ Lp(Rn) is the non-tangential
boundary limit of some Clifford-valued Hardy space function in the upper-half
space if and only if f̂ = χ+f̂ , where χ+(ξ) = 1

2

(
1 + i

ξ

|ξ|
)
, ξ = ξ1e1 + · · ·+ ξnen

(the Hardy space projection function). This extends some partial cases proved
in [104] for conjugate harmonic systems. In various contexts Fourier spectrum
characterizations give rise to Hardy spaces decompositions for Lp, 1 < p � ∞
that further induce Hardy space decompositions of Lp, 0 < p < 1 [31, 48].
Hardy space decomposition is the strategy that we have been using to study
Lebesgue spaces of various integrability. The strategy is extensively imple-
mented along with the mono-component and AFD approximation theories. In
particular, for any signal f , by multiplying f̂ with χ+ and then taking the
inverse Fourier transform, we obtain the associated analytic signal. This is
philosophically valid in any context. We finally note that the Hardy space de-
composition issue has been extended to the Lp-vector fields and one obtains the
Hardy-Hodge decomposition [5].

4.6 Hilbert transforms as singular integral operators: analytic signals revised

As in the 1-D case [7], on higher dimensional manifolds one defines the non-
scalar part of the non-tangential boundary limit of a hyper-complex holomor-
phic function to be the Hilbert transform of the scalar part of it [94]. Hilbert
transform therefore is a particular singular integral. It is, in particular, not the
singular Cauchy transform. One must study singular integrals to understand
Hilbert transform. On one dimensional manifolds, including Lipechitz pertur-
bations of the real line and the circle, certain singular integrals of holomorphic
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kernels form an operator algebra as studied in a series of work of McIntosh, Li,
Semmes, Qian, Long and Wang [37, 55, 56, 66]. The theory on the plane was
earlier established in the work or under the influence of A. McIntosh [36, 51, 52].
Through first generalizing the results of Fueter and Sce to arbitrary Euclidean
spaces (as technical necessity) the author established the theory of the oper-
ator algebra of singular integrals of Clifford monogenic kernels on Lipschitz
perturbations of the unit sphere for any dimension [75]. Based on the estab-
lished singular integral theory Hilbert transformations of the plane and of the
sphere became well understood. Analytic signals on the sphere, for instance,
are constructed as follows (Fig. 4). Let f be a real-valued signal of finite energy
on a manifold S . Denote by HS the Hilbert transform of f on the manifold.
Then the analytic signal on S is defined to be f+ = f +HS f, where HS f is
the non-scalar part (on sphere it is a 2-form valued function). f+ has Clifford
monogenic extension to one of the two regions divided by S . One can derive,
if ζ is on the plane or on the sphere,

f+(ζ) = ρf (ζ)
(
f(ζ)
ρf (ζ)

+
HS (f)(ζ)
|HS (f)(ζ)|

|HS (f)(ζ)|
ρf (ζ)

)
(26)

= ρf (ζ)
(

cos θ(ζ) +
HS (f)(ζ)
|HS (f)(ζ)| sin θ(ζ)

)
(27)

= ρf (ζ)e
HS (f)(ζ)

|HS (f)(ζ)| θ(ζ)
, (28)

where ρf (ζ) =
√|f(ζ)|2 + |HS f(ζ)|2, and

(
HS (f)(ζ)
|HS (f)(ζ)|

)2
= −1, the latter being

a varying imaginary element just like the complex imaginary element with the
property i2 = −1. The instantaneous frequency is defined, as in the classical
case through the monogenic continuation, but formally read

θ′(ζ) = Re{[(Γζ − I)f+(ζ)
] [

(f+(ζ))−1
]},

the latter can be expressed in terms of the angle θ(ζ) [94, 121], where Γζ is the
surface Dirac operator on the manifold. In such format the basic idea of IF and
the related approximation in higher dimensions make sense. The related studies
published, in respectively 2015 and 2017 with Science Press two monographs
books [73] and [74]. We finally note that Hilbert transformation may be char-
acterize by commutativity with the affine groups in the underlying symmetric
manifold which shows that the three objects the Hilbert transformation, the
Dirac differential operator and the group representation theory have intimate
relations [22, 23].

4.7 Applications

AFD has demonstrative applications in system identification and signal analy-
sis. Applications in system identification include [17, 59, 60, 61]. A number of
signal analysts promoted the AFD methods. Below we summarize part of the
applications found in the literature.
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Fig. 4 Analytic signals in various contexts

It is commented in [116] that as a new method AFD was proposed in the
recent years that could be used to decompose and reconstruct signals. It con-
tains the classical Fourier method as a particular case. Experiments show that
the 1D AFDs achieve excellent signal decomposition and reconstruction results.
The article [W1] compares 2D AFD with the traditional frequency digital wa-
termark methods, including discrete cosine transform DCT, discrete wavelet
transform DWT, discrete Fourier transform DFT, etc., and concludes that 2D
AFD has better transparency and robustness under attacking. The article [W2]
revises the 2D AFD algorithm and, as a result, increases its speed, and uses it
in denoising.

In [50] Liang et al. at Beijing Jiaotong University propose a new fault
diagnosis method of rolling bearing based on AFD. They show that AFD can
avoid using band-pass filters, the latter often suffering from the difficulty of
algorithm parameter selection, they show that AFD adaptively, efficiently, and
accurately diagnose all kinds of rolling bearing problems.

In [117] the authors study interference and separation between the lung
sound (LS) and the heart sound (HS) signals. Due to the overlap in their fre-
quency spectra, it is difficult to separate them. The article proposes a novel
separation method based on AFD. This AFD-based separation method is val-
idated on real HS signals from the University of Michigan Heart Sound and
Murmur Library, as well as real LS signals from the 3M repository. Simulation
results indicate that the proposed method is more effective than the extraction
methods based on the recursive least square (RLS), than the standard empirical
mode decomposition (EMD) and its various extensions, including the ensem-
ble EMD (EEMD), the multivariate EMD (M-EMD) and the noise assisted
M-EMD (NAM-EMD).

Over the years people have made unremitting studies in predicting the stock
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price movements. In [124] a novel automatic stock movement forecasting sys-
tem is proposed, which is based on the newly developed signal decomposition
approach — adaptive Fourier decomposition (AFD). AFD can effectively ex-
tract the signal primary trend, which is specifically suitable in the Dow Theory
based automatic technique analysis. Effectiveness of the proposed approach
is assessed through the comparison with the direct BP approach and manual
observation. The result is proved to be promising.

In [123] an AFD based time-frequency speech analysis approach is proposed.
Given the fact that the fundamental frequency of speech signals often undergo
fluctuation, the classical short-time Fourier transform (STFT) based spectro-
gram analysis suffers from the difficulty of window size selection. AFD is a
newly developed signal decomposition theory. The outstanding characteristic
of AFD is to provide instantaneous frequency for each decomposed component,
so the time-frequency analysis becomes accessible. Experiments are conducted
based on the sample sentence in TIMIT Acoustic-Phonetic Continuous Speech
Corpus. The results show that the AFD based time-frequency distribution
outperforms the STFT.

AFD has already been employed to the productions of CASA Environmen-
tal Technology Co., Ltd, including the second generation of BEWs (Biological
Early Warning System) and ETBEs (Ecological Toxicity Biological Exposed
System). The two systems takes advantages of AFD and Unwinding to ana-
lyze the biological behavioral signal. Compared with the traditional Fourier,
wavelet and EMD algorithms, the AFD approach can efficiently solve early
warning judgment for low concentration pollutants and disturbance of fish bi-
ological clock and other problems.

In control theory the the authors of the article [49] introduce an AFD al-
gorithm to eliminate the channel noise superimposed on the output signal in
the wireless transmission process. In the frequency domain, based on AFD, an
ILC method for discrete linear system with wireless transmission is proposed.
Simulation results show that the AFD algorithm is able to achieve signal de-
noising well in the case of small decomposition threshold compared with Fourier
decomposition. Thus the goal that the output signal of ILC system can track
the desired signal is better achieved.

Indian researchers in their article [42] assert that to analyze biomedical
signals in relation to e-health devices the frequency domain method outperforms
the time domain method, and among numerate frequency domain methods
(Hermit, Fourier, Karhunen-Loeve, Wavelet) AFD appears to have features of a
greater variety, and more stable for the data compression. Based on compression
using AFD they started to manufacture economic, accurate and stable domestic
e-health devices.

Apart from China and Asia, AFD has also achieved international influence.
Interests, studies and applications of AFD are found in relevant literature, by
Ph.D. thesis of Fulle at Michigan University on oxygenic photosynthesis; by
Kirkbas et al. on optimal basis pursuit based on jaya optimization for adaptive
Fourier decomposition [45]; by Vatchev, on a class of intrinsic trigonometric
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mode polynomials [110]; by Mashreghi et al. on Blaschke Products and Appli-
cations [57]; by Krausshar et al. on Clifford and harmonic analysis on cylinders
and tori [46]; by Colombo et al. on the Fueter mapping theorem in integral
form and the F -functional calculus [19]; by Falcão et al. on remarks on the
generation of monogenic functions; by Colombo et al. on the Fueter primitive of
bi-axially monogenic functions [18]; by Salomon on analysis of the anisotropy
in image textures [97]; by Sakaguchi on the related integral-type method in
higher order differential equations [98, 99, 100, 101]; by León on instantaneous
frequency estimation and representation of the audio signal through complex
wavelet additive synthesis [9]; by Mozes on computing the instantaneous fre-
quency for an ECG signal [62]; by Gomes, as Doctoral dissertation, on compres-
sive sensing in Clifford analysis; by Eisner et al. on discrete orthogonality of
the Malmquist Takenaka system on the upper half plane and rational approx-
imation [32]; and by Perotti on his article in directional quaternionic Hilbert
operators [64].
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