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Abstract. In this paper we systematically study the Riemann boundary
value problems on the hyperplane for monogenic functions in Clifford
analysis. The concept of the principal part of a sectionally regular func-
tion with the hyperplane as its jump surface is first introduced. Based on
this concept the general forms of the Riemann boundary value problems
on the hyperplane for monogenic functions are formulated. Then, the
explicit expressions and explicit solvable conditions for solutions with
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1. Introduction

It is well known that the boundary value problems (BVPs) for analytic func-
tions in the classical complex analysis are an important branch of mathe-
matical analysis, and have been actively studied for a long time, due to its
theoretical elegance and ample applications in physics and other areas such as
elastic theory, hydromechanics, fracture mechanics, etc. The theory of bound-
ary value problems for analytic functions has been investigated systematically
in the literature [11,19,24], and some applications have been studied in the
monographs [20,23].

It has been proved that the function theory over Clifford algebra is an
appropriate setting to generalize many aspects of the function theory of the
one complex variable to higher dimensions [2,6,14,15,29]. It is a natural ex-
pectation to develop the boundary value problems for analytic functions in
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the classical complex analysis to those for regular functions in the hypercom-
plex analysis. In fact, some results in the former have already been extended
to the latter with the Clifford algebra setting (see [7,16,17] and references
therein). However, as far as the authors know, there are many obstacles for
BVPs for monogenic functions in hypercomplex analysis. Here the difficulty
mainly lies in the fact that the basic theory on BVPs for monogenic function
in Clifford analysis is not fully established, and some commonly used technical
tools also have not been systematically formed. For Riemann boundary value
problems for closed smooth surfaces Γ (“closed” means that Γ is the boundary
of a bounded region), [22] gives the latest results. There are more difficulties
in the discussion for Riemann boundary value problems on hyperplanes. In
fact, even in the classical complex analysis some boundary value problems
on the real axis have not been fully discussed in outstanding monographs
[19,24]. To develop a theory of boundary value problems on hyperplanes in
Clifford analysis we are facing more obstacles. In [30], Xu and Zhou tried to
solve the Hilbert boundary value problems on the hyperplane under the con-
dition that the solutions vanish or are bounded at the infinity. In [13], Gong
and Du continued to discuss the Riemann boundary value problems on the
hyperplane under the condition that the solutions have a finite non-negative
order at the infinity. These studies, however, contain some mistakes and are
lack of sufficient theoretical basis as being pointed out in detail below.

In the present paper, we will systematically study the Riemann bound-
ary value problems on the hyperplane for monogenic functions in Clifford
analysis. The particular contribution of this study is the initiation of the
negative orders at the infinity and the solutions of the corresponding bound-
ary value problems that overcome some primitive difficulties. The results for
the negative order category are also new for the Riemann type boundary
value problems in classical one complex variable case [19,24]. For Riemann
boundary value problems with nonnegative order singularity at the infinity,
we also construct the necessary supporting theory in detail, which updates
and corrects the results in [13,30]. In order to obtain these results, we must
develop some theory of hypercomplex boundary value problems and innovate
some tools for the boundary behavior of monogenic functions. The paper is
organized as follows. In §2 we provide necessary preliminary knowledge in
Clifford analysis. In §3, we introduce the Cauchy type integrals on the hy-
perplane and discuss their regularity. This kind of regularity discussion, as
necessity in solving the BVPs in this paper, is more difficult but interesting
than those Cauchy type integrals on finite smooth surfaces. Many authors ig-
nored this point, and the present study, to the authors’ knowledge, is the first
time to seriously look at this issue. In order to a thorough study to the Rie-
mann boundary value problems with negative orders at the infinity, we also
need to discuss the Cauchy type integrals on some unbounded subdomain
of the hyperplane. In §4, we further discuss the boundary behavior of the
Cauchy type integrals on the hyperplane, which plays an important role for
solving the BVPs. The results presented there improve the classical results,
that are the so-called Plemelj-Sochocki formula and Privalov–Muskhelishvili
theorem (the 2P Theorems for short) [11,19,24]. The authors wonder why,
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since the 2P Theorems are the cornerstones of solving BVPs, some authors
refer to it directly without proof, especially in the case of hyperplanes, which
is quite different from the case of real axis in the classical complex analy-
sis. We also discuss the boundary behavior of the Cauchy type integrals at
the infinity, which is the premise to obtain the general solution of Riemann
boundary value problems by using the Liouville type theorem. It is very dif-
ferent from the corresponding results in classical complex analysis and cannot
be simply simulated. We use the twisted inversion to get the boundedness
of the Cauchy type integrals at the infinity. Many authors used the twisted
inversion without providing or referring anywhere about the calculation of
its Jacobian determinant here. In §5, the definitions of the principal part and
the order at the infinity for a monogenic function cut along a hyperplane
are established, which are rather difficult since the infinity is not as usual an
isolated singular point for such functions. Before this, people failed to discuss
the boundary value problem with arbitrary order at the infinity, for they
would be difficult to find a reasonable description of the principal part. This
work even improves the Liouville type theorem. In §6, the Riemann bound-
ary value problem for the sectionally regular functions with the hypercomlex
plane as its jump surface is suitably formulated and successfully solved. For
all the allowed positive (including zero) and negative orders of the solutions
at the infinity the solution formulas are obtained and the conditions of the
solvability are specified.

The results of this paper can be used to solve the Hilbert boundary value
problems on the hypercomplex plane, which will be discussed in a separate
and forthcoming article.

2. Hypercomplex Functions

We begin by providing the necessary preliminary knowledge in Clifford alge-
bra and Clifford analysis which are used throughout this paper [2,6].

2.1. Clifford Analysis

Let C(Vn) be a 2n-dimensional real linear space. To expediently introduce
the product on it, we write its basis by {eA, A = (h1, . . . , hr) ∈ PN, 1 ≤
h1 < . . . < hr ≤ n}, where N stands for the set {1, . . . , n} and PN is to
denote the family of all order-preserving subsets of N in the above fixed way.
Sometimes, e∅ is written as e0 and eA as eh1...hr

for A = {h1, . . . , hr} ∈ PN .
The product on C(Vn) is defined by{

eAeB = (−1)#(A∩B)(−1)P (A,B)eAΔB , if A,B ∈ PN,
λμ =

∑
A∈PN

∑
B∈PN

λAμBeAeB , if λ =
∑

A∈PN

λAeA, μ =
∑

A∈PN

μAeA,

(2.1)
where the notation #(A) denotes the number of the elements in A, P (A,B) =∑

j∈B P (A, j) with P (A, j) = #{i : i ∈ A, i > j}, the symmetric difference
set AΔB is also the order-preserving one in the above way, as well as λA ∈
R (real number set) is the coefficient of the eA–component of the Clifford
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number λ. It follows at once from the multiplication rule (2.1) that e0 is the
identity element written now as 1 and in particular,⎧⎨

⎩
e2
i = −1, if i = 1, . . . , n,

eiej = −ejei, if 1 ≤ i < j ≤ n,
eh1eh2 . . . ehr

= eh1h2...hr
, if 1 ≤ h1 < h2 < . . . < hr ≤ n.

(2.2)

It is clear that C(Vn) is a real linear, associative and non-commutative
algebra by algebraically spanning the linear subspace Vn = span{e1, e2, . . . ,
en}. It is called the Clifford algebra over Vn. The elements λ = λ0 + λ1e1 +
. . . + λnen for λ0, . . . , λn ∈ R are called paravectors.

We constantly use the following involution. It is defined by⎧⎨
⎩

eA = (−1)
#(A)(#(A)+1)

2 eA, if A ∈ PN,

λ =
∑

A∈PN

λAeA, if λ =
∑

A∈PN

λAeA. (2.3)

In the sequel, λA is also written as [λ]A, in particular, the coefficient λ∅ is
denoted by λ0 or [λ]0, which is called the scalar part of the Clifford number
λ. An inner product (·, ·) on C (Vn) is defined by putting for any λ and μ in
C (Vn) (

λ, μ
)

=
[
λμ
]
0

=
∑

A
λA μA, (2.4)

where λ =
∑

A λAeA, μ =
∑

A μAeA and the symbol
∑

A is abbreviated from∑
A∈PN

. Thus, the corresponding norm on C(Vn) reads,

∣∣∣λ∣∣∣ =√(λ, λ) =

[∑
A

λ2
A

] 1
2

. (2.5)

In this way, C(Vn) is a real Hilbert space and at the same time it is a
Banach algebra with the equivalent norm∣∣λ∣∣

0
= 2

n
2
∣∣λ∣∣, (2.6)

that is ∣∣λμ
∣∣
0

≤ ∣∣λ∣∣
0

∣∣μ∣∣
0
,
∣∣λμ
∣∣ ≤ 2

n+1
2
∣∣λ∣∣∣∣μ∣∣. (2.7)

In particular, if λ is a paravector and μ ∈ C(Vn), then [2]∣∣λμ
∣∣ = ∣∣μλ

∣∣ = ∣∣λ∣∣∣∣μ∣∣. (2.8)

Let Ω be a non-empty subset of R
n+1. Hypercomplex functions f defined

in Ω and with values in C (Vn) will be considered, i.e., f : Ω −→ C (Vn) . They
are of the form

f(x) =
∑

A
fA(x)eA, x = (x0, x1, . . . , xn) ∈ Ω ⊂ R

n+1, (2.9)

where fA(x) is the eA–component function of f(x). Obviously, fA’ are real–
valued functions in Ω. Whenever a property such as differentiability and
continuity is ascribed to f , it is clear that in fact all the component func-
tions fA possess the cited property. So f ∈ Cr (Ω, C (Vn)) is very clear. The
conjugate of the function f is the function f given by

f(x) =
∑
A

fA(x)eA, x ∈ Ω. (2.10)
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Clearly,

f ∈ Cr (Ω, C (Vn)) ⇐⇒ f ∈ Cr (Ω, C (Vn)) . (2.11)

Obviously, C(Vn−1) is the subalgebra of C(Vn) where Vn−1 = span{e1,
e2, . . . , en−1}. Then, λ ∈ C(Vn) has the unique decomposition [13,30]

λ = λ1 + λ2en where λ1, λ2 ∈ C(Vn−1), (2.12)

i.e.,

C (Vn) = C (Vn−1) ⊕ C (Vn−1) en. (2.13)

We define

Re(λ) = λ1, Im(λ) = λ2. (2.14)

It is clear that the decomposition (2.12) is the generalization of the rep-
resentation of the classical complex number. In other words, (2.14) is the
generalization of operators Re and Im acting on the complex C.

For a hypercomplex function f given by (2.9), if(
Imf
)
(x) � Im

(
f(x)
) ≡ 0, x = (x0, x1, . . . , xn) ∈ Ω ⊂ R

n+1, (2.15)

i.e., f : Ω −→ C (Vn−1), then we say that it is a C(Vn−1)-valued function,
briefly, a para real-valued function which mimics the case of the real-valued
function in the classical complex analysis.

When x = (x0, x1, . . . , xn) ∈ R
n+1, we introduce the mapping

capital : x 
−→ X =
n∑

i=0

xiei, (2.16)

which is one proper isomorphism between R
n+1 and the linear subspace

span{e0, e1, . . . , en} of C (Vn). In the sequel, we simply treat X as x. This is
Vahlen’s choice [27]. Thus,

Im(x) = xn while x ∈ R
n+1, (2.17)

and

Re(x) = x0 + x1e1 + . . . + xn−1en−1. (2.18)

Define

R
n+1
+ = {x, Im(x) > 0}, R

n+1
− = {x, Im(x) < 0}, R

n+1
0 = {x, Im(x) = 0}.

(2.19)
R

n+1
+ and R

n+1
− are called, respectively, the Poincaré upper halfspace

and the Poincaré lower halfspace, while the hyperplane R
n+1
0 is called the

para real plane in R
n+1. It is a significant advantage that the paravectors

given in (2.18) play a treble role as elements of R
n and R

n+1
0 as well as

C(Vn−1) ⊂ C(Vn).
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2.2. Ĥ Class of Functions

We need to introduce some classes of hypercomplex functions used frequently

in this paper. Below we will use
1
x

to represent the inverse x−1 of x ∈
R

n+1\{0}.

Definition 2.1. Assume f is defined on Ω ⊆ R
n+1. If∣∣f(t) − f(s)

∣∣ ≤ M
∣∣t − s

∣∣μ (0 < μ ≤ 1) (2.20)

for arbitrary points t, s on Ω, where M and μ are finite constants, then f is
said to satisfy Hölder condition of order μ, denoted by f ∈ Hμ(Ω). And μ
and M are called, repectively, the Hölder index and a Hölder coefficient of f .
If the order μ is not emphasized, it may be denoted briefly by f ∈ H(Ω).

Definition 2.2. Assume f is defined on Ω ⊆ R
n+1. If∣∣∣f(ξ) − f(ζ)

∣∣∣ ≤ M

∣∣∣∣1ξ − 1
ζ

∣∣∣∣
μ

(0 < μ ≤ 1) (2.21)

for arbitrary points ξ, ζ on Ω\{0}, where M and μ are finite constants, then
f is said to satisfy †-Hölder condition of order μ, denoted by f ∈ Hμ

† (Ω). And
μ and M are called, repectively, the †-Hölder index and a †-Hölder coefficient
of f . If the order μ is not emphasized, it may be denoted briefly by f ∈ H†(Ω).

Definition 2.3. If f ∈ Hμ(Ω) ∩ Hμ
† (Ω), then f is said to satisfy Ĥ condition

of order μ on Ω, denoted by f ∈ Ĥμ (Ω) or briefly f ∈ Ĥ(Ω).

The conditions (2.20) and (2.21) are, respectively, called the Hölder
condition and †-Hölder condition of the Ĥ(Ω) class function f , which may
be simplified. To do this, we introduce the following notations.

Bn+1

(
w,R
)

=
{

ζ ∈ R
n+1, |ζ − w|<R

}
, Bn

(
t, R
)
=
{

ζ ∈ R
n+1
0 , |ζ − t|<R

}
(2.22)

are, respectively, the ball in R
n+1 with radius R at center w ∈ R

n+1 and the
ball in R

n+1
0 with radius R at center t ∈ R

n+1
0 .

Bn+1

(
R,∞) =

{
ζ ∈ R

n+1, |ζ| > R
}
, Bn

(
R,∞) =

{
ζ ∈ R

n+1
0 , |ζ| > R

}
(2.23)

are, respectively, the ball in R
n+1 with radius R at center ∞ ∈ R

n+1 and the
ball in R

n+1
0 with radius R at center ∞ ∈ R

n+1
0 . The notation A denotes the

closure of the set A, such as

Bn(t, R) =
{

ζ ∈ R
n+1
0 , |ζ − t| ≤ R

}
, Bn(R,∞) =

{
ζ ∈ R

n+1
0 , |ζ| ≥ R

}
.

(2.24)
are, respectively, the closures of Bn(t, R) and Bn(R,∞).

Example 2.1. [see[13]] f ∈ Ĥμ
(
R

n+1
0

)
if and only if∣∣f(ξ) − f(ζ)

∣∣ ≤ M
∣∣ξ − ζ

∣∣μ, ξ, ζ ∈ Bn(0, R), (2.25)
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and ∣∣∣f(ξ) − f(ζ)
∣∣∣ ≤ M

∣∣∣∣1ξ − 1
ζ

∣∣∣∣
μ

, ξ, ζ ∈ Bn(R,∞), (2.26)

where M > 0 and R > 0 are some constants. In fact, (2.25) and (2.26) result
in, respectively,∣∣∣f(ξ) − f(ζ)

∣∣∣ ≤ MR2μ

∣∣∣∣1ξ − 1
ζ

∣∣∣∣
μ

while ξ, ζ ∈ Bn(0, R) \ {0}, (2.27)

and ∣∣∣f(ξ) − f(ζ)
∣∣∣ ≤ M

R2μ

∣∣∣ξ − ζ
∣∣∣μ while ξ, ζ ∈ Bn(R,∞). (2.28)

In general, we may prove the following result, which makes it easier to
identify f ∈ Ĥμ(Ω).

Remark 2.1. f ∈ Ĥμ(Ω) if and only if⎧⎨
⎩
∣∣∣f(ξ) − f(ζ)

∣∣∣ ≤ M
∣∣∣ξ − ζ

∣∣∣μ while ξ, ζ ∈ Ω ∩ Bn+1(0, R),∣∣∣f(ξ) − f(ζ)
∣∣∣ ≤ M

∣∣∣ 1ξ − 1
ζ

∣∣∣μ while ξ, ζ ∈ Ω \ Bn+1(0, R),
(2.29)

where M > 0 and R > 0 are some constants. In other words,

f ∈ Ĥμ(Ω) ⇐⇒ f ∈ Hμ
(
Ω ∩ Bn+1(0, R)

)⋂
Hμ

†
(
Ω \ Bn+1(0, R)

)
. (2.30)

Lemma 2.1. [[13]] If f ∈ Hμ
†
(
Bn(R,∞)

)
, which is called that f satisfies H†

condition near ∞, then,

f(∞) = lim
x∈Bn(R,∞), x→∞

f(x) (2.31)

exists and∣∣∣f(x)−f(∞)
∣∣∣≤ M

|x|μ , x ∈ Bn(R,∞)
(
theHölder condition atz=∞

)
,

(2.32)

where M is a constant.

Proof. From (2.21) and the Cauchy’s criterion, we easily get this lemma. �

By using (2.31) and (2.32), we introduce a new class of hypercomplex
functions. Such kind of functions only have the weak pointwise Hölder con-
dition at infinity.

Definition 2.4. Let f be a function defined on Bn(R,∞). If (2.31) exists and it
satisfies the condition (2.32), then we say that it satisfies the pointwise Hölder
condition at the infinity, denoted by f ∈ Hμ

† (∞) or briefly f ∈ H†(∞).

We also use the more general definition below.

Definition 2.5. Let f be a function defined on Ω ⊆ R
n+1 with ∞ as its cluster

point. If
f(∞) = lim

w∈Ω, w→∞
f(w) (2.33)
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exists and∣∣∣f(w)−f(∞)
∣∣∣ ≤ M

|w|μ
(
0<μ≤1

)
, w ∈ Ω\{0}

(
theHölder condition at z=∞

)
(2.34)

where M is a constant, then we say that f satisfies the pointwise Hölder
condition at the infinity in Ω, denoted by f ∈ Hμ

† (∞), or also briefly f ∈
H†(∞).

Remark 2.2. Moreover, Ĥμ
(
R

n+1
0

)
class function f is a continuous bounded

function on the whole R
n+1
0 and there exists the Chebyshev norm∥∥∥f∥∥∥

∞
=
∥∥∥f∥∥∥

R
n+1
0

= max
{∣∣f(x)

∣∣, x ∈ R
n+1
0

}
. (2.35)

Analogously, if f ∈ H†
(
Bn(R,∞)

)
, then it is also a continuous bounded

function and there exists the Chebyshev norm on Bn(R,∞)∥∥∥f∥∥∥
Bn(R,∞)

= max
{∣∣f(x)

∣∣, x ∈ Bn(R,∞)
}

. (2.36)

Lemma 2.2. If 0 < ν < μ ≤ 1, then Ĥν(Ω) ⊆ Ĥμ(Ω).

Proof. Obviously, (2.20) and (2.21) result in, respectively,∣∣∣f(ξ) − f(ζ)
∣∣∣ ≤ 2M

∣∣∣ξ − ζ
∣∣∣ν while ξ, ζ ∈ Bn+1(0, 1) ∩ Ω, (2.37)

and ∣∣∣f(ξ) − f(ζ)
∣∣∣ ≤ 2M

∣∣∣∣1ξ − 1
ζ

∣∣∣∣
ν

while ξ, ζ ∈ Ω \ Bn+1(0, 1). (2.38)

By Remark 2.1, the proof is completed. �

To find out the relationship between the class H and H†, we shall in-
troduce the twisted inversion [1,27]

ξ = †(x) = x† = − 1
x

, x ∈ R̃
n+1 = R

n+1 ∪ {∞}, (2.39)

where we agree
0† = ∞ and ∞† = 0. (2.40)

x† is called the twisted inversion point of x. For Ω ⊆ R
n+1,

Ω† =
{

x†, x ∈ Ω
}

(2.41)

is called the twisted inversion set of Ω. For example,(
R

n+1
0 \{0}

)†
= R

n+1
0 \{0},

(
R

n+1
±
)†

= R
n+1
± . (2.42)

Obviously (
x†)† = x,

(
Ω†)† = Ω. (2.43)

Then, if f is defined in Ω we introduce its associated twisted inversion
function

f†(ξ) � f
(
ξ†
)

= f

(
−1

ξ

)
, ξ ∈ Ω†. (2.44)
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It is easily seen, by (2.41), that (
f†)† = f. (2.45)

Remark 2.3. (2.26) now may be improved as∣∣∣f(ξ) − f(ζ)
∣∣∣ ≤ M

∣∣ξ† − ζ†∣∣μ while ξ, ζ ∈ Bn(R,∞). (2.46)

Lemma 2.3. (1) f ∈ Hμ
†
(
R

n+1
0

)
if and only if f† ∈ Hμ

(
R

n+1
0

)
; (2) f ∈

Hμ
(
R

n+1
0

)
if and only if f† ∈ Hμ

†
(
R

n+1
0

)
; (3) f ∈ Ĥμ

(
R

n+1
0

)
if and only if

f† ∈ Ĥμ
(
R

n+1
0

)
.

Proof. By using (2.45), we only need show (1). Necessity of (1):∣∣∣f†(ξ)−f†(ζ)
∣∣∣ = ∣∣∣f (ξ†)−f

(
ζ†) ∣∣∣ ≤ M

∣∣∣∣ 1ξ† − 1
ζ†

∣∣∣∣
μ

= M
∣∣∣ξ−ζ
∣∣∣μ, ξ, ζ ∈ R

n+1
0 .

(2.47)
Sufficiency of (1):∣∣∣f (ξ†)− f

(
ζ†) ∣∣∣ = ∣∣∣f†(ξ) − f†(ζ)

∣∣∣ ≤ M
∣∣∣ξ − ζ

∣∣∣μ = M

∣∣∣∣ 1

ξ† − 1

ζ†

∣∣∣∣μ , ξ, ζ ∈ R
n+1
0 \ {0}.

(2.48)
(2.47) and (2.48) show that the assert (1) holds. �

In general, we have the following result.

Lemma 2.4. (1) f ∈ Hμ
† (Ω) if and only if f† ∈ Hμ

(
Ω†); (2) f ∈ Hμ (Ω) if

and only if f† ∈ Hμ
†
(
Ω†); (3) f ∈ Ĥμ (Ω) if and only if f† ∈ Ĥμ

(
Ω†).

Let fm(x) = xmf(x). When fm ∈ Hμ
† (Rn+1

0 ), then we write f ∈
Hμ

m,†(R
n+1
0 ), or briefly f ∈ Hm,†(Rn+1

0 ). Similarly, if fm ∈ Hμ
†
(
R

n+1
0 ,∞),

then we write f ∈ Hμ
m,†
(
R

n+1
0 ,∞) or briefly f ∈ Hm,†

(∞). In this way,
f ∈ Hμ

m,†
(
Bn(R,∞)

)
, f ∈ Hm,†

(
Bn+1(R,∞)

)
and f ∈ Hμ

m,†
(
R

n+1
± ,∞) etc.

are clear. The following two lemmas will be used in the discussion on Riemann
boundary value problems below.

Lemma 2.5. If f ∈ Hm,† (Ω,∞) (m > 0), then f(∞) = 0, more precisely,∣∣f(w)
∣∣ = O (|w|−m) near w = ∞ on Ω, which is denoted by f ∈ O−m(∞).

Proof. The proof is easy by f(w) = w−m fm(w)
(
w−m =

[
w−1
]m) and Defi-

nition 2.5. �

Lemma 2.6. Let 0 ≤ m < k and R > 0. Then, we have
(1) Hμ

k,†
(
Bn(R,∞)

) ⊆ Hν
m,†
(
Bn(R,∞)

)
, where ν = min

{
k − m,μ

}
,

(2) Hk,†
(∞) ⊆ {f, fm(x) = O

(
x−ν
)

near ∞} ⊆ Hm,†
(∞) where ν >

0.

Proof. If f ∈ Hμ
k,†
(
Bn(R,∞),∞), noting Remark 2.2 we have, for |ξ|, |ζ| ≥

R,∣∣∣fm(ξ)−fm(ζ)
∣∣∣ ≤ 2

Rk−m

∣∣∣fk(ξ)−fk(ζ)
∣∣∣+∥∥∥fk∥∥∥

Bn(R,∞)

∣∣∣ξm−k−ζm−k
∣∣∣. (2.49)
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So, there exists constant M such that∣∣∣fm(ξ) − fm(ζ)
∣∣∣ ≤ M

∣∣∣ξ† − ζ†
∣∣∣ν (ν = min

{
k − m,μ

})
, (2.50)

which results in (1).
The proof of (2) is simpler. In fact,

fm(∞) = lim
x→∞
[
xm−k fk(x)

]
= 0 near ∞, (2.51)

and ∣∣∣fm(x) − fm(∞)
∣∣∣ = ∣∣∣fm(x)

∣∣∣ ≤ |fk(∞)| + 1
|x|k−m

near ∞, (2.52)

which results in (2). �

Example 2.2. Let

g(x) =

⎧⎨
⎩

1, |x| ≤ 1,
1

|x|s+1
, |x| > 1,

(2.53)

where s ≥ 0. Then g ∈ Ĥs,0

(
R

n+1
0

)
but g �∈ Ĥ�

(
R

n+1
0

)
when � > s + 1,

where

Ĥs,0

(
R

n+1
0

)
= H
(
R

n+1
0

)⋂
Ĥs,†
(
R

n+1
0

)⋂{
g, gs(∞) = 0

}
. (2.54)

2.3. Monogenic Functions

Let Ω be a domain of R
n+1. Introduce the following Dirac operator

D =
n∑

k=0

ek
∂

∂xk
: C(r) (Ω, C (Vn)) −→ C(r−1)

(
Ω, C
(
Vn

))
, (2.55)

its action on functions from the left and from the right being governed by
the rules

D[f ] =
n∑

k=0

∑
A

ekeA
∂fA

∂xk
, [f ]D =

n∑
k=0

∑
A

eAek
∂fA

∂xk
. (2.56)

Definition 2.6. We say a function f ∈ C(r) (Ω, C (Vn)) (r ≥ 1) to be left
(right) regular in Ω if D[f ] = 0 ([f ]D = 0) in Ω. Sometimes we also say that
f is left (right) regular in Ω. f is said to be biregular in Ω if and only if it is
both left and right regular.

Remark 2.4. Generally speaking, if

f(x) =
m∑

j=1

fj(x)λj

(
fj ∈ C(Ω, R) and λj ∈ C(Vn)

)
, (2.57)

then

D[f ] =
n∑

k=0

m∑
j=1

ekλj
∂fj

∂xk
, [f ]D =

n∑
k=0

m∑
j=1

λjek
∂fj

∂xk
. (2.58)
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Example 2.3. Let

E(x) =
x

|x|n+1
=

x−1

|x|n−1
=

1
|x|n−1x

, x ∈ R
n+1 \ {0}. (2.59)

Then E is biregular [2,9], which is called the Cauchy kernel function.

Example 2.4. The hypercomplex variables

zj = zj(x) = xje0 − x0ej

(
j = 1, . . . , n

)
(2.60)

are biregular [2,4,5,31,32].

Example 2.5. All derivatives of E, i.e.,

W{�1,�2,...�k}(x) = (−1)k ∂k E

∂x�1∂x�2 . . . ∂x�k

(x), x ∈ R
n+1 \ {0}, (2.61)

are biregular [2,4,5,31,32], and

W{�1,�2,...�k}(x) = O
(
|x|−(n+k)

)
near ∞, (2.62)

where �j ’s are k elements out of the set N =
{
1, . . . , n

}
repetition being

allowed, in other words,
{
�1, . . . , �k

} ∈ Nk.

3. Cauchy Type Integrals and Singular Integrals

In this section, we first introduce the integrals of hypercomplex functions,
specially the Cauchy type integrals and singular integrals on the hyperplane
R

n+1
0 which are the important tools for solving the boundary value problems.

3.1. Integrals of Hypercomplex Functions

To discuss integrals of functions with values in C(Vn), we first introduce the
differential space with basis {dx0, . . . ,dxn} denoted by Tn+1. Let G (Tn+1)
be the Grassmann algebra over Tn+1 with basis {dxA, A = (h1, . . . , hr) ∈ P
N0, 0 ≤ h1 < h2 < . . . < hr ≤ n}, where N0 is the set {0, 1, . . . , n} and PN0

the family of all order-preserving subsets of N0 in the above fixed way. The
exterior product on G (Tn+1) is defined by⎧⎪⎪⎨
⎪⎪⎩

dxA ∧ dxB = (−1)P (A,B)dxA∪B, if A,B ∈ PN0, A ∩ B = ∅,
dxA ∧ dxB = 0, if A,B ∈ PN0, A ∩ B �= ∅,

η ∧ υ =
∑′

A

∑′

B

ηAυBdxA ∧ dxB, if η =
∑′

A

ηAdxA, υ =
∑′

A

υAdxA,

(3.1)

where ηA and υA are real,
∑′

A
is the sum for all A ∈ PN0 and P (A,B) is

as before. Obviously, as a rule,⎧⎨
⎩

dx∅ = 1,
dxh1 ∧ dxh2 . . . ∧ dxhr

= dxh1h2...hr
, if 0 ≤ h1 < h2 . . . < hr ≤ n,

dxA ∧ dxB = (−1)#(A)#(B)dxB ∧ dxA, if A,B ∈ PN0.
(3.2)
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We construct the direct product algebra W =
(
C (Vn) , G (Tn+1)

)
, then

consider the function � : R
n+1
0 −→ W of the form

�(x) =
∑
A

∑′

#(B)=p

�A,B(x)eAdxB , (3.3)

where all �A,B are of the class C(r) (r ≥ 1) on R
n+1
0 , p is fixed and 0 < p ≤

n + 1. � is called a C (Vn)-valued p -differential form. Let furthermore Γ be
a p -chain on R

n+1, then we define∫
Γ

�(x) =
∑
A

∑′

#(B)=p

eA

∫
Γ

�A,B(x)dxB . (3.4)

In the sequel, we shall use the following C (Vn)-valued n–differential
form, which is exact, so written as

dσ =
n∑

k=0

(−1)kekdx̂k ≡
n∑

k=0

(−1)kekdx0 ∧ . . .∧dxk−1 ∧dxk+1 . . .∧dxn. (3.5)

Remark 3.1. Sometimes we write it as dσn(x) in detail, then dσn−1(ς) is the
C(Vn−1)-valued (n − 1)-differential form for ς ∈ R

n, which will used below.

3.2. Cauchy Principal Value Integrals at the Infinity

In this paper, we will devote to discussing the Cauchy principal value integrals
at the infinity on the hyperplane R

n+1
0 .

Definition 3.1. Suppose that f, g ∈ C
(
R

n+1
0 , C (Vn)

)
. If∫

R
n+1
0

g(x) dσf(x) = lim
R→+∞

∫
Bn(0,R)

g(x) dσ f(x) (3.6)

exists, then we say that the left side integral is convergent and call it the
principal value integral on R

n+1
0 at ∞.

Remark 3.2. Obviously,∫
R

n+1
0

g(x) dσf(x) =
∫
R

n+1
0

g(x) (−en) f(x) dS, (3.7)

where
dS = dx0dx1 . . . dxn−1 = endσ (3.8)

is the elementary surface measure on the hyperplane R
n+1
0 .

Example 3.1. (see[13]) Let E be the Cauchy kernel function given in (2.59),
then

1∨
n+1

∫
R

n+1
0

E(x − w) dσ =

⎧⎪⎨
⎪⎩

1
2
, w ∈ R

n+1
+ ,

−1
2
, w ∈ R

n+1
− ,

(3.9)

and

1∨
n+1

∫
R

n+1
0

dσ E(x − w) =

⎧⎪⎨
⎪⎩

1
2
, w ∈ R

n+1
+ ,

−1
2
, w ∈ R

n+1
− ,

(3.10)
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where ∨
n+1

=
2π(n+1)/2

Γ((n + 1)/2)
(3.11)

is the area of the unit sphere

Sn =
{

x, |x| = 1, x ∈ R
n+1
}

. (3.12)

To show this example, we first prove some lemmas in [13] for easy ref-
erence and promotion.

Lemma 3.1. [ [13]] Assume x is a fixed point in R
n+1
0 , then for a large enough

R, we have

mes
([

Bn(x,R)
]
Δ
[
Bn(0, R)

])
≤ 2Vn

[
Rn −

(
R − |x|

2

)n ]
for |x| ≤ 2R,

(3.13)
where AΔB represents the symmetric difference of set A and set B, mes(A)
denotes the measure of A, Vn is the volume of unit ball in R

n+1
0 .

Proof. From{
y,
∣∣∣y − x

2

∣∣∣ < R − |x|
2

, y ∈ R
n+1
0

}
⊆
[
Bn(x,R)

]⋂[
Bn(0, R)

]
, |x| ≤ R,

(3.14)
(3.13) is obvious. �

Lemma 3.2. ( [13]) Let w be a fixed point on R
n+1
± , f ∈ C

(
R

n+1
0 , C (Vn)

)
and
∥∥f∥∥∞ < M . Then

lim
R→+∞

[∫
Bn(0,R)

E(x − w)dσf(x) −
∫

Bn(Re(w),R)

E(x − w)dσf(x)

]
= 0,

(3.15)
where w ∈ R

n+1
± .

Proof. It is easily seen that, for R >
∣∣Re(w)

∣∣,
Δ

=

∣∣∣∣∣
∫

Bn(0,R)

E(x − w)dσf(x) −
∫

Bn(Re(w),R)

E(x − w)dσf(x)

∣∣∣∣∣
≤ M

∫[
Bn(0,R)

]
Δ
[
Bn(Re(w),R)

] ∣∣∣E(x − w)
∣∣∣dS

≤ M

∫[
Bn(0,R)

]
Δ
[
Bn(Re(w),R)

] 1[
|Re(x − w)|2 + |Im(w)|2

]n
2

dS

≤ 2MVn

[
Rn − (R − 1

2 |Re(w)|)n][
(R − |Re(w)|)2 + |Im(w)|2

]n
2

(
by Lemma 3.1

)
,

(3.16)

in which we used the following relationships∣∣Re(x − w)
∣∣ = ∣∣x − Re(w)

∣∣ ≥ R ≥ R − |Re(w)| while x �∈ Bn

(
Re(w), R

)
(3.17)
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and∣∣Re(x − w)
∣∣ = ∣∣x − Re(w)

∣∣ ≥ R − |Re(w)| while x �∈ Bn

(
0, R
)
. (3.18)

Obviously, (3.16) results in (3.15). �

Proof of (3.9). Let

G =
1∨
n+1

∫
Bn(Re(w),R)

E(x − w)dσ. (3.19)

By Lemma 3.2, we just need prove

lim
R→+∞

G � lim
R→+∞

1∨
n+1

∫
Bn(Re(w),R)

E(x − w)dσ =

⎧⎪⎨
⎪⎩

1
2
, w ∈ R

n+1
+ ,

−1
2
, w ∈ R

n+1
− .

(3.20)
Let w = (w0, w1, . . . , wn) ∈ R

n+1
± . We divide G into two parts.

G =
1∨
n+1

∫
Bn(Re(w),R)

wnen

[|Re(x − w)|2 + w2
n]

n+1
2

dσ

+
1∨
n+1

∫
Bn(Re(w),R)

Re(x − w)

[|Re(x − w)|2 + w2
n]

n+1
2

dσ

� G1 + G2.

(3.21)

Obviously, lim
R→+∞

G1 is a Poisson integral in the n-dimensional Euclidean

space [26], i.e.,

lim
R→+∞

G1 =
1∨
n+1

∫
Rn

wn

[|Re(x − w)|2 + w2
n]

n+1
2

dx0 . . . dxn−1 = ±1
2
, (3.22)

where w ∈ R
n+1
± .

By the coordinate transformation r = |Re(x − w)|, ξ = Re(x − w)/r in
Rn+1

0 , we easily get

G2

=
1∨
n+1

∫
Bn(Re(w),R)

Re(x − w)

[|Re(x − w)|2 + w2
n]

n+1
2

dσ

=
−en∨

n+1

∫ R

0

rn

(r2 + w2
n)(n+1)/2

[∫
|ξ|=1

ξdξ0 . . . dξn−2

]
dr
(
ξ ∈ R

n+1
0

)

=
−en∨

n+1

∫ R

0

rn

(r2 + w2
n)(n+1)/2

[∫
|ς|=1,ς∈Rn

dσn−1(ς)

]
dr
(
by Remark 3.1

)
= 0,

(3.23)
in which we use the fact that, by the Cauchy’s Theorem [2,9], the above inner
integral vanishes, i.e., ∫

|ς|=1

dσn−1(ς) = 0
(
ς ∈ R

n
)
. (3.24)

(3.21), (3.22) and (3.23) result in (3.20). �
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Example 3.2. If f, g ∈ Ĥμ
(
R

n+1
0

)
, then(

U [f ]
)
(w) =

1∨
n+1

∫
R

n+1
0

E(x − w) dσ
[
f(x) − f(∞)

]
, w ∈ R

n+1
± (3.25)

and(
[g]U
)
(w) =

1∨
n+1

∫
R

n+1
0

[
g(x) − g(∞)

]
dσ E(x − w), w ∈ R

n+1
± (3.26)

exist.

In fact, by (2.8) and (2.32), we have, for example, when |x| > 2|w|∣∣∣∣E(x−w)(−en)
[
f(x)−f(∞)

]∣∣∣∣ =
∣∣∣∣E(x−w)

∣∣∣∣
∣∣∣(−en)

∣∣∣
∣∣∣∣[f(x)−f(∞)

]∣∣∣∣ ≤ 2M

|x|n+μ
.

(3.27)
So, the integral (3.25) exists (absolutely converges) and it is an ordinary
(improper) integral. Similarly, the integral (3.26) exists as an ordinary (im-
proper) integral.

Theorem 3.1. If f ∈ Ĥμ
(
R

n+1
0

)
, then(S[f ]

)
(w) =

1∨
n+1

∫
R

n+1
0

E(x − w) dσ f(x), w ∈ R
n+1
± (3.28)

and (
[f ]S)(w) =

1∨
n+1

∫
R

n+1
0

f(x) dσ E(x − w), w ∈ R
n+1
± (3.29)

exist.

(3.28) and (3.29) are called, respectively, the left Cauchy type integral
and the right Cauchy type integral with the density f on the hyperplane
R

n+1
0 .

Proof. Now, we see that, by Example 3.1 and Example 3.2,(S[f ]
)
(w)

=
1∨
n+1

∫
R

n+1
0

E(x − w)dσf(∞) +
1∨
n+1

∫
R

n+1
0

E(x − w)dσ[f(x) − f(∞)]

= ±1
2
f(∞) +

(
U [f ]
)
(w), w ∈ R

n+1
± .

(3.30)
Similarly, (3.29) is also convergent. �
Remark 3.3. In fact, if⎧⎪⎨

⎪⎩
f ∈ C

(
R

n+1
0 , C (Vn)

)
,∣∣∣f(x)

∣∣ ≤ M

|x|μ near x = ∞
(
Mis a constant

)
,

(3.31)

denoted as
f ∈ C

(
R

n+1
0

)⋂
O−μ
(∞), (3.32)

then both
(S[f ]

)
(w) and

(
[f ]S)(w) given, respectively, in (3.28) and (3.29)

exist and they are just ordinary (improper) integrals.
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3.3. Cauchy Type Integrals on General Unbounded Domains

We also need the Cauchy type integral on general unbounded domains in the
discussion for Riemann boundary value problems hereinbelow.

Definition 3.2. Suppose that Ω is a unbounded subdomain of R
n+1
0 , f, g ∈

C
(
Ω, C (Vn)

)
. If∫

Ω

g(x) dσf(x) = lim
R→+∞

∫
Bn(0,R)∩ Ω

g(x) dσ f(x), (3.33)

exists, then we say that it is convergent and the principal value integral on
Ω at ∞.

For example, the Cauchy type integral on outside of a ball is an usual
one, i.e., for fixed t ∈ R

n+1
0 and r ≥ 0,(

S|x−t|≥r[f ]
)
(w) =

1
Vn+1

∫
R

n+1
0 \Bn(t,r)

E(x−w) dσ f(x), w ∈ R
n+1
± ∪Bn(t, r)

(3.34)
defined by(

S|x−t|≥r[f ]
)
(w) = lim

R→+∞
1

Vn+1

∫
Bn(0,R)\Bn(t,r)

E(x − w)dσf(x),

w ∈ R
n+1
± ∪ Bn(t, r).

(3.35)

In exactly the same way that we prove Lemma 3.2, we have the following
more general result.

Lemma 3.3. Let Ω be a unbounded subdomain of R
n+1
0 , f ∈ C (Ω, C (Vn))

and
∣∣f(x)

∣∣ ≤ M for x ∈ Ω. Then

lim
R→+∞

[∫
Bn(0,R)∩ Ω

E(x − w)dσf(x) −
∫

Bn(Re(w),R)∩ Ω

E(x − w)dσf(x)

]

= 0, w ∈ R
n+1
± . (3.36)

Example 3.3. Let Ω = R
n+1
0 \Bn(Re(w), r). As before, we may prove that,

if f ∈ C
(
Ω, C(Vn+1)

)
and f satisfies the †-Hölder condition at ∞ then the

Cauchy type integral SΩ[f ] on Ω exists. In particular,(
S|x−Re(w)|≥r[1]

)
(w) =

1∨
n+1

∫
R

n+1
0 \Bn(Re(w),r)

E(x − w)dσ, w ∈ R
n+1
±

(3.37)
exists and ∣∣∣(S|x−Re(w)|≥r[1]

)
(w)
∣∣∣ ≤ 1

2

(
r ≥ 0

)
, w ∈ R

n+1
± . (3.38)

In fact, in this case we still have, similar to (3.21),

G(R) =
1∨
n+1

∫
r≤|x−Re(w)|≤R

E(x − w)dσ � G1(R) + G2(R), (3.39)
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where

G2(R) =
1∨
n+1

∫
r≤|x−Re(w)|≤R

Re(x − w)

[|Re(x − w)|2 + w2
n]

n+1
2

dσ = 0, (3.40)

and since G1(R) is monotonous for R there are the limits

lim
R→+∞

[
± G1(R)

]
=

1∨
n+1

∫
r≤|x−Re(w)|

±wn

[|Re(x − w)|2 + w2
n]

n+1
2

dx0 . . . dxn−1 ≤ 1

2

(3.41)
by (3.22).

Thus, by Lemma 3.3 we get (3.38).
In (3.15) we improve R as a function R = R(w) and rewrite Δ in (3.16)

as

Δ(w) =

∫
Bn(0,R(w))

E(x − w)dσf(x) −
∫

Bn(Re(w),R(w))
E(x − w)dσf(x), w ∈ R

n+1
± .

(3.42)
Then another variant of Lemma 3.1 is more interesting.

Lemma 3.4. Let Δ(w) be given in (3.42) with R(w) ≥ 2|w| and f ∈ C
(
R

n+1
0 ,

C (Vn)) with
∥∥f∥∥

R
n+1
0

< M . Then

lim
w∈R

n+1
± , w→+∞

Δ(w) = 0 (3.43)

and Δ(w) is bounded.

Proof. When R = R(w) ≥ 2|w| > 2|Re(w)|, (3.13) and (3.16) still hold. So,
the proof of (3.43) is exactly the same as the proof of (3.15). And from (3.16)
with R = R(w) we get

∣∣∣Δ(w)
∣∣∣ ≤ 2MVn

[
R(w)

R(w) − |Re(w)|
]n

≤ 2n+1MVn � C, (3.44)

where C is a constant independent of w. �

Example 3.4. Both the integrals

(
S|x|≥ 1

2 |w|[1]
)
(w) =

1∨
n+1

∫
|x|≥ 1

2 |w|
E(x − w)dσ, w ∈ R

n+1
± (3.45)

and (
S|x|≤ 1

2 |w|[1]
)
(w) =

1∨
n+1

∫
|x|≤ 1

2 |w|
E(x − w)dσ, w ∈ R

n+1
± (3.46)

are bounded.
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(3.46) is easy to obtain. In fact,∣∣∣(S|x|≤ 1
2 |w|[1]

)
(w)
∣∣∣ (w ∈ R

n+1
±
)

≤ 1∨
n+1

∫
|x|≤ 1

2 |w|

1
|x − w|n dx0 . . . dxn−1

≤ 1∨
n+1

∫
|x|≤ 1

2 |w|

[ |w|
2

]−n

dx0 . . . dxn−1

(
by |x − w| ≥ |w| − |x| ≥ 1

2
|w|
)

≤ Vn∨
n+1

(
Vnis the volume of unit ball inR

n+1
0

)
.

(3.47)
(3.47) and Example 3.1 result in∣∣∣(S|x|≥ 1

2 |w|[1]
)
(w)
∣∣∣ ≤ ∣∣∣(S|x|≤ 1

2 |w|[1]
)
(w)
∣∣∣+ ∣∣∣(S[1]

)
(w)
∣∣∣ ≤ Vn∨

n+1

+
1
2
.

(3.48)

3.4. Regularity of the Cauchy Type Integrals

Sometimes, (3.28) and (3.29) are treated as Cauchy principal value integrals
at ∞ with a parameter variable w. For this kind of integrals we need to
introduce the concept of uniform convergence below.

Definition 3.3. Let Σ be a domain in R
n+1, f, g ∈ C

(
R

n+1
0 × Σ, C(Vn)

)
and

w ∈ Σ. If

lim
R→+∞

∫
|x|≤R

g(x, ς)dσf(x, ς) =
∫
R

n+1
0

g(x, ς)dσf(x, ς), ς ∈ Bn+1(w, r) ⊂ Σ

(3.49)
is uniform for some r > 0, then we say this Cauchy type integral with the
parameter variable ς to be locally uniformly convergent at w. If it is locally
uniformly convergent at each point in Σ then we say that it is locally uni-
formly convergent on Σ.

Remark 3.4. In other words, (3.49) is locally uniformly convergent at w if
and only if for any ε > 0 there is R > 0 such that, for some r > 0 and any
ς ∈ Bn+1(w, r),∣∣∣∣
∫

|x|≥R

g(x, ς)dσf(x, ς)
∣∣∣∣ =
∣∣∣∣
∫
R

n+1
0

g(x, ς)dσf(x, ς) −
∫

|x|≤R

g(x, ς)dσf(x, ς)
∣∣∣∣

< ε. (3.50)

Remark 3.5.
∫
R

n+1
0

F(x,w)dσ is convergent (locally uniformly convergent)

at w if and only if all integrals
∫
R

n+1
0

FA(x,w)dσ are convergent (locally

uniformly convergent) at w, where FA are the eA-component of F .

Now we consider the regularity of the Cauchy type integral. As we know,
it has not been seriously treated, but many authors often give tacit consent
to it in their articles due to its fundamental nature. To prove the regularity,
we need the Leibniz rule for the Cauchy type integral at ∞. Firstly, we start
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to consider the Leibniz rule for the simplest case of R-valued hypercomplex
functions.

Let Σ be an open set in R
n+1, Ω be its subdomain and Ω ⊂ Σ. φ(x,w)

is an R-valued hypercomplex function defined on R
n+1
0 × Σ.

Lemma 3.5. (Leibniz rule for integrals of R-valued functions) Assume that

(1) φ,
∂φ

∂w�

(
� = 0, 1, . . . , n

)
∈ C
(
R

n+1
0 × Ω, R

)
;

(2) E(w) =
∫
R

n+1
0

φ(x,w) dS converges;

(3)
∫
R

n+1
0

∂φ

∂w�
(x,w)dS

(
� = 0, 1, . . . , n

)
are locally uniformly convergent

on Ω. Then
∂

∂w�

∫
R

n+1
0

φ(x,w)dS =
∫
R

n+1
0

∂φ

∂w�
(x,w)dS ∈ C

(
Ω, R
) (

� = 0, 1, . . . , n
)
.

(3.51)

Proof. Without any loss of generality, we suppose Ω = Bn+1(w∗, r). Firstly,
for any ε > 0 there is R > 0 such that, by the uniform integrability in
Condition (3) and Remark 3.4,∣∣∣∣∣

∫
|x|≥R

∂φ

∂w�
(x, ς)dS

∣∣∣∣∣ < ε for any ς ∈ Ω. (3.52)

Noting that if 0 < |λ| < r then

E(w) − E(w + λε�)
λ

=
∫
R

n+1
0

∂φ

∂w�

(
x,w + θλε�

)
dS
(
0 < θ < 1

)
, (3.53)

where ε� = (δ0,�, δ1,�, . . . , δk,�, . . . , δn,�) with the Kronecker symbol δk,�, thus

Δ =

∣∣∣∣∣E(w) − E(w + λε�)
λ

−
∫
R

n+1
0

∂φ

∂w�
(x,w)dS

∣∣∣∣∣
≤
∣∣∣∣∣
∫
R

n+1
0

∂φ

∂w�

(
x,w + θλε�

)
dS −

∫
R

n+1
0

∂φ

∂w�
(x,w)dS

∣∣∣∣∣
≤ 2ε +

∣∣∣∣∣
∫

|x|≤R

∂φ

∂w�

(
x,w + θλε�

)
dS −

∫
|x|≤R

∂φ

∂w�
(x,w)dS

∣∣∣∣∣
≤ 2ε + Mω

(
∂φ

∂w�
,
∣∣λ∣∣) ,

(3.54)

where M is a constant and ω

(
∂φ

∂w�
,
∣∣λ∣∣) is the modulus of continuity of

∂φ

∂w�

on Bn(0, R) × Ω, i.e.,

ω

(
∂φ

∂w�
, h

)

= sup

{∣∣∣∣ ∂φ

∂w�
(x, ς) − ∂φ

∂w�
(t, ξ)

∣∣∣∣ , |x − t|, |ς − ξ| ≤ h, x, t ∈ Bn(0, R), ς, ξ ∈ Ω

}
.

(3.55)
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By using
∂φ

∂w�
∈ C
(
Bn(0, R) × Ω, R

)
and (3.54), we get

lim sup
λ→0

Δ ≤ 2ε (3.56)

which results in, by the arbitrariness of ε,

lim
λ→0

Δ = 0, (3.57)

i.e.,
∂E

∂w�
(w) =

∫
R

n+1
0

∂φ

∂w�
(x,w)dS, � = 0, 1, . . . , n. (3.58)

By the same way, we have

δ =
∣∣∣∣ ∂E∂w�

(ς) − ∂E

∂w�
(w)
∣∣∣∣ (ς, w ∈ Ω

)

=

∣∣∣∣∣
∫
R

n+1
0

∂φ

∂w�

(
x, ς
)
dS −

∫
R

n+1
0

∂φ

∂w�
(x,w)dS

∣∣∣∣∣
≤ 2ε +

∣∣∣∣∣
∫

|x|≤R

∂φ

∂w�

(
x, ς
)
dS −

∫
|x|≤R

∂φ

∂w�
(x,w)dS

∣∣∣∣∣
(3.59)

which implies
lim sup

ς→w
δ ≤ 2ε, i.e., lim

ς→w
δ = 0, (3.60)

so,
∂E

∂w�
∈ C(Ω, R), � = 0, 1, . . . , n. (3.61)

(3.58) and (3.61) result in (3.51). �

Theorem 3.2. (Leibniz’s rule for the Cauchy principal integrals) Let Σ be an
open set in R

n+1, Ω be its subdomain and Ω ⊂ Σ. If

(1) f ∈ C
(
R

n+1
0 , C(Vn)

)
, φ,

∂φ

∂w�

(
� = 0, 1, . . . , n

)
∈ C
(
R

n+1
0 × Ω, C(Vn)

)
,

(2) ΦB(w) =
∫
R

n+1
0

φ(x,w) dσfB(x)
(
B ∈ PN

)
exist, where fB is the eB-

component of f ,

(3) ΥB(w) =
∫
R

n+1
0

∂φ

∂w�
(x,w) dσfB(x)

(
B ∈ PN

)
are locally uniformly

convergent on Ω. Then(
D

[∫
R

n+1
0

φ(x,w)dσf(x)

])
(w) =

∫
R

n+1
0

(
Dw[φ]

)
(x,w)dσf(x), w ∈ Ω,

(3.62)
and([∫

R
n+1
0

f(x)dσφ(x,w)

]
D

)
(w) =

∫
R

n+1
0

f(x)dσ
(
[φ]Dw

)
(x,w), w ∈ Ω,

(3.63)
where Dw is the Dirac operator acting to the second variable w of the
function φ(x,w).
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Remark 3.6. Obviously, (1) is equivalent to that

fB ∈ C
(
R

n+1
0 , R

)
, φA,

∂φA

∂w�

(
� = 0, 1, . . . , n

)
∈ C
(
R

n+1
0 × Ω, R

)
. (3.64)

Moreover, it is easy to see, by (2.1),[∑
A

eAλA

]
eB =

∑
A

eC(−1)#(A∩B)(−1)P (A,B)λA. (3.65)

where C = AΔB. By Remark 3.5, we know that the condition (2) is equiva-
lent to that∫

R
n+1
0

φA(x,w)fB(x) dS
(
A,B ∈ PN

)
are convergent. (3.66)

Finally, the condition (3) is equivalent to that∫
R

n+1
0

∂φA

∂w�
(x,w)fB(x)dS

(
A,B ∈ PN

)
(3.67)

are locally uniformly convergent on Ω.

Proof of Theorem 3.2. We only prove (3.62). (3.63) may be similarly proved.
Without loss of generality, taking Bn+1(w, r) = {ς, |ς −w| < r} ⊂ Ω. we only
consider Ω = Bn+1(w, r) for (3.62). Denote

Φ(w) =
∫
R

n+1
0

φ(x,w)dσf(x), w ∈ Ω, (3.68)

Υ(w) =
∫
R

n+1
0

(
Dw[φ]

)
(x,w)dσf(x), w ∈ Ω. (3.69)

We have, by Remark 2.4,

Υ(w) =
n∑

�=0

∑
A

∑
B

[
ej eA (−en) eB

] [∫
R

n+1
0

∂

∂w�
φA(x,w)fB(x)dS

]
. (3.70)

By Remark 3.6 and Lemma 3.5, we know

∂

∂w�

[∫
R

n+1
0

φA(x,w)fB(x)dS

]
=
∫
R

n+1
0

∂φA

∂w�
(x,w)fB(x)dS. (3.71)

Thus, by Remark 2.4,

(
D[Φ]

)
(w) =

n∑
�=0

∑
A

∑
B

[
ej eA(−en) eB

]
∂

∂w�

[∫
R

n+1
0

φA(x, w)fB(x)dS

]
= Υ(w),

(3.72)
i.e, (3.62) holds. �

Remark 3.7. The Leibniz rule for integrals on finite smooth surfaces is first
proved in [8,10]. The proof for the Leibniz rule of the Cauchy principal inte-
gral on hyperplane R

n+1
0 here is more difficult. With its help, we now state

the following main result, which has been used in many articles, for example,
in [13,30], but has not been proved.
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Theorem 3.3. (Regularity of the Cauchy type integral) If f ∈ Ĥμ
(
R

n+1
0

)
,

then S[f ] given in (3.28) is left regular and [f ]S given in (3.29) is right
regular.

Proof. Obviously,

f ∈ C
(
R

n+1
0 , C(Vn)

)
, E,

∂E

∂w�

(
� = 0, 1, . . . , n

)
∈ C
(
R

n+1
0 × R

n+1
± , C(Vn)

)
,

(3.73)
where

∂E

∂w�
(x,w) =

(n + 1) (x − w) (x� − w�)
|x − w|n+3

+
(−1)δ0,�e�

|x − w|n+1
, � = 0, 1, . . . , n. (3.74)

Noting fB ∈ Ĥμ
(
R

n+1
0

)
since f ∈ Ĥμ

(
R

n+1
0

)
, so

S[fB ] (B ∈ PN) areconvergent. (3.75)

By (2.8) and (3.74), we know∣∣∣∣ ∂E

∂w�
(x,w)(−en)fB(x)

∣∣∣∣
=
∣∣∣∣ ∂E

∂w�
(x,w)

∣∣∣∣
∣∣∣fB

∣∣∣ ≤ (n + 2)‖f‖∞
|x − w|n+1

≤ (n + 2)‖f‖∞
|x|n+1

1
1 − |x−1||w| ,

(3.76)
which results in∣∣∣∣ ∂E

∂w�
(x,w)(−en)fB

∣∣∣∣ ≤ 2(n + 2)‖f‖∞
|x|n+1

while |w| < R <
1
2
|x|, (3.77)

so,∫
R

n+1
0

∂E

∂w�
(x,w)dσfB(x) (B∈PN) are locally uniformly convergent on R

n+1
± .

(3.78)
By (3.71), (3.75), (3.78), Theorem 3.2 and Example 2.3, we get Theo-

rem 3.3. �

3.5. Singular Integrals

To discuss the boundary behavior of the Cauchy type integral, we need in-
troduce another kind of Cauchy principal value integrals which has also the
unaided significance.

We consider the integrals(
S[f ]
)
(t) =

1∨
n+1

∫
R

n+1
0

E(x, t) dσ f (x)

=
1∨
n+1

∫
R

n+1
0

x − t

|x − t|n+1
dσ f (x) , t ∈ R

n+1
0

(3.79)

and (
[f ]S
)
(t) =

1∨
n+1

∫
R

n+1
0

f (x) dσ E(x, t)

=
1∨
n+1

∫
R

n+1
0

f (x) dσ
x − t

|x − t|n+1
, t ∈ R

n+1
0 .

(3.80)
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It is evident that such integrals are divergent in general.
Nevertheless,

lim
R→+∞, δ→0+

(
Sδ,R[f ]

)
(t) � lim

R→+∞, δ→0+

1∨
n+1

∫
δ≤|x−t|, |x|≤R

E(x−t)dσ f (x)

(3.81)
and

lim
R→+∞,δ→0+

(
[f ]Sδ,R

)
(t) � lim

R→+∞,δ→0+

1∨
n+1

∫
δ≤|x−t|,|x|≤R

f(x)dσ E(x − t)

(3.82)
maybe exist.

Definition 3.4. If (3.81) and (3.82) exist, we call, respectively, (3.79) and
(3.80) the left Cauchy principal value integral and the right Cauchy principal
value integral at points both ∞ and t, or simply singular integrals.

Example 3.5. If f(x) ≡ 1, then
(S[1]
)
(t) given in (3.79) and

(
[1]S)(t) given

in (3.80) exist. Specifically,

(S[1]
)
(t) =

1∨
n+1

∫
R

n+1
0

E(x − t) dσ = 0, t ∈ R
n+1
0 , (3.83)

and (
[1]S)(t) =

1∨
n+1

∫
R

n+1
0

dσ E(x − t) = 0, t ∈ R
n+1
0 . (3.84)

To show this example, we need the following lemma, which and its proof
are quite similar to Lemma 3.2.

Lemma 3.6. ( [13]) Let
∣∣f(x)

∣∣ ≤ M for x ∈ Bn(0, R)
⋃

Bn(t, R). Assume
t ∈ R

n+1
0 and the positive real R is large enough, then

lim
R→+∞

[∫
δ≤|x−t|,|x|≤R

E(x − t) dσf(x) −
∫

δ≤|x−t|≤R

E(x − t) dσf(x)

]

= 0, t ∈ R
n+1
0 .

(3.85)

Proof. We see∣∣∣∣∣
∫

δ≤|x−t|, |x|≤R

E(x − t)dσf(x) −
∫

δ≤|x−t|≤R

E(x − t)dσf(x)

∣∣∣∣∣
≤ M

∫[
Bn(0,R)

]
Δ
[
Bn(t,R)

] ∣∣∣E(x − t)
∣∣∣dS

≤ M

∫[
Bn(0,R)

]
Δ
[
Bn(t,R)

] 1
|x − t|n dS

≤ 2MVn

[
Rn − (R − 1

2 |t|)n]
[R − |t|]n

(
by Lemma 3.1, (3.17) and (3.18)

)
,

(3.86)
which results in (3.85). �
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Proof of Example 3.5. By (3.85) and the spherical transformation x−t = rw,
r = |x − t|, we have(S[1]

)
(t)

= − 1∨
n+1

lim
δ→0+, R→+∞

∫ R

δ

∫
|w|=1

w

r
dwdr

(
w ∈ R

n+1
0

)

= − 1∨
n+1

lim
δ→0+, R→+∞

∫ R

δ

1
r

[∫
|ς|=1

dσn−1(ς)

]
dr
(
ς ∈ R

n
)

= 0
(
by (3.24)

)
.

(3.87)

Similarly, we can obtain (3.84). �

Remark 3.8. In fact, we have proved in (3.87)∫
δ≤|x−t|≤R

E(x − t)dσ = 0, t ∈ R
n+1
0 . (3.88)

So,∫
|x−t|≤R

E(x − t)dσ � lim
δ→0+

∫
δ≤|x−t|≤R

E(x − t)dσ = 0, t ∈ R
n+1
0 , (3.89)

and∫
|x−t|≥δ

E(x − t)dσ � lim
R→+∞

∫
δ≤|x−t|, |x|≤R

E(x − t)dσ = 0, t ∈ R
n+1
0 .

(3.90)

Theorem 3.4. If f ∈ Ĥ
(
R

n+1
0

)
, then the integrals

(S[f ]
)
(w) and

(
[f ]S)(w)

exist for w ∈ R
n+1.

Proof. The case of w ∈ R
n+1
± is proved in Theorem 3.1. Now, we only consider

the case of w = t ∈ R
n+1
0 for

(S[f ]
)
(w). Let(

U[f ]
)

= lim
R→+∞,δ→0+

1∨
n+1

∫
δ≤|x−t|, |x|≤R

E(x − t) dσ [f(x) − f(∞)], t ∈ R
n+1
0 .

(3.91)
Taking r such that R > r > δ, we have

lim
R→+∞,δ→0+

1∨
n+1

∫
δ≤|x−t|, |x|≤R

E(x − t) dσ [f(x) − f(∞)]

= lim
R→+∞

1∨
n+1

∫
r≤|x−t|, |x|≤R

E(x − t) dσ [f(x) − f(∞)]

+ lim
δ→0+

1∨
n+1

∫
δ≤|x−t|≤r

E(x − t) dσ [f(x) − f(t)]
(
by (3.88)

)
� I1 + I2. (3.92)

Since f ∈ Ĥ
(
R

n+1
0

)
, when t ∈ R

n+1
0 we have∣∣∣E(x − t)

[
f(x) − f(∞)

]∣∣∣ = O
(
|x|−n−μ

)
as |x| → ∞, (3.93)
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and ∣∣∣E(x − t)
[
f(x) − f(t)

]∣∣∣ = O
(
|x − t|−n+μ

)
as |x − t| → 0. (3.94)

So, both

I1 =
1∨
n+1

∫
r≤|x−t|

E(x − t) dσ [f(x) − f(∞)] (3.95)

and

I2 =
1∨
n+1

∫
|x−t|≤r

E(x − t) dσ [f(x) − f(t)] (3.96)

are the ordinary improper integrals by (3.93) and (3.94). (3.92), (3.95) and
(3.96) show

(U [f ]
)
(t) is meaningful for t ∈ R

n+1
0 . Thus, by Example 3.5,(S[f ]

)
(t) =

(
U[f ]
)
(t), t ∈ R

n+1
0 (3.97)

exists. �

In the below, we also write directly(
U[f ]
)
(t) =

1∨
n+1

∫
R

n+1
0

E(x − t) dσ [f(x) − f(∞)], t ∈ R
n+1
0 . (3.98)

The following remark will be used.

Remark 3.9. We point out that, if f ∈ Hμ
(
R

n+1
0

) ∩ f ∈ O−μ(∞) then(S[f ]
)
(t) and

(
[f ]S)(t), respectively, given in (3.79) and (3.80) exist. In fact,

by (3.89)(S[f ]
)
(t)

=
1∨
n+1

∫
|x|≥R

E(x − t) dσ f(x) +
1∨
n+1

∫
|x−t|≤R

E(x − t) dσ [f(x) − f(t)]

=
1∨
n+1

∫
Ω

E(x − t) dσ f(x) +
1∨
n+1

∫
R

n+1
0 \Ω

E(x − t) dσ f(x),

(3.99)
where all integrals are ordinary (improper) integrals at ∞ or t except the last
one is a Cauchy principle value integral at t. For the bounded closed domain
Ω ⊆ R

n+1
0 , we define the Cauchy principle value integral

1∨
n+1

∫
Ω

E(x − t)dσf(x) = lim
δ→0+

1∨
n+1

∫
Ω\{x, |x−t|≤δ}

E(x − t) dσf(x), t ∈ Ω◦

(3.100)
if the right side limits exists, where Ω◦ is the interior of Ω.

4. Boundary Behavior of Cauchy Type Integrals

In this section, we will discuss the boundary behavior of Cauchy type integrals
for both the hyperplane R

n+1
0 and the infinity.
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4.1. Boundary Behavior of Cauchy Type Integrals for R
n+1
0

We consider the integrals(
D[f ]
)
(w) =

1∨
n+1

∫
R

n+1
0

E(x−w) dσ
[
f(x)−f

(
Re(w)

)]
, w ∈ R

n+1 (4.1)

and(
[f ]D
)
(w) =

1∨
n+1

∫
R

n+1
0

[
f(x)−f

(
Re(w)

)]
dσ E(x−w), w ∈ R

n+1. (4.2)

Then we have the important result stated as follows.

Theorem 4.1. (Hölder continuity of D[f) and [f ]D) If f ∈ Ĥμ
(
R

n+1
0

)
then

[f ]D, D[f ] ∈
{

Hμ
(
R

n+1
)
, if 0 < μ < 1,

Hν
(
R

n+1
)
, if μ = 1 (where 0 < ν < 1). (4.3)

Some technical lemma are needed to prove Theorem 4.1. We first in-
troduce a symbol. Let Σ ⊆ R

n+1, for an arbitrary point w ∈ R
n+1, we will

denote the point on Σ nearest to w by wΣ (if such points are more than one
in number, wΣ may be any one of them).

Obviously, we have∣∣∣x − wΣ

∣∣∣ ≤ 2
∣∣∣x − w

∣∣∣, x ∈ Σ ⊆ R
n+1, w ∈ R

n+1. (4.4)

If f ∈ Hμ(Σ), then we also have∣∣∣f(x) − f(wΣ)
∣∣∣ ≤ 2μM(f)

∣∣∣x − w
∣∣∣μ, x ∈ Σ ⊆ R

n+1, w ∈ R
n+1, (4.5)

where M(f) is the Hölder coefficient of f . In particular, when Σ = R
n+1
0

then

w
R

n+1
0

= Re(w), (4.6)∣∣∣f(v
R

n+1
0

)− f
(
w

R
n+1
0

)∣∣∣ ≤ M(f)
∣∣∣v − w

∣∣∣μ, v, w ∈ R
n+1. (4.7)

In the sequel, notations C and M will be used for some constants which
may vary from one occurrence to the next.

Lemma 4.1. Let f ∈ Hμ
(
R

n+1
0

)
and t be a fixed point on R

n+1
0 . Then∣∣∣∣

∫
Bn(t,r)

E(x − w) dσ
[
f(x) − f

(
Re(w)

)]∣∣∣∣ ≤ M rμ, w ∈ R
n+1, (4.8)

and ∣∣∣∣
∫

Bn(t,r)

[
f(x) − f

(
Re(w)

)]
dσ E(x − w)

∣∣∣∣ ≤ M rμ, w ∈ R
n+1, (4.9)

where M is a constant independent of t and w.

Proof. We may prove the following stronger inequality.∫
Bn(t,r)

∣∣∣E(x − w)
∣∣∣∣∣∣dσ
∣∣∣∣∣∣f(x) − f

(
Re(w)

)∣∣∣ ≤ M rμ, w ∈ R
n+1. (4.10)
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By (4.5) and (4.6) we get∫
Bn(t,r)

∣∣∣ E(x − w)
∣∣∣∣∣∣dσ
∣∣∣ ∣∣∣[f(x) − f

(
Re(w)

)]∣∣∣ ≤ M1P(w), (4.11)

where

P(w) =
∫

Bn(t,r)

1∣∣x − w
∣∣n−μ dS. (4.12)

So, we just have to prove the following inequality

P(w) ≤ M2r
μ, w ∈ R

n+1. (4.13)

By (4.4) with Σ = Bn(t, r), it is easy to see (only for the case of n > 1
and n = 1 is simple) that

P(w)

≤
∫

Bn(t,r)

2n−μ∣∣x − wΣ

∣∣n−μ dS

≤
∫ 2r

0

2n−μ

ρ1−μ
dρ

∫ π

0

sinn−2 ϕ1dϕ1 . . .

∫ π

0

sinϕn−2dϕn−2

∫ 2π

0

dϕn−1

≤ 2nπ
n
2

μΓ(n
2 )

rμ. (4.14)

(4.11) and (4.14) imply (4.8). �

Lemma 4.2. If Σ =
{
x, x ∈ R

n+1
0 , |x − t| ≥ r

}
= R

n+1
0 \Bn(t, r), then

Y(w) =
∫
R

n+1
0 \Bn(t,r)

1
|x − w|n+k

dS ≤ M

|w − wΣ|k (k > 0), w ∈ R
n+1 \ Σ,

(4.15)
where M is some constant independent of Σ.

Proof. Let

R(a, b, k) =
∫
R

n+1
0

1
[|x − a| + b]n+k

dS, a ∈ R
n+1
0 , b, k > 0. (4.16)

It is easy to see that (only for n > 1, the case of n = 1 is simpler)

R(a, b, k)

≤
∫ ∞

0

1
[ρ + b]1+k

dρ

∫ π

0

sinn−2 ϕ1dϕ1 . . .

∫ π

0

sinϕn−2dϕn−2

∫ 2π

0

dϕn−1

≤ π
n
2

kΓ(n
2 )bk

.

(4.17)
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Thus, we have

Y(w)

≤ ∫
Σ

3n+k

|3(x − w)|n+k
dS

≤ ∫
R

n+1
0

3n+k[∣∣x − wΣ

∣∣+ ∣∣w − wΣ

∣∣ ]n+k
dS
(
by (4.4) sincewΣexists

)
≤ 3n+k R

(
wΣ,
∣∣w − wΣ

∣∣, k) .
(4.18)

(4.15) follows from (4.17) and (4.18). �

Proof of Theorem 4.1. We just prove the case of D[f ]. The proof will be
divided into two steps. We may assume μ < 1 by Lemma 2.2.

Step 1: Let t ∈ R
n+1
0 , w ∈ R

n+1 and η =
∣∣w − t

∣∣. Set Σ = Bn(t, 2η), we have
∣∣∣(D[f ]

)
(w) −

(
D[f ]
)
(t)
∣∣∣

≤ 1∨
n+1

∣∣∣∣
∫
Σ

E(x − w)dσ
[
f(x) − f

(
w

R
n+1
0

)]∣∣∣∣+ 1∨
n+1

∣∣∣∣
∫
Σ

E(x − t)dσ
[
f(x) − f(t)

]∣∣∣∣
+

1∨
n+1

∣∣∣∣∣
∫
R

n+1
0 \Σ

E(x − w) − E(x − t)
]
dσ
[
f(x) − f

(
w

R
n+1
0

)]∣∣∣∣∣
(
by (4.6)

)
� δ1 + δ2 + δ3.

(4.19)
By Lemma 4.1,

δ1, δ2 ≤ C
∣∣w − t

∣∣μ. (4.20)

Invoking Hile’s Lemma [12]

∣∣∣E(x − w) − E(x − t)
∣∣∣ ≤ |w − t|

|x − w|n+1

n−1∑
j=0

|x − w|j+1

|x − t|j+1
(4.21)

and

1

2
≤ |x − t| − |t − w|

|x − t| ≤ |x − w|
|x − t| ≤ |x − t| + |t − w|

|x − t| ≤ 2 while 2|t − w| ≤ |x − t|,
(4.22)

therefore, by Lemma 4.2,

δ3 ≤ M2|w − t|
∫
R

n+1
0 \Σ

1
|x − w|n+1−μ

dS ≤ C
∣∣∣w − t

∣∣∣μ. (4.23)

Combining (4.19), (4.20) and (4.23) we obtain∣∣∣(D[f ]
)
(w) −

(
D[f ]
)
(t)
∣∣∣ ≤ C

∣∣∣w − t
∣∣∣μ, t ∈ R

n+1
0 , w ∈ R

n+1, (4.24)

which is so called Privalov theorem.

Step 2: Let v, w ∈ R
n+1. Denote the distance from the segment [v, w] to R

n+1
0

by d, then there is K ∈ [v, w] such that d =
∣∣K − K

R
n+1
0

∣∣ = ∣∣K − Re(K)
∣∣. In

fact, K ∈ [v, w] such that t = Re(K) = min{|Re(ξ)|, ξ ∈ [v, w]}, so d = |K−t|.
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Case 1:
∣∣v − w

∣∣ ≥ ∣∣K − t
∣∣. Under this case, by the Privalov theorem in

Step 1, we get

∣∣∣(D[f ]
)
(v) −

(
D[f ](w)

∣∣∣
≤
∣∣∣(D[f ]

)
(v) −

(
D[f ]
)
(t)
∣∣∣+ ∣∣∣(D[f ]

)
(t) −

(
D[f ]
)
(w)
∣∣∣

≤ C
[
|v − t|μ + |w − t|μ

] (
by (4.24)

)
≤ 4C

∣∣v − w
∣∣μ (by |v − t| ≤ |v − K| + |K − t| ≤ 2|v − w|

)
.

(4.25)

Case 2:
∣∣v − w

∣∣ < ∣∣K − t
∣∣. Under this case, both v and w are simultaneously

in R
n+1
+ , or simultaneously in R

n+1
− , and

∣∣x−v
∣∣ ≤ ∣∣x−w

∣∣+ ∣∣v−w
∣∣ ≤ |x−w|+ |t−K| ≤ 2

∣∣x−w
∣∣, x ∈ R

n+1
0 . (4.26)

By the same way, we have,

∣∣x − w
∣∣ ≤ 2
∣∣x − v

∣∣, x ∈ R
n+1
0 . (4.27)

Hence

1
2

≤ |x − v|
|x − w| ≤ 2, x ∈ R

n+1
0 . (4.28)

Also,

∣∣x− t
∣∣ ≤ ∣∣x−v

∣∣+ ∣∣v−K∣∣+ ∣∣K− t
∣∣ < ∣∣x−v

∣∣+2
∣∣K− t

∣∣ ≤ 3
∣∣x−v

∣∣, x ∈ R
n+1
0 .

(4.29)
In the same way, ∣∣x − t

∣∣ < 3
∣∣x − w

∣∣, x ∈ R
n+1
0 . (4.30)

Thus, we have, by Example 3.1,

(
D[f ]
)
(v) −

(
D[f ]
)
(w)

(
say, v, w ∈ R

n+1
+

)
=

1∨
n+1

{∫
R

n+1
0

E(x − v)dσ
[
f(x) − f(t)

]

+
∫
R

n+1
0

E(x − w)dσ
[
f(t) − f(x)

]}
+

1
2

[
f(Re(w)) − f(Re(v))

]

�
∧

1 +
∧

2 .
(4.31)

From (4.7) we immediately have

∣∣∧
2

∣∣ ≤ M(f)
∣∣v − w

∣∣μ. (4.32)
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Note∣∣∧
1

∣∣
≤ 1∨

n+1

∣∣∣∣∣
∫

Bn(t,|v−w|)
E(x − v)dσ

[
f(x) − f(t)

]∣∣∣∣∣
+

1∨
n+1

∣∣∣∣∣
∫

Bn(t,|v−w|)
E(x − w)dσ

[
f(x) − f(t)

]∣∣∣∣∣
+

1∨
n+1

∣∣∣∣∣
∫
R

n+1
0 \Bn(t,|v−w|)

[
E(x − v) − E(x − w)

]
dσ
[
f(x) − f(t)

]∣∣∣∣∣
� σ1 + σ2 + σ3.

(4.33)
We have, by Lemma 4.1,

σ1, σ2 ≤ C|v − w|μ. (4.34)

By Hile’s inequality (4.21) and (4.20), in a manner similar to (4.23) we get

σ3 ≤ C|v − w|μ. (4.35)

Then (4.33), (4.34) and (4.35) together imply∣∣∧
1

∣∣ ≤ C
∣∣v − w

∣∣μ. (4.36)

The relations (4.31), (4.32) and (4.36) imply∣∣∣(D[f ]
)
(v) −

(
D[f ]
)
(w)
∣∣∣ ≤ C

∣∣∣v − w
∣∣∣μ, v, w ∈ R

n+1, (4.37)

which is so called Muskhelisvili theorem.
Now, the proof of D[f ] ∈ Hμ

(
R

n+1
)

for 0 < μ < 1 is complete. The
proof of the result for [f ]D is similar. �

Introduce the following singular integral operators

(
S±[f ]

)
(w) =

⎧⎨
⎩
(
S[f ]
)
(w), if w ∈ R

n+1
± ,

±1
2
f(t) +

(
S[f ]
)
(t), if w = t ∈ R

n+1
0 ,

(4.38)

(
[f ]S±

)
(w) =

⎧⎨
⎩
(
[f ]S
)
(w), if w ∈ R

n+1
± ,

±1
2
f(t) +

(
[f ]S
)
(t), if w = t ∈ R

n+1
0 .

(4.39)

Now, we immediately get the following important theorem from Theorem 4.1,
Example 3.1 and Example 3.3.

Theorem 4.2. [Hölder continuity of Cauchy type integrals] If f ∈ Ĥ
(
R

n+1
0

)
,

then

S+(f), [f ]S+ ∈ Hμ

(
R

n+1
+

)
, S−[f ], [f ]S− ∈ Hμ

(
R

n+1
−

)
. (4.40)

As usual, if the limits(
S[f ]
)+

(t) = lim
v→t, v∈R

n+1
+

(
S[f ]
)
(v),

(
S[f ]
)−

(t) = lim
v→t, v∈R

n+1
−

(
S[f ]
)
(v)

(4.41)
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exists, they are called the positive and negative boundary values of S[f ],
respectively. Similarly, we call(

[f ]S
)+

(t) = lim
v→t, v∈R

n+1
+

(
[f ]S
)
(v),

(
[f ]S
)−

(t) = lim
v→t, v∈R

n+1
−

(
[f ]S
)
(v)

(4.42)
the positive and negative boundary values of [f ]S, respectively.

We note that the Plemelj–Sochocki formulae for the boundary values of
the Cauchy type integrals

(
S[f ]
)
(z) and

(
[f ]S
)
(z) become immediate corol-

laries of Theorem 4.2.

Corollary 4.1. (Plemelj–Sochocki formulae) If f ∈ Ĥ
(
R

n+1
0

)
, then

⎧⎪⎨
⎪⎩
(
S[f ]
)+

(t) =
(
S+[f ]

)
(t) =

1
2
f(t) +

(
S[f ]
)
(t),(

S[f ]
)−

(t) =
(
S−[f ]

)
(t) = −1

2
f(t) +

(
S[f ]
)
(t),

t ∈ R
n+1
0 , (4.43)

⎧⎪⎨
⎪⎩
(
[f ]S
)+

(t) =
(
[f ]S+

)
(t) =

1
2
f(t) +

(
[f ]S
)
(t),(

[f ]S
)−

(t) =
(
[f ]S−

)
(t) = −1

2
f(t) +

(
[f ]S
)
(t),

t ∈ R
n+1
0 , (4.44)

hold.

Remark 4.1. Theorem 4.2 is called the Privalov-Muskhelishvili theorem, which
is a corollary of Theorem 4.1, and the Plemelj–Sochocki formula is a corol-
lary of it. Therefore, Theorem 4.1 unifies and improves the 2P Theorems. The
Plemelj–Sochocki formula plays an important role in the solution of boundary
value problems. For Cauchy type integrals on closed smooth surfaces, [8,10]
give a strict and simple proof for the Plemelj–Sochocki formula. We note that
although the proof in the paper is exactly the same as that in [8,10], we get a
better conclusion that D[f ] is a function of Hμ in the whole plane. The intro-
duction of operator D is the key technique. So, here we first give a rigorous
proof for the Plemelj-Sochocki formulae of Cauchy type integrals over Rn+1

0 ,
instead of simulating from the corresponding result of the classical complex
analysis. The proof here is also valid for the classical case of n = 1. In the
classical case, (4.43) is based on the Plemelj-Sochocki formulae for an open
smooth curve [11,19,24], but there have many obstacles to overcome in the
case of n > 1.

4.2. Boundary Behavior of Cauchy Type Integrals at Infinity

To discuss the boundary behavior of the Cauchy singular integral operator
at the infinity, we shall consider the following twisted inversion functions of
(3.25) and (3.26).
(
U[f ]
)†

(v) =
1∨
n+1

∫
R

n+1
0

E
(
x − v†) dσ

[
f(x) − f(∞)

]
, v ∈ R

n+1
+ ∪ R

n+1
− ,

(4.45)
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and(
[f ]U
)†

(v) =
1∨
n+1

∫
R

n+1
0

[
f(x) − f(∞)

]
dσE
(
x − v†) , v ∈ R

n+1
+ ∪ R

n+1
− .

(4.46)

Lemma 4.3. If f ∈ Ĥμ
(
R

n+1
0

) (
0 < μ < 1

)
then

(
U[f ]
)†

(v) =
1∨

n+1

∫
R

n+1
0

|v|n−1vE(ξ − v)|ξ|−n−1ξdσ(ξ)
[
f†(ξ) − f†(0)

]
, v ∈ R

n+1
± ,

(4.47)
and

(
[f ]U
)†

(v) =
1∨

n+1

∫
R

n+1
0

[
f†(ξ) − f†(0)

]
dσ(ξ)|v|n−1v E(ξ − v)|ξ|−n−1ξ, v ∈ R

n+1
± .

(4.48)

Proof. Write, for R > δ > 0,

(
Uδ,R[f ]

)
(w) =

1∨
n+1

∫
δ≤|x|≤R

E (x − w) dσ
[
f(x) − f(∞)

]
, w ∈ R

n+1
+ ∪ R

n+1
− .

(4.49)
Then

(
Uδ,R[f ]

)†
(v) =

1∨
n+1

∫
δ≤|x|≤R

E
(
x − v†) dσ

[
f(x) − f†(0)

]
, v ∈ R

n+1
+ ∪ R

n+1
− ,

(4.50)
and

lim
R→+∞,δ→0+

(
Uδ,R[f ]

)†
(v)

= lim
R→+∞

1∨
n+1

∫
|x|≤R

E
(
x − v†) dσ

[
f(x) − f(∞)

]
+ lim

δ→0+

1∨
n+1

∫
δ≤|x|

E
(
x − v†) dσ

[
f(x) − f(∞)

]
=
(
U[f ]
)†

(v), v ∈ R
n+1
+ ∪ R

n+1
−
(
(by (4.45))

)
.

(4.51)

Let
x = ξ†, v = w†, (4.52)

we get the conformal invariance of the Cauchy kernel [18]

E(x − w) = |v|n−1v E(ξ − v) |ξ|n−1ξ = |ξ|n−1ξ E(ξ − v) |v|n−1v. (4.53)

In (4.49), using the variable substitution (2.39) on R
n+1
0 , we obtain(

Uδ,R[f ]
)†

(v)

=
1∨
n+1

∫
1
R ≤|ξ|≤ 1

δ

|v|n−1v E(ξ − v) |ξ|n−1ξdσ(ξ)
[
f†(ξ) − f†(0)

]
detJ†0

(ξ),

(4.54)
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where J†0
(ξ) is the Jacobian matrix of the restriction †0 on R

n+1
0 of the

twisted inversion †, i.e., †0 = †∣∣
R

n+1
0

. We may find

J†0
(ξ) =

{
cj,�

}n−1

j,�=0
with cj,� =

⎧⎪⎨
⎪⎩

1
|ξ|4
[
2ξ0ξ� − δj,�|ξ|2

]
, j = 0,

− 1
|ξ|4
[
2ξjξ� − δj,�|ξ|2

]
, j �= 0.

(4.55)

It is proved in Remark 4.2 below that

det
[
J†0

(ξ)
]

=
1

|ξ|2n
. (4.56)

Now (4.54) becomes

(
Uδ,R[f ]

)†
(v) =

1∨
n+1

∫
1
R

≤|ξ|≤ 1
δ

M(v, ξ)dσ(ξ)
[
f†(ξ) − f†(0)

]
, v ∈ R

n+1
+ ∪ R

n+1
− ,

(4.57)
where

M(v, ξ) = |v|n−1v E(ξ − v) |ξ|−n−1ξ, v ∈ R
n+1
+ ∪ R

n+1
− , ξ ∈ R

n+1
0 . (4.58)

Thus, letting δ → 0+ and R → +∞ on the both sides of (4.57), noting (4.51),
we obtain(
U[f ]
)†

(v)

=
1∨
n+1

∫
R

n+1
0

|v|n−1v E(ξ − v) |ξ|−n−1ξ dσ(ξ)
[
f†(ξ) − f†(0)

]
, v ∈ R

n+1
± ,

(4.59)
in which the right side integral is an ordinary (improper) integral, since∣∣∣∣M(v, ξ)

[
f†(ξ) − f†(0)

]∣∣∣∣ =
{

O
(|ξ|−2n

)
, as ξ → ∞,

O
(|ξ|−n−μ

)
, as ξ → 0.

(4.60)

In the same way, we may prove (4.48). �

Remark 4.2. This result (4.56) was used in many articles [13,18,25,34] with-
out a proof or reference. The author gives a proof for case n = 2 by the
specific calculation in [33], while in [34] he does not give any proof for gen-
eral case. For convenience, a simple proof will be given in the following, which
is based on discussion between Zhongxiang Zhang and Jinyuan Du. In fact,
by using the inductive method, we can prove

In(c) =

∣∣∣∣∣∣∣∣
2ξ2

0 − c2 2ξ0ξ1 . . . 2ξ0ξn−1

2ξ0ξ1 2ξ1 − c2 . . . 2ξ1ξn−1

. . . . . . . . . . . .
2ξ0ξn−1 2ξ1ξn−1 . . . 2ξ2

n−1 − c2

∣∣∣∣∣∣∣∣
= (−1)n−1c2(n−1)

⎡
⎣2 n−1∑

j=0

ξ2
j − c2

⎤
⎦ ,

(4.61)
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where c is any constant. Taking c = |ξ| (ξ ∈ R
n+1
0

)
in the above equality, we

get

det
[
J†0

(ξ)
]

=
(−1)n−1

|ξ|4n
In

(|ξ|). (4.62)

(4.56) then follows from (4.61) and (4.62).

Lemma 4.4. When f ≡ 1, we have(
S[1]
)†

(v)=
1∨
n+1

∫
R

n+1
0

|v|n−1vE(ξ − v)|ξ|−n−1ξdσ(ξ)=±1
2
, v∈R

n+1
± ,

(4.63)(
[1]S
)†

(v)=
1∨
n+1

∫
R

n+1
0

dσ(ξ)|v|n−1vE(ξ − v)|ξ|−n−1ξ=±1
2
, v∈R

n+1
± .

(4.64)

Proof. By (3.9) and noting

v = w† ∈ R
n+1
± if and only if w ∈ R

n+1
± , (4.65)

we have (
S[1]
)†

(v) = ±1
2
, v ∈ R

n+1
± . (4.66)

Also, using the variable substitution †0, we obtain

1∨
n+1

∫
δ≤|x|≤R

E
(
x−v†

)
dσ =

1∨
n+1

∫
1
R ≤|ξ|≤ 1

δ

|v|n−1vE(ξ−v)|ξ|−n−1ξdσ(ξ).

(4.67)
So, letting R → +∞, δ → 0+ in (4.67), and by (4.66), we have

1∨
n+1

∫
R

n+1
0

|v|n−1v E(ξ − v) |ξ|−n−1ξdσ(ξ) =
(
S[1]
)†

(v) = ±1
2
. (4.68)

The proof of (4.64) is similar. �

Remark 4.3. The integral in the left band side of (4.68) is an ordinary im-
proper integral at ∞ and a principal value integral at 0.

Lemma 4.3 and Lemma 4.4 result in the following result.

Lemma 4.5. [Variable substitution formula for Cauchy type integrals] If f ∈
Ĥμ
(
R

n+1
0

)
(0 < μ < 1), then(

S[f ]
)†

(v) =
1∨
n+1

∫
R

n+1
0

|v|n−1vE(ξ − v) |ξ|−n−1ξ dσ(ξ) f†(ξ), v ∈ R
n+1
± ,

(4.69)
and(

[f ]S
)†

(v) =
1∨
n+1

∫
R

n+1
0

f†(ξ)dσ(ξ)|v|n−1vE(ξ − v)|ξ|−n−1ξ v ∈ R
n+1
± ,

(4.70)
in which the right hand side integrals are the Cauchy principle value integrals
at both 0 and ∞.
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Example 4.1. In the special case n = 1, we take e1 = i and write R
2
± = Z±,

i.e., the upper half and the lower half complex planes. It is easy to see that,
from (4.69) and (4.70),(

S[f ]
)†

(v) =
(
S
[
f†
])

(v) −
(
S
[
f†
])

(0) =
(
[f ]S
)†

(v), v ∈ Z±, (4.71)

Remark 4.4. By Lemma 2.3 and Theorem 4.2, we know S±[f†] ∈ Hμ
(

Z±
)
.

Also, noting
(
S±[f ]

)†
∈ Hμ

(
Z±
)
. Thus, S[f ] ∈ Hμ

(
Z±
)
. And we end up

with
S±[f ] ∈ Ĥμ

(
Z±
)

while n = 1. (4.72)

We guess that the result corresponding to (4.72) for n > 1 still holds.
We tried to prove it for sometime without success.

Conjecture. If f ∈ Ĥμ
(
R

n+1
0

)
, then S±[f ] ∈ Ĥμ

(
R

n+1
±
)

for n > 1.

We will prove the following weaker result for further solving the Rie-
mann boundary value problems in §6.

Theorem 4.3. If f ∈ Ĥμ
(
R

n+1
0

)
, then S±[f ] ∈ Hμ

(
R

n+1
±
)⋂

Hν
†
(∞) for

any ν ∈ (0, μ).

Proof. The conclusion S±(f) ∈ Hμ
(

R
n+1
±
)

is just Theorem 4.2. We are

going to leave the proof for the conclusion S±[f ] ∈ Hν
†
(∞) in a more general

theorem in §6 (see Remark 6.8). �
Now we prove a weaker result as follows for the time begin, which is a

fundament of solving Riemann boundary value problems.

Lemma 4.6. [Vanishing of U(f) at the infinity] If f ∈ Ĥμ
(
R

n+1
0

)
, then(

U[f ]
)
(∞) = lim

|v|→∞, v∈Rn+1

(
U[f ]
)
(v) = 0, (4.73)

and (
[f ]U
)
(∞) = lim

|v|→∞, v∈Rn+1

(
[f ]U
)
(v) = 0. (4.74)

[19,24] proved the above lemma for the classical case n = 1 very simply
by a fractional linear transformations. However, the proof in [19,24] involves
a number of concrete calculations that are difficult to implement in Clifford
algebra when n ≥ 2. In the following we will give an analytical proof, that
works for both n = 1 and n ≥ 2. In order to work for n = 1, we assume that
0 < μ < 1, which is always possible according to Lemma 2.2.

Proof of Lemma 4.6. We divide the proof into two steps and only show (4.73).

Step 1. We first estimate the result when
∣∣Im(v)

∣∣ ≥ c (c > 0). Obviously,∣∣∣(U[f ]
)
(v)
∣∣∣ =
∣∣∣∣∣
∫
R

n+1
0

E(x − v)dσ
[
f(x) − f(∞)

]∣∣∣∣∣ ≤ MB(v), v ∈ R
n+1
± ,

(4.75)
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where

B(v) =
∫
R

n+1
0

1
|x − v|n|x|μ dS, v ∈ R

n+1
± . (4.76)

To estimate it, we split it into two pieces.

δ1(v) =
∫

|x|≤ 1
2 |v|

1
|x − v|n|x|μ dS, v ∈ R

n+1
± , (4.77)

and

δ2(v) =
∫

|x|≥ 1
2 |v|

1
|x − v|n|x|μ dS, v ∈ R

n+1
± . (4.78)

Let us first point out an obvious fact. In order to compare the classical
case, which is n = 1, we can assume 0 < μ < 1 according to Lemma 2.2, then
the following result is still true for the case n = 1. Therefore, the subsequent
conclusions, such as the following Theorem 4.4, are also valid for n = 1, so, a
new proof of the classical result for the boundary behavior at infinity of the
Cauchy type integral on the real axis in [11,19,24] is given here.

For δ1(v), We have,

δ1(v)

=
∫

|x|≤ 1
2 |v|

1
|x − v|n|x|μ dS

≤ 2n

|v|n
∫

|x|≤ 1
2 |v|

1
|x|μ dS

(
|x − v| ≥ |v| − |x| ≥ |v| − 1

2
|v| =

1
2
|v|
)

≤ 2n

|v|n
∫ 1

2 |v|

0

ρn−1−μ dρ

∫ π

0

sinn−2 ϕ1dϕ1 . . .

∫ π

0

sinϕn−2dϕn−2

∫ 2π

0

dϕn−1

≤ C

|v|μ
(
just here, taking0 < μ < 1whenn = 1

)
,

(4.79)
where C is a constant.

For δ2(v), we also have
δ2(v)

=

∫
|x|≥ 1

2 |v|

1

|x − v|n|x|μ dS

≤ 2μ−ε

|v|μ−ε

∫
|x|≥ 1

2 |v|

1

|x − v|n|x|ε dS
(
0 < ε ≤ μ

)

≤ 2μ−ε3ε

|v|μ−ε

∫
|x|≥ 1

2 |v|

1

|x − v|n(3|x|)ε
dS

≤ 2μ−ε3ε

|v|μ−ε

∫
|x|≥ 1

2 |v|

1

|x − v|n+ε
dS
(
by |3x| = |2x| + |x| ≥ |v| + |x| ≥ |x − v|

)

=
2μ−ε3ε

|v|μ−ε
Y(v)

(
(4.15) with k = ε, t = 0 and r =

|v|
2

)
≤ M

|v|μ−ε|Im(v)|ε
(

by Lemma 4.2
)
,

(4.80)
where M is a constant. In particular,

δ2 ≤ M

c ε|v|μ−ε

(
0 < ε < μ

)
, |Im(v)| ≥ c. (4.81)
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(4.79) and (4.81) result in that there exists the banding limit

lim
v→∞, |Im(v)|≥c>0, v∈R

n+1
±

(
U[f ]
)
(v) = 0. (4.82)

Step 2. The banding limit for
∣∣Im(v)

∣∣ ≤ 1. For concreteness, we take v in the
Poincaré upper halfspace, then, for any but fixed c > 0∣∣∣(U[f ]

)(
v
)∣∣∣ (|Im(v)| ≤ 1

) (
0 ≤ Im(v) ≤ 1

)
≤
∣∣∣(U[f ]

)(
v
)− (U[f ]

)(
v + c en

)∣∣∣+ ∣∣∣(U[f ]
)(

v + c en

)∣∣∣ (c > 0
)

≤ Mcμ +
∣∣∣(U[f ]

)(
v + c en

)∣∣∣ (
by Theorem 4.1

)
.

(4.83)
By (4.82) and (4.83), noting c ≤ ∣∣Im(v + cen)

∣∣,
lim sup

v→∞, 0<|Im(v)|≤1

∣∣∣(U[f ]
)(

v
)∣∣∣ ≤ Mcμ, (4.84)

which results in
lim

v→∞, 0<|Im(v)|≤1

(
U[f ]
)(

v
)

= 0, (4.85)

by arbitrariness of c.
(4.82) and (4.84) imply (4.73). �

Remark 4.5. It is not hard to see that, if f ∈ Hμ
(
R

n+1
0

)⋂
Hμ

† (∞) then
(4.73) still holds.

Remark 4.6. Let
θ(v) =

〈
v, Rn+1

0

〉 ∈
(
0,

π

2

]
(4.86)

be the included angle between v and R
n+1
0 . Take ε = μ. Then, by (4.79) and

(4.80),

B(v) ≤ M

sinμ θ(v)
1

|v|μ , v ∈ R
n+1
± . (4.87)

Thus, by (4.79), (4.80) and Lemma 4.6, letting R
n+1
0 (θ) denote the angular

domain {v, θ(v) ≤ θ} of R
n+1, then∣∣∣(U[f ]

)
(v) −

(
U[f ]
)
(∞)
∣∣∣ ≤ M

sinμ θ

1
|v|μ , v ∈ R

n+1
0 (θ), (4.88)

which is to say that U[f ] satisfies the non tangential H† condition at ∞.

Theorem 4.4. ( Boundary behavior of the Cauchy type integrals at ∞) If
f ∈ Ĥμ

(
R

n+1
0

)
, then(

S±[f ]
)
(∞) = lim

v→∞, v∈R
n+1
±

(
S±[f ]

)
(v) = ±1

2
f(∞), (4.89)

(
[f ]S±

)
(∞) = lim

v→∞, v∈R
n+1
±

(
[f ]S±

)
(v) = ±1

2
f(∞). (4.90)

Proof. By Lemma 4.6 and Example 3.1, we immediately get (4.89) and (4.90).
�
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Corollary 4.2. [Boundary behavior of singular integrals at infinity] If f ∈
Ĥμ
(
R

n+1
0

)
, then(

S[f ]
)∣∣∣

R
n+1
0

(∞) = lim
t→∞, t∈R

n+1
0

(
S[f ]
)
(t) = 0, (4.91)

and (
[f ]S
)∣∣∣

R
n+1
0

(∞) = lim
t→∞, t∈R

n+1
0

(
[f ]S
)
(t) = 0. (4.92)

Proof. By Lemma 4.6 and Example 3.5, we also immediately get (4.91) and
(4.92). �

Remark 4.7. By Remark 4.4, we know that if f ∈ C
(
R

n+1
0

)
and f ∈ O−μ(∞)

then Theorem 4.2, Theorem 4.3 and Corollary 4.2 are also true.

Theorem 4.5. If f ∈ Hμ
(
R

n+1
0

)⋂
O−μ
(∞), then(

S[f ]
)
(∞) =

(
U[f ]
)
(∞) = 0,

(
[f ]S
)
(∞) =

(
[f ]U
)
(∞) = 0, (4.93)

where (
S[f ]
)
(∞) = lim

w→∞, w∈Rn+1

(
S[f ]
)
(w),(

[f ]S
)
(∞) = lim

w→∞, w∈Rn+1

(
[f ]S
)
(w).

(4.94)

Remark 4.8. For clarity, we sometimes write ∞ in (4.73), (4.74), (4.89),
(4.90), (4.91) and (4.92) by ∞(∞∣∣

Rn+1

)
, ∞∣∣

R
n+1
±

, ∞∣∣
R

n+1
0

, respectively.

5. Sectionally Regular fFunctions with R
n+1
0 as Jump Surface

To suitably present the interested Riemann boundary value problems, we in-
troduce sectionally regular (holomorphic) functions with R

n+1
0 as their jump

surface, and discuss their principal parts as well as their orders at the infinity.

5.1. Sectionally Regular Functions

Firstly, we introduce sectionally regular functions with the hyperplane R
n+1
0

as the jump surface.

Definition 5.1. A function F is said to be sectionally left (right) regular with
the hyperplane R

n+1
0 as its jump surface, if it is left (right) monogenic in

R
n+1
+ and R

n+1
− , and has the positive boundary values F+(t) and the negative

boundary values F−(t) in R
n+1
0 , where

F+(t) = lim
w→t, w∈R

n+1
+ , t∈R

n+1
0

F (w), F−(t) = lim
w→t, w∈R

n+1
− , t∈R

n+1
0

F (w).

(5.1)
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In the following, we only consider the sectionally left regular function
and simply call it the sectionally regular function. If F is a sectionally regular
function with the hyperplane R

n+1
0 as its jump surface, we write

F+(w) =
{

F (w), w ∈ R
n+1
+ ,

F+(t), w = t ∈ R
n+1
0 ,

F−(w) =
{

F (w), w ∈ R
n+1
− ,

F−(t), w = t ∈ R
n+1
0 .

(5.2)

Remark 5.1. It is easy to prove that F+ ∈ C
(

R
n+1
+ , C(Vn)

)
and F− ∈

C
(

R
n+1
− , C(Vn)

)
. This fact will be used in the sequel.

Example 5.1. By using the regularity and the Plemelj-Sochocki formulae for
the Cauchy type integrals established in, respectively, Theorem 3.3 and Corol-
lary 4.1, we immediately obtain that if f ∈ Ĥμ

(
R

n+1
0

)
, then the Cauchy type

integral S[f ] is a sectionally regular with the hyperplane R
n+1
0 as its jump

surface.

5.2. Principal Part and Order at the Infinity

The infinity is not necessarily the isolated singularity of a sectionally regular
functions with the hyperplane R

n+1
0 as the jump surfaces. We must generalize

the definition of their principal part at the infinity. More generally, for a
function F monogenic in the region where R

n+1 is cut off the hyperplane
R

n+1
0 , denoted as F ∈ M(Rn+1 \ R

n+1
0

)
, we introduce its principal part at

∞ as following.

Definition 5.2. Let F ∈ M(Rn+1 \ R
n+1
0

)
. If there exists an entire function

E such that
lim

w→∞, w∈R
n+1
±

[
F (w) − E(w)

]
= 0, (5.3)

then we call E the (generalized ) principal part of F at w = ∞, denoted by
G.P [F,∞](w).

Some symbols in [32] will be used below. Let Z(x) = (z1(x), . . . , zn(x))
and α = [α1, . . . , αn] where zj ’s are the hypercomplex variables given in
Example 2.4 and αj ’s are nonnegative integers, then the symmetry power Zα

is a biregular function in R
n+1 defined as the sum of all possible zi products

each of which contains zi factor exactly αi times. For example, for n = 2,

(z1, z2)[0,0] = 1, (z1, z2)[1,1] = z1z2 + z2z1, (z1, z2)[2,0] = z2
1 . (5.4)

For α = [α1, α2, . . . , αn] ∈ Nn
0 , we denote

α! = α1!α2! . . . αn! ,
∣∣α∣∣ = n∑

j=1

αj , (5.5)

and

∂α =
∂|α|

∂xα1
1 . . . ∂xαn

n
. (5.6)
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Introduce the mapping

α :
(
�1, �2, . . . , �k

) 
→ α =
[
α1, . . . αn

]
(5.7)

where αj is the number of times j appearing in
(
l1, l2, . . . , lk

) ∈ Nk. Now we
may rewrite W{�1,�2,...,�k} in Example 2.5 by

W{�1,�2,...,�k}(w) = (−1)k
(
∂α(�1,�2,...,�k)[E]

)
(w)

= (−1)k
(
∂α[E]

)
(w), x ∈ R

n+1\{0}.
(5.8)

So, xn+|α|(∂α[E]
)
(x) is bounded by Example 2.5.

Remark 5.2. If F has the isolated singular point w = ∞, then it has a Laurent
series expansion near the infinity [4]

F (w) =
+∞∑

|α|=0

Zα(w)λα +
+∞∑

|α|=0

(
∂α[E]

)
(w)μα near w = ∞, (5.9)

where E is the Cauchy kernel. We denote its principal part by

P.P [F,∞](w) =
+∞∑

|α|=0

Zα(w)λα, w ∈ R
n+1, (5.10)

In this case, we may prove the following result

G.P [F,∞] = P.P
[
F,∞]. (5.11)

In fact, by (5.3), (5.9) and (5.10) we have

lim
w∈R

n+1
± , w→∞

[
P.P [F,∞](w) − G.P [F,∞](w)

]
= 0. (5.12)

Noting that both P.P [F,∞] and G.P [F,∞] are entire, we know that (5.12)
is equivalent to

lim
w∈Rn+1, w→∞

[
P.P [F,∞](w) − G.P [F,∞](w)

]
= 0, (5.13)

and consequently we get (5.11) by Liouville’s theorem [2].
In general, w = ∞ may not be an isolated singular point of F , and

in the case, P.P [F,∞] is not defined. For example, in the classical complex
analysis the following example is easily given [28]. Let

F (w) =
ln(−w)

wm
(m = 1, 2, . . .) (5.14)

where the logarithm function lnw is the principal branch in the complex
plane cut along (−∞, 0], i.e.,

ln w = ln |w| + i arg(w) (−π < arg(w) < π),

w ∈ C \ (−∞,+∞) ⊂ C \ (−∞, 0],
(5.15)

and we can see that F (w) has no P.P (F,∞), but

G.P [F,∞](w) = 0. (5.16)

So, the concept of G.P is more extensive than the concept of P.P in the
classical sense.
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Example 5.2. If f ∈ Ĥμ
(
R

n+1
0

)
, by Lemma 4.6 and Theorem 4.4, then

G.P (U [f ],∞) = 0 and G.P
(
w−1S[f ],∞) = 0. Moreover, by Theorem 4.4,

G.P (U [f ],∞) = G.P (S[f ],∞) = 0 when f ∈ Hμ
(
R

n+1
0

) ∩ O−μ (∞).

Remark 5.3. The principal part G.P [F,∞] is unique. For example, if both E1

and E2 are the principal parts G.P [F,∞], we then have P.P [E1 − E2,∞] =
G.P
[E1 − E2,∞

]
= 0 by Remark 5.2. This results in E1 = E2 by Liouville’s

theorem.

For F defined on R
n+1 \ R

n+1
0 , we sometimes need the concept of the

order of F at the infinity.

Definition 5.3. Let F ∈ M(Rn+1 \ R
n+1
0

)
. If

0 < β = lim sup
w∈R

n+1
± , w→∞

∣∣w−mF (w)
∣∣ < +∞, (5.17)

we say F to be of order m at w = ∞, denoted as Ord (F,∞) = m.

Definition 5.4. Let m ≥ 0. We call

f(w) =
m∑

|α|=0

Zα(w) cα with
∑

|α|=m

|cα| �= 0 (5.18)

a hypercomplex symmetric polynomial of degree m, denoted by Deg(f) = m.

Lemma 5.1. ( see [22]) Let f be a hypercomplex symmetric polynomial. Then
Deg(f) = m if and only if Ord(f,∞) = m.

For the boundary behavior of function Φ ∈ M (Rn+1 \ R
n+1
0

)
at the

infinity, there are three kinds of common statements for growth.

(A) G.P (w−(m+1)Φ,∞) = 0, namely Φ(w) = o
(
wm+1

)
nearw = ∞,

(5.19)
(B) lim sup

w∈R
n+1
± , w→∞

|w|−m|Φ(w)|=β, namely |Φ(w)|=O (|w|m) near w=∞,

(5.20)
(C) Ord (Φ,∞) ≤ m, namely Ord (Φ,∞) = k with k ≤ m. (5.21)

Remark 5.4. Obviously, (C) implies (B), while (B) implies (A). So the condi-
tion (A) is the weakest. We use the condition (A) in the Riemann boundary
value problems below, which is an innovation of [13].

In [22], we get the following Liouville type theorem.

Theorem 5.1. (Liouville type theorem [22]) If f is left entire with the growth
condition |f(w)| = O (|w|m) near w = ∞, then it is a hypercomplex symmet-
ric polynomial of degree not exceeding m, that is,

f(w) =

⎧⎪⎨
⎪⎩

m∑
|α|=0

1
|α|! Zα(w) cα, when m ≥ 0,

0, when m < 0,

(5.22)

where cα are some hypercomplex constants.
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Remark 5.5. In [22], we assumed the condition (C). It is seen that the con-
dition (B) is used only in the proof of the Liouville type theorem in [12].

Sometimes it is more convenient that we write |F (w)| sup≈ |G(w)| when
w → ∞, i.e., there are positive constants M and m (M > m > 0) such that

m ≤ lim sup
w→∞

|F (w)|
|G(w)| ≤ M. (5.23)

The following is an obvious fact.

Lemma 5.2. |F (w)| sup≈ |wk| near w = ∞ if and only if Ord (F,∞) = k.

Example 5.3. Zα(w)
sup≈ w|α| near w = ∞, so Ord

(
Zα,∞) = |α|. In fact, it

is not difficult to see that
zj

|w| =
1√
n

when w0 �= 0, wj = R
(
j = 1, . . . , n

)
imply

|Zα|
|w||α| =

|α|!
n

1
2 |α| α!

(5.24)
and

|zj |
|w| ≤ 1 (j = 1, . . . , n) imply

|Zα|
|w||α| ≤ |α|!

α!
. (5.25)

(5.24) and (5.25) result in

|α|!
n

1
2 |α| α!

≤ lim sup
w→∞

|Zα|
|w||α| ≤ |α|!

α!
. (5.26)

Let
Qm(w) =

∑
|α|=m

[
∂αE
]
(w)λα, w ∈ R

n+1\{0}, (5.27)

where λα’s are some constants in C(Vn). We call it a hypercomplex Laurent
polynomial.

In [22], we also gave the following result.

Lemma 5.3. [see [22]] Ord
(
Qm,∞) = −n − m, or Qm(w)

sup≈ w−n−m near
w = ∞, if and only if ∑

|α|=m

|λα| �= 0. (5.28)

Lemma 5.4. Let Q(w) = wn+mQm(w) where Qm is a hypercomplex Laurent
polynomial given in (5.27). Then G.P (Q,∞) = 0 if and only if all λα = 0.

Proof. Sufficiency. It is obvious. In fact, Q(w) ≡ 0 in this case. Necessity. By
Lemma 5.3 we know that (5.28) implies lim sup

w→∞
Q(w) > 0, which is contra-

dictory with G.P (Q,∞) = 0. �

Remark 5.6. Similarly, let

Q∗(w) = Zn+m(w)Qm(w), w ∈ R
n+1\{0}, (5.29)

by Example 5.3,

P.P (Q∗,∞) = 0 if and only if λα = 0. (5.30)
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6. Riemann Boundary Value Problems

In this section the Riemann boundary value problems for the sectionally
regular functions with the hypercomplex plane as its jump surface will be
discussed. After formulation of the problems, explicit representations of the
solutions and the conditions of the solvability are given in detail.

6.1. Painlevé Problem

The simplest Riemann boundary value problem is so-called the Painlevé prob-
lem. Let us start our discussion from the Painlevé problem.

Painlevé problem Find a sectionally regular function Φ, with R
n+1
0 as

its jump surface, satisfying the boundary value condition

Φ+(x) = Φ−(x), x ∈ R
n+1
0 . (6.1)

Obviously, an entire function is a solution of the Painlevé problem. Con-
versely, whether a solution of the Painlevé problem is an entire function mo-
tivates the so-called Painlevé theorem. In [22], the Painlevé theorem with
the smooth jump surface has been proved. Here the jump surface is a hyper-
complex plane. For ease of reference, we would rather give a direct proof as
follows.

Theorem 6.1. ( Painlevé theorem) If f is left (right) regular in R
n+1
± and

f ∈ C
(
R

n+1, C(Vn)
)
, then f is left (right) entire in R

n+1.

We only need to prove the following local theorem.

Lemma 6.1. Let Ω = (a0, b0)× (a1, b1)× . . .× (an, bn) ⊂ R
n+1 with an < 0 <

bn be a rectangular parallelepiped. If f is left (right) monogenic in Ω\R
n+1
0

and f ∈ C
(
Ω, C(Vn)

)
, then f is left (right) monogenic in Ω.

Proof. Take cj , dj (j = 0, 1, . . . , n) such that aj < cj < dj < bj with cn <
0 < dn, where �

= (c0, d0) × (c1, d1) × . . . × (cn, dn). (6.2)

We split it into two pieces
�

+
= (c0, d0)× (c1, d1)× . . .× (0, dn),

�

−
= (c0, d0)× (c1, d1)× . . .× (cn, 0).

(6.3)
Then(S+[f ]
)
(w)
(
w ∈ R

n+1
±
)

=
1∨
n+1

∫
∂(�

+)
E(x − w) dσ f(x)

=
1∨
n+1

∫
∂(�

ε−)
E(x − w)dσ f(x) +

1∨
n+1

∫
∂(�

ε+)
E(x − w)dσ f(x)

� ρ1 + ρ2,
(6.4)

where�
ε− = (c0, d0)× (c1, d1)× . . .× (0, ε),

�
ε+

= (c0, d0)× (c1, d1)× . . .× (ε, dn)
(6.5)



29 Page 44 of 60 P. Dang et al. Adv. Appl. Clifford Algebras

with the induced orientation by the exterior normal.
Then, by the Cauchy theorem [2],

ρ2 =
{

f(w), w ∈ �
ε+ ,

0, w ∈ �
−,

(6.6)

and ∣∣∣ρ1

∣∣∣ ≤ C
[
ε
∥∥f∥∥� + ω�(f, ε)

] (
Cis some constant

)
, (6.7)

where
�

is the closure of
�

, ‖f
∥∥� and ω� are respectively the Chebyshev

norm and the modulus of continuity of f on the closure
�

, which implies

lim
ε→0+

ρ1 = 0. (6.8)

(6.6) and (6.8) result in

(
S+[f ]

)
(w) =

{
f(w), w ∈ �

+,
0, w ∈ �

− .
(6.9)

In exactly the same way, we may get
(
S−[f ]

)
(w)=

1∨
n+1

∫
∂(�

−)
E(x − w)dσf(x)

=
{

0, w ∈ �
+,

f(w), w ∈ �
−.

(6.10)

From (6.9) and (6.10) we have

(
S∂

�[f ]
)
(w) =

1∨
n+1

∫
∂

�
E(x − w) dσ f(x) = f(w), w ∈

�

±
. (6.11)

Noting the continuity of S∂
�[f ] on

�
, we know that it has the representation

of the Cauchy type integral

f(w) =
(
S∂

�[f ]
)
(w) =

1∨
n+1

∫
∂

�
E(x − w) dσ f(x), w ∈

�
, (6.12)

and thus it is regular on
�

by the Cauchy type integral theorem in [8,10].
�

Conclusion 6.1. (Painlevé problem) The solutions of Painlevé problem (6.1)
are all entire functions.

Remark 6.1. The Painlevé problem is one of the foundations for solving the
Riemann boundary value problems. In some of the earlier work [13,30], it
was directly cited, without seriously proving it or pointing out the literature
from which it came.
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6.2. Liouville Problem

In the Painlevé problem, if the growth at w = ∞ is restricted, then it becomes
the Liouville problem.

Liouville problem Find a sectionally regular function Φ, with R
n+1
0 as

its jump plane, such that{
Φ+(x) = Φ−(x), x ∈ R

n+1
0 ,

G.P
[
w−(m+1)Φ,∞] = 0

(
m is an integer

)
.

(6.13)

To solve the above Liouville problem, we need to generalize the Liouville
type Theorem 5.1.

Theorem 6.2. ( Generalized Liouville type theorem) If f is a left (right) en-
tire function with the growth condition G.P

(
w−(m+1)f,∞) = 0 at the infin-

ity, then it is a hypercomplex symmetric polynomial of degree not exceeding
m, namely,

f(w) =

⎧⎪⎨
⎪⎩

m∑
|α|=0

1
|α|! Zα(w) cα, when m ≥ 0,

0, when m < 0,

(6.14)

where cα are Cm
n+m hypercomplex constants.

Proof. By the Liouville type theorem (Theorem 5.1), we obtain

f(w) =

⎧⎪⎨
⎪⎩

m+1∑
|α|=0

1
|α|! Zα(w) cα, when m ≥ 0,

0, when m < 0.

(6.15)

If
∑

|α|=m+1

∣∣cα

∣∣ �= 0 then Deg(f) = m + 1. Thus, Ord(f) = m + 1 by
Remark 5.3, which contradicts with the growth condition (A) in (5.19). �
Remark 6.2. This theorem generalizes the classical Liouville type theorem
[22]. Moreover, it shows that the conditions (A) in (5.19), (B) in (5.20) and
(C) in (5.21) are equivalent with each other when Φ is an entire function.

Conclusion 6.2. (Liouville problem) The solution of the Liouville problem
(6.13) is just arbitrary hypercomplex symmetric polynomial Pm of degree
not exceeding m when m ≥ 0 and Φ = 0 when m < 0, i.e.,

Φ(w) = Pm(w) =
m∑

|α|=0

1
|α|! Zα(w) cα (6.16)

with the agreement Pm = 0 while m < 0, where cα’s are Cm
n+m arbitrary

hypercomplex constants.

Proof. The desired result (6.16) follows from the solution of the Painlevé
problem and the generalized Liouville Theorem 6.2. �
Remark 6.3. We see that the Liouville problem (6.13) and the corresponding
Liouville problem with a closed smooth surface as its jump discussed in [22]
are similar in the form, but they are distinct essentially by Remark 5.2.
The tool for the generalized principal part needs to be referred here and the
condition for growth at the infinity is less restrictive here.
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6.3. Jump Problem Rm

In this section, we discuss the following jump problem Rm.
Jump problem Rm. Find a sectionally regular function Φ(w), with R

n+1
0

as its jump plane, such that{
Φ+(x) − Φ−(x) = g(x), x ∈ R

n+1
0

(
boundary value condition

)
,

G.P
[
w−(m+1)Φ,∞] = 0

(
growth condition at∞), (6.17)

where
g ∈ Ĥμ

m0

(
R

n+1
0

)
with m0 = max

{
0,−(m + 1)

}
. (6.18)

When m ≥ 0 we call it the jump problem with non-negative order. This
case is discussed in [13,30], but the theoretical basis of the results obtained is
insufficient (see Remark 6.4 below). When m < 0 we call it the jump problem
with negative order (in fact, its solution has zero point at ∞). The discussion
of this situation is rather technical and will be postponed to the later part of
this section.

We firstly discuss the jump problem with non-negative order, in this
case, m0 = 0, i.e., we assume g ∈ Ĥ

(
R

n+1
0

)
.

Conclusion 6.3. (Non-negative order) When m ≥ 0 and g ∈ Ĥ
(
R

n+1
0

)
, the

general solution of the jump problem (6.17) with the non-negative order is
Φ(w)

=
(
S[g]
)
(w) + Pm(w)

=
1∨
n+1

∫
R

n+1
0

E(x − w)dσg(x) +
m∑

|α|=0

1
|α|! Zα(w) cα, w ∈ R

n+1
± ,

(6.19)

where Pm is arbitrary hypercomplex symmetric polynomial of degree not
exceeding m.

Proof. Firstly,
(S[g]
)
(w) is a special solution of R0 problem by Example 5.1,

Example 5.2 and the Plemelj-Sochocki formulae in Corollary 4.1. Certainly,
it is also a solution of the jump problem with the non-negative orders.

Secondly, Φ is the solution of Rm problem (6.17), if and only if Δ =
Φ − S[g] is the solution of the Liouville problem{

Δ+(x) = Δ−(x), x ∈ R
n+1
0 ,

G.P
[
w−(m+1)Δ,∞] = 0.

(6.20)

Hence, Δ = Pm by Conclusion 6.2, which results in (6.19). �

Remark 6.4. It should be pointed out that both the two steps in the above
proof have to be based on Theorem 4.4. The articles [14] , however, is based
on the insufficient Corollary 4.2 which is an oversight.

Due to extensive complications, there has been no study aware devoting
to this case, even for the classical context n = 1. This case will be discussed in
detail in the following part of this article. The generalized principal part tool
must be used here, even in the case n = 1, which should be one reason why in
the well known monograph books [19,24] Rm are not thoroughly studied but
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restricted to the bounded solutions, i.e., m = 0. The results of the negative
order Rm problem in this paper are also essentially generalized to the study
for the case of classical n = 1 in [19,24]. More interestingly, subsequent work
has found that these results have important applications in the asymptotic
analysis of polynomials [3,21].

An important jump problem with negative order is R−1, which is the
fundamental one of Rm jump problem with m < 0.

Jump problem R−1. Find a sectionally regular function Φ(w), with R
n+1
0

as its jump plane, such that{
Φ+(x) − Φ−(x) = g(x), x ∈ R

n+1
0 (boundary value condition),

G.P [Φ,∞] = 0 (growth condition at the infinity), (6.21)

where g ∈ Ĥμ
(
R

n+1
0

)
.

Conclusion 6.4. (R−1 problem) When g ∈ Ĥ
(
R

n+1
0

)
the jump problem R−1

(6.21) has the unique solution

Φ(w) =
(
S(g)
)
(w) =

1∨
n+1

∫
R

n+1
0

E(x − w) dσ g(x), w ∈ R
n+1
± , (6.22)

if and only if
g(∞) = lim

x∈R
n+1
0 , x→∞

g(x) = 0. (6.23)

Proof. Condition of solvability. If the jump problem R−1 has a solution Φ,
then, by the growth condition at w = ∞ in (6.21),

Φ(∞) = lim
w∈R

n+1
± , w→∞

Φ(w) = 0. (6.24)

This results in
Φ±(∞) = lim

x∈R
n+1
0 , x→∞

Φ±(x) = 0. (6.25)

So, taking the limit under the boundary value condition of (6.21), we get, by
the Plemelj-Sochocki formulae,

g(∞) = lim
x∈R

n+1
0 , x→∞

g(x) = lim
x∈R

n+1
0 , x→∞

[
Φ+(x) − Φ−(x)

]
= 0. (6.26)

Solvability. In fact, by Example 5.1, Corollary 4.1 and Example 5.2, it
is obvious that if the condition of solvability (6.23) is fulfilled, then S[g] is a
solution of (6.21).

Uniqueness of the solution. Similarly, Φ is the solution of R−1 problem
(6.21), if and only if Δ = Φ − S[g] is the solution of the Liouville problem
(6.20) with m = −1. Hence, Δ = 0 by Conclusion 6.2, that is to say that S[g]
is the unique solution of the jump problem R−1. �

Remark 6.5. (6.25) and (6.26) show that the boundary value condition in the
R−1 problem also holds for the extended hypercomplex plane

R̃
n+1
0 = R

n+1
0 ∪ {∞∣∣

R
n+1
0

}
, (6.27)
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where ∞∣∣
R

n+1
0

given in Remark 4.8 represents the infinity at R
n+1
0 . Likewise,

if Φ is the solution of the jump problem R0, then

Φ+
(
∞|

R
n+1
0

)
− Φ−

(
∞|

R
n+1
0

)
= g
(
∞|

R
n+1
0

)
(6.28)

holds.

Now we come to discuss the jump problem (6.17) with m < −1. Similar
to (6.26), we have, from the growth condition at the infinity in (6.17),

gr(∞) = lim
x∈R

n+1
0 , x→∞

xrg(x) = 0 where r = −(m + 1). (6.29)

Obviously, we have, for s ≥ 0,∣∣∣gs(x)
∣∣∣ ≤ M

|x|μ or
∣∣∣g(x)
∣∣∣ ≤ M

|x|s+μ

(
x ∈ R

n+1
0 \{0}

)
when g ∈ Ĥs,0

(
R

n+1
0

)
.

(6.30)
So, in discussing for the jump problem (6.17) with m < −1 we will assume
directly

g ∈ Ĥμ
r,0

(
R

n+1
0

) (
r = −(m + 1)

)
. (6.31)

Conclusion 6.5. (Case −n < m < −1) Let −n < m < −1 and r = −(m + 1).
If g ∈ Ĥr,0

(
R

n+1
0

)
, then the jump problem (6.17) has the unique solution

Φ(w) =
(
S[g]
)
(w) =

1∨
n+1

∫
R

n+1
0

E(x − w) dσ g(x), w ∈ R
n+1
± . (6.32)

Proof. Obviously, the solution Φ of the Rm (m < −1) problem is also the
solution of the R−1 problem. Thus, we only need to consider the growth
condition of Φ at ∞, that is, prove

G.P
[
w−(m+1)

(
S[g]
)
(w),∞

]
= 0, (6.33)

or
lim

w→∞,w∈R±
w−(m+1)

(
S[g]
)
(w) = 0. (6.34)

To show (6.34), we need to establish a series of lemmas. So, we shall give its
proof in Remark 6.9 later. �

We rewrite the following functions and explore them further.(
S1(g)

)
(w) =

1∨
n+1

∫
|x|≤ 1

2 |w|
E(x,w) dσ g (x) , w ∈ R

n+1
± , (6.35)

and (
S2(g)

)
(w) =

1∨
n+1

∫
|x|≥ 1

2 |w|
E(x,w) dσ g (x) , w ∈ R

n+1
± . (6.36)

For, g ∈ C
(
R

n+1
0

)
and ρ > 0, let

(
Sρ(g)

)
(w) =

1∨
n+1

∫
Bn(0,ρ)

E(x,w) dσ g (x) , w ∈ R
n+1\Bn(0, ρ). (6.37)
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Lemma 6.2. The Cauchy type integral Sρ(g) has the Laurent series expansion
near the infinity (

Sρ[g]
)
(w) = −

∞∑
k=0

Qk(w),
∣∣w∣∣ > ρ, (6.38)

where

Qk(w) =
∑

|α|=k

(−1)|α|∂αE(w)
|α|!

1∨
n+1

∫
Bn(0,ρ)

Zα(x) dσ g(x). (6.39)

Moreover,∣∣∣Qk(w)
∣∣∣ ≤ M Ck+1

k+n−1

[
1 + k2

] ρk∣∣w|n+k

∫
Bn(0,ρ)

∣∣g(x)
∣∣dS, |w| > ρ, (6.40)

where the constant M > 0 only depends upon the dimension n.

Proof. When Bn(0, ρ) in (6.39) is replaced by Γ = ∂Bn+1(0, ρ), this lemma
will reduce to Lemma 12.1.1 in [2]. We can prove this lemma directly by the
method in [2]. �

Lemma 6.3. If g ∈ Ĥμ
s,0

(
R

n+1
0

)
and 0 ≤ s < n, then G.P (wsS1[g],∞) = 0,

more precisely, ∣∣w∣∣s∣∣∣S1[g](w)
∣∣∣ ≤ M

|w|μ near ∞. (6.41)

Proof. Taking ρ =
1
2
|w| in (6.39) and rewriting Qk in this case by Qk, i.e.,

Qk(w) =
∑

|α|=k

(−1)|α|∂αE(w)
|α|!

1∨
n+1

∫
Bn

(
0, 1

2 |w|
) Zα(x)dσg(x), (6.42)

we get∣∣∣Qk(w)
∣∣∣ ≤ M1 Ck+1

k+n−1

(
1 + k2

) 1∣∣w|n
[
1
2

]k ∫
Bn

(
0, |w|

2

) ∣∣g(x)
∣∣dS

� M1 Ck+1
k+n−1

(
1 + k2

) 1∣∣w|n
[
1
2

]k [
¶1 + ¶2

]
,

(6.43)

where

¶1 =
∫

|x|≤1

∣∣g(x)
∣∣dx0 . . . dxn−1 ≤ M2

∥∥∥g∥∥∥
∞

, (6.44)

¶2 =
∫

1≤|x|≤ 1
2 |w|

∣∣g(x)
∣∣dx0 . . . dxn−1

(
|w| > 1

)
≤ M3

∫
1≤|x|≤ 1

2 |w|

1
|x|s+μ

dx0 . . . dxn−1

(
by (6.31)

)

≤ M4

∫ |w|

1

ρn−1−s−μ dρ

≤ M5

∣∣w∣∣n−s−μ
(
taking0 < μ < 1

)
.

(6.45)
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Thus, ∣∣∣Qk(w)
∣∣∣ ≤ M6 Ck+1

k+n−1

(
1 + k2

) [1
2

]k [ 1∣∣w|n +
1∣∣w|s+μ

]
. (6.46)

We get, for |w| > 1 and s < n,∣∣∣w∣∣∣s+μ∣∣∣S1[g](w)
∣∣∣ ≤ M7

∣∣w∣∣s+μ
∞∑

k=1

∣∣Qk(w)
∣∣

≤ M8

∞∑
k=0

Ck+1
k+n−1

(
1 + k2

)[1
2

]k
� M,

(6.47)

which is the result required. �

Remark 6.6. In fact, we have proved that, if � = Ord
(S1[g],∞) exists then

� ≤ −s.

Lemma 6.4. If g ∈ Ĥμ
s,0

(
R

n+1
0

)
(s ≥ 0), then G.P

(
wsS2[g],∞) = 0, more

precisely,∣∣∣w∣∣∣s∣∣∣S2[g](w)
∣∣∣ ≤ M

|w|ν for
∣∣Im(w)

∣∣ ≥ c > 0 and 0 < ν < μ, (6.48)

where M is a constant.

Proof. Firstly, by (4.78) and (4.80),∣∣∣S2[g](w)
∣∣∣ ≤ ∫

|x|≥ 1
2 |w|

|gs(x)|
|x − w|n|x|s+μ

dS

≤ 2s

|w|s δ2(w) ≤ M1

c ν |w|s+ν

(
0 < ν < μ

)
,

(6.49)

where M1 is a constant. �

Divide D[f ] into three pieces
(
D1(f)

)
(w) =

1∨
n+1

∫
|x|≤ 1

2 |w|
E(x − w)dσ

[
f(x) − f

(
Re(w)

)]
, w ∈ R

n+1, (6.50)

(
D2[f ]

)
(w) =

1∨
n+1

∫
|x−Re(w)|≤ 1

3 |w|
E(x − w)dσ

[
f(x) − f

(
Re(w)

)]
, w ∈ R

n+1, (6.51)

(
D3[f ]

)
(w) =

1∨
n+1

∫
|x|≥ 1

2 |w|,|x−Re(w)|≥ 1
3 |w|

E(x − w)dσ
[
f(x) − f

(
Re(w)

)]
, w ∈ R

n+1.

(6.52)

Lemma 6.5. If g ∈ Ĥμ
s,0

(
R

n+1
0

)
and 0 ≤ s < n, then G.P

(
wsD1[g],∞) = 0,

more precisely,∣∣w∣∣s∣∣∣D1[g](w)
∣∣∣ ≤ M

|w|μ near w = ∞ and
∣∣Im(w)

∣∣ < c
(
w ∈ R

n+1
±
)
. (6.53)

Proof. Noting(
D1(g)

)
(w) =

(S1[g]
)
(w) + g

(
Re(w)

)(S1[1]
)
(w), (6.54)
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and ∣∣∣g(Re(w)
)∣∣∣

≤
∣∣gs(Re(w)

)∣∣∣∣(Re(w)
)∣∣s

≤ M∣∣(Re(w)
)∣∣s+μ ≤ 2M

|w|s+μ
near w = ∞

(∣∣Im(w)
∣∣ < c
)
,

(6.55)

by Lemma 6.3 and (3.47) in Example 3.4 we immediately get (6.53). �

Remark 6.7. It is easy to see that, if we substitute the condition Ord
(S1[g],

∞) < −s for the condition 0 ≤ s < n, then (6.41) automatically holds. Thus,
under this case, both Lemma 6.3 and Lemma 6.5 still hold.

Lemma 6.6. If g ∈ Ĥs,0

(
R

n+1
0

)
(s ≥ 0), then G.P

(
wsD2[g],∞) = 0, more

precisely,

∣∣w∣∣s∣∣∣(D2[g]
)
(w)
∣∣∣ ≤ M

|w|μ near w = ∞ and
∣∣Im(w)

∣∣ < c
(
w ∈ R

n+1
)
, (6.56)

where M is a constant.

Proof. It is easily seen that, if
∣∣x − Re(w)

∣∣ < 1
3
|w| and Im(w) < c, then

∣∣∣x∣∣∣ ≥ ∣∣∣w∣∣∣− ∣∣∣x − w
∣∣∣ ≥ ∣∣∣w∣∣∣− [ |w|

3
+
∣∣Im(w)

∣∣] >
|w|
3

near w = ∞, (6.57)

and ∣∣∣Re(w)
∣∣∣ ≥ ∣∣∣w∣∣∣− ∣∣∣Im(w)

∣∣∣ > |w|
2

near w = ∞. (6.58)

Divide D2[g] into two parts(
D2[g]

)
(w)

=
1∨
n+1

∫
|x−Re(w)|≤ 1

3 |w|
E(x − w) dσ x−s

[
gs(x) − gs

(
Re(w)

)]
+

1∨
n+1

∫
|x−Re(w)|≤ 1

3 |w|
E(x − w) dσ

[
x−s − (Re(w)

)−s
]{

gs
(
Re(w)

)}
� P1 + P2

{
gs
(
Re(w)

)}
.

(6.59)
Noting that by (2.8)∣∣∣x−1 − (Re(w)

)−1
∣∣∣ = ∣∣∣x−1

[
Re(w) − x

](
Re(w)

)−1
∣∣∣

=
∣∣∣x∣∣∣−1∣∣∣x − (Re(w)

)∣∣∣∣∣∣(Re(w)
)∣∣∣−1

,
(6.60)
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we have∣∣P1

∣∣
≤ M1

|w|s
∫

|x−Re(w)|≤ 1
3 |w|

∣∣∣E(x − w)
∣∣∣∣∣∣x−1 − (Re(w)

)−1
∣∣∣μdS

(
by (6.57)

)
≤ M2

|w|s+2μ

∫
|x−Re(w)|≤ 1

3 |w|
×
∣∣∣E(x − w)

∣∣∣∣∣∣Re(w) − x
∣∣∣μdS

(
by (6.57), (6.58), (6.60)

)
≤ M3

|w|s+μ

(
by (4.10)

)
.

(6.61)
By induction, it is easy to prove that∣∣∣xk−yk

∣∣∣ ≤ k
[
max
{|x|, |y|}]k−1∣∣∣x−y

∣∣∣ for anyx, y ∈ R
n+1andk ∈ N0. (6.62)

In fact, by using the inductive hypothesis, there follows∣∣∣xk+1 − yk+1
∣∣∣

≤
∣∣∣xk+1 − xky

∣∣∣+ ∣∣∣xk − yk
∣∣∣∣∣∣y∣∣∣

≤ ∣∣x∣∣k∣∣∣x − y
∣∣∣+ k
[
max
{|x|, |y|}]k−1 ∣∣∣x − y

∣∣∣∣∣∣y∣∣∣
≤ (k + 1)

[
max
{|x|, |y|}]k ∣∣∣x − y

∣∣∣.
(6.63)

So, ∣∣P2
∣∣

≤ 1∨
n+1

∫
|x−Re(w)|≤ 1

3
|w|

∣∣∣E(x − w)
∣∣∣ ∣∣∣dσ
∣∣∣ ∣∣∣x−s − (Re(w)

)−s
∣∣∣ (by (6.59)

)

≤ sM1

|w|s−1

∫
|x−Re(w)|≤ 1

3
|w|

∣∣∣E(x − w)
∣∣∣∣∣∣x−1 − (Re(w)

)−1
∣∣∣dS

×
(
by (6.57), (6.58), (6.62)

)
≤ M2

|w|s+1

∫
|x−Re(w)|≤ 1

3
|w|

∣∣∣E(x − w)
∣∣∣∣∣∣x − (Re(w)

)∣∣∣dS
(
by (6.60)

)

≤ M3

|w|s+1

∫
|x−Re(w)|≤ 1

3
|w|

1

|x − w|n−1
dx0 . . . dxn−1

≤ M4

|w|s
(
by (4.13)

)
.

(6.64)
(6.59), (6.61), (6.64) and (6.55) imply (6.56). �

Lemma 6.7. If g ∈ Ĥs,0

(
R

n+1
0

)
(s ≥ 0), then G.P

(
wsD3[g],∞) = 0, more

precisely,∣∣w∣∣s∣∣∣(D3[g]
)
(w)
∣∣∣ ≤ M

|w|μ near w = ∞ and
∣∣Im(w)

∣∣ < c
(
w ∈ R

n+1
)
,

(6.65)
where M is a constant.

Proof. Since the ball Bn

(
Re(w), 1

2 |w|) is disjoint from the ball Bn

(
0, 1

3 |w|)
when |Im(w)

∣∣ < c and w is sufficiently large such that |Re(w)| > [12 + 1
3 ]|w|,
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we have(
D3[g]

)
(w)

=
1∨
n+1

∫
|x|≥ 1

2 |w|, |x−Re (w)|≥ 1
3 |w|

E(x − w) dσ g(x) −
[(

S[1]
)
(w)

−
(
S|x|≤ 1

2 |w|[1]
)
(w) −

(
S|x−Re (w)|≤ 1

3 |w|[1]
)
(w)

]
g
(
Re(w)

)
= p1 + p2 + p3 + p4.

(6.66)

We first have∣∣∣p1

∣∣∣
≤ 1∨

n+1

∫
|x|≥ 1

2 |w|, |x−Re (w)|≥ 1
3 |w|

∣∣E(x − w)
∣∣ ∣∣dσ
∣∣ ∣∣g(x)

∣∣
≤ M1

∫
|x|≥ 1

2 |w|, |x−Re (w)|≥ 1
3 |w|

∣∣∣E(x − w)
∣∣∣ 1
|x|s+μ

dS
(
by (6.55)

)

≤ M2

∫
|x|≥ 1

2 |w|, |x−Re(w)|≥ 1
3 |w|

1
|x|n+s+μ

dx0dx1 . . . dxn−1(
by4|x − w| ≥ |x − w| + 3|x − Re(w)| ≥ |x − w| + |w| ≥ |x|

)
≤ M2

∫
|x|≥ 1

2 |w|

1
|x|n+s+μ

dx0dx1 . . . dxn−1

≤ M3

|w|s+μ
. (6.67)

By (6.55), (3.9) in Example 3.1, (3.47) in Example 3.4 and (3.38) in
Example 3.3, we have ∣∣∣p2

∣∣∣, ∣∣∣p3

∣∣∣, ∣∣∣p4

∣∣∣ ≤ M4

|w|s+μ
. (6.68)

(6.66), (6.67) and (6.68) imply (6.65). �

Auxiliary Theorem 6.1. If 0 ≤ s < n and g ∈ Ĥs,0

(
R

n+1
0

)
, then G.P(

wsS[g],∞) = 0, more precisely,∣∣∣(S[g]
)
(w)
∣∣∣ ≤ M

|w|s+ν
for 0 < ν < μ

(
w ∈ R

n+1
±
)
, (6.69)

Proof. By the Plemelj-Sochocki formulae, it is sufficient to prove (6.69) when
w ∈ R

n+1
± . To do so, we treat two cases separately.

Case 1. Im(w) ≥ 1. In this case, we have(S[g]
)
(w) =

(S1[g]
)
(w) +

(S2[g]
)
(w), w ∈ R

n+1
± . (6.70)

By Lemma 6.3 and Lemma 6.4 we get (6.69) when w ∈ R
n+1
± .
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Case 2. Im(w) ≤ 1. In this case, we have(S[g]
)
(w) = ± 1

2
g
(
Re(w)

)
+
(
D1[g]

)
(w) +

(
D2[g]

)
(w)

+
(
D3[g]

)
(w), w ∈ R

n+1
± .

(6.71)

By (6.55), Lemma 6.5, Lemma 6.6 and Lemma 6.7, we also get (6.69) when
w ∈ R

n+1
± . �

Theorem 6.3. (Boundary behavior of the Cauchy type integrals–First Ver-
sion) Let 0 ≤ s < n and f ∈ Ĥs

(
R

n+1
0

)
, then∣∣∣∣(S[f ]

)
(w) − 1

2
f(∞)

∣∣∣∣ ≤ M

|w|s+ν
for 0 < ν < μ

(
w ∈ R

n+1
+

)
(6.72)

and∣∣∣∣(S[f ]
)
(w) +

1
2
f(∞)

∣∣∣∣ ≤ M

|w|s+ν
for 0 < ν < μ

(
w ∈ R

n+1
−
)
. (6.73)

Proof. Let
g(t) = f(t) − f(∞), t ∈ R

n+1
0 , (6.74)

by Auxiliary Theorem 6.1, the desired inequalities hold. �
Remark 6.8. Taking s = 0, the conclusion about the boundary behavior of
the Cauchy type integrals S±[f ] in Theorem 4.3, i.e., S±[f ] ∈ H†(∞), holds.

Remark 6.9. (The proof of the growth condition (6.34) in Conclusion 6.5)
By using Auxiliary Theorem 6.1, the growth condition (6.34) holds.

Remark 6.10. [22] points out that, the solution Φ of the Riemann boundary
value problems Rm (m < 0) on the closed smooth surfaces must satisfy
Ord(Φ,∞) ≤ −n, even there is no regular function F near the infinity that
satisfies Ord(F,∞) = m with −n < m < 0 when n > 1. In other words, the
solution of R−1 is also the solution of the solution of Rm (−n < m < −1). In
the setting of this paper, this phenomenon does not occur, i.e., there exists Φ
such that it is the solution of the Rm problem (6.17) (−n < m < −1) but not
the solution of the Rm+1 problem. For example, we take the input function
g given by (2.53) in Example 2.2. Then, S[g] is the solution of R−s but not
the solution of R−s+1, otherwise Ord(g,∞) ≤ −(s + 1) by (6.29).

To discuss the Rm problems with m < −n we need to establish the
improved version of Auxiliary Theorem 6.1. The Remark 6.5 suggests that
we can improve Auxiliary Theorem 6.1 into a stronger version.

Auxiliary Theorem 6.2. If s ≥ 0 and f ∈ Ĥs,0

(
R

n+1
0

)
, then we have the

following claims.
(1) G.P (|w|sS1[f ],∞) = 0 is equivalent to G.P (|w|sS[f ],∞) = 0,
(2) S1[f ] = O

(|w|−(s+μ)
)

near ∞ is equivalent to S[f ] = O
(|w|−(s+μ)

)
near ∞.

Proof. In exactly the same way to Auxiliary Theorem 6.1, through (6.70),
(6.71), (6.54), (6.55), Lemma 6.4, Lemma 6.5, Lemma 6.6 and Lemma 6.7,
we get the two claims. �
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When Auxiliary Theorem 6.2 is applied to discern the growth condition
in the Rm problem (6.17), we must give a measurement for the behavior S1[g]
at the infinity which is similar to Lemma 6.3. To do so, we first introduce a
result in [22].

Let
Qk(x) =

∑
|α|=k

[
∂αE
]
(x)λα (6.75)

be a hypercomplex Laurent polynomial where λα’s are some hypercomplex
constants.

Lemma 6.8. (see [22]) Let Qk be a hypercomplex Laurent polynomial given
in (6.75). Then Ord

(
Qk,∞) = −n − k if and only if∑

|α|=k

|λα| �= 0, (6.76)

in other words, there is α such that |α| = k but λα �= 0.

Obviously, if g ∈ Ĥr,0

(
R

n+1
0

)
, then g = O

(
x−r−μ

)
near x = ∞. Thus,

by Example 5.3 we have Zα(x)g(x) = O
(|x||α|−r−μ

)
, so, all integrals

Zα =
∫
R

n+1
0

Zα(x)dσg(x),
∣∣α∣∣ = 0, 1, . . . , r − n

(
r ≥ n

)
(6.77)

are well defined. Let

Ξ =
{∣∣α∣∣, Zα �= 0,

∣∣α∣∣ = 0, 1, . . . , r − n
}

. (6.78)

Lemma 6.9. If g ∈ Ĥμ
r,0

(
R

n+1
0

)
and r ≥ n, then

(1) Ord
(S1,∞

)
= −n−N , where N = min

{
�, � ∈ Ξ

}
when Ξ is not empty,

(2)
(S1[g]

)
(w) = O

(|w|−r−μ
)

near w = ∞ when Ξ is empty.

Proof. We need to estimate (6.46) more finely. In fact [2,6],∣∣∣Qk(w)
∣∣∣ (

if |w| > 2 and k ≥ r − n + 1
)

≤ M1Ck+1
k+n−1

(
1 + k2

) 1∣∣w|n+k

∫
Bn

(
0, 1

2
|w|
) ∣∣xkg(x)

∣∣ds

≤ M1Ck+1
k+n−1

(
1 + k2

) 1∣∣w|n+k

[∫
Bn(0,1)

∣∣xkg(x)
∣∣ds +

∫
Bn(1, 1

2
|w|)

∣∣xkg(x)
∣∣ds

]

≤ Ck+1
k+n−1

(
1 + k2

) M2∣∣w∣∣n+k

[∥∥∥g∥∥∥
∞

+

∫
Bn(1, 1

2
|w|)

1

|x|r+μ−k
dx0 . . . dxn−1

](
by (6.55)

)

≤ M3Ck+1
k+n−1

(
1 + k2

) 1∣∣w∣∣n+k

[
1 +

[ |w|
2

]−r−μ+k+n
]

≤ M4Ck+1
k+n−1

(
1 + k2

) [ 1∣∣w∣∣n+k
+

1

2k|w|r+μ

]
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≤ M4Ck+1
k+n−1

(
1 + k2

) [ 1

2n+k−r−μ
+

1

2k

]
1

|w|r+μ

(
|w| > 2, k ≥ r − n + 1

)

≤ M5Ck+1
k+n−1

(
1 + k2

) [ 1

2k

]
1

|w|r+μ
. (6.79)

Let (
S1,2[g]

)
(w) =

∞∑
k=r−n+1

Qk(w), |w| > 2, (6.80)

then we have∣∣∣w∣∣∣r+μ∣∣∣(S1,2[g]
)
(w)
∣∣∣ ≤ M

+∞∑
k=r−n+1

[
1 + k2

]
Ck+1

k+n−1

[
1
2

]k
< +∞, (6.81)

where the constant M is independent on w.
Rewrite(

S1,1[g]
)
(w) =

r−n∑
|α|=0

[
∂αE
]
(w)Zα −

r−n∑
|α|=0

[
∂αE
]
(w)Zα(w) � �(w) − ∇(w)

(6.82)
where Zα’s are given in (6.77) and

Zα(w) =
∫

1
2 |w|≤x≤+∞

Zα(x)dσg(x). (6.83)

When Ξ �= ∅, by Lemma 6.8, we have

lim
w∈R

n+1
± ,w→∞

∣∣∣w∣∣∣n+N

∣∣∣∣∣∣
∑

|α|=k

[
∂αE
]
(w)Zα

∣∣∣∣∣∣ = 0 for 0 ≤ k ≤ r − n and k �= N,

(6.84)
since Qk = 0 when k < N by the definition for N and wn+kQk(w) is bounded
when N < k < r − n by Example 2.5 and (5.8). Thus, by Lemma 6.8,

lim sup
w∈R

n+1
± ,w→∞

∣∣∣w∣∣∣n+N ∣∣∣�(w)
∣∣∣ = lim sup

w∈R
n+1
± ,w→∞

∣∣∣w∣∣∣n+N

∣∣∣∣∣∣
∑

|α|=N

[
∂αE
]
(w)Zα

∣∣∣∣∣∣ = a,

(6.85)
where 0 < a < ∞ . Thus,

Ord
(
�,∞

)
= −n − N. (6.86)

From (6.83), Example 5.3 and (6.55), we also have∣∣∣Zα(w)
∣∣∣ ≤ M1

∫
1
2 |w|≤x≤+∞

∣∣x∣∣|α|−r−μdx0 . . . dxn−1

≤ M2

|w|−|α|+r+μ−n

(
|α| ≤ r − n

)
,

(6.87)

which results in, by (2.62) in Example 2.5,∣∣∣[∂αE
]
(w)Zα(w)

∣∣∣ ≤ M3

|w|r+μ
. (6.88)
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This implies⎧⎪⎨
⎪⎩
∣∣∣∇(w)

∣∣∣ ≤ M

|w|r+μ
near ∞

(
w ∈ R

n+1
± , M is a constant

)
,

lim
w∈R

n+1
± , w→∞

∣∣w∣∣n+N
∣∣∣∇(w)

∣∣∣ = 0 when Ξ �= ∅
(
by r ≥ n

)
.

(6.89)

Now, noting

(
S1[g]
)
(w) =

⎧⎨
⎩
(
S1,1[g]

)
(w) +

(
S1,2[g]

)
(w), when Ξ �= ∅,

∇(w) +
(
S1,2[g]

)
(w), when Ξ = ∅,

(6.90)

by (6.81), (6.82), (6.86) and (6.89) we finally get the assertions (1) and (2)
in this lemma. �

Theorem 6.4. If s ≥ n and g ∈ Ĥμ
s,0

(
R

n+1
0

)
, then G.P

(
wsS[g],∞) = 0, more

precisely,∣∣∣(S(g)
)
(w)
∣∣∣ ≤ M

|w|s+ν
for 0 < ν < μ

(
w ∈ R

n+1
±
)
. (6.91)

Combining Theorem 6.4 and Theorem 6.3 we get the following theorem.

Theorem 6.5. (Boundary behavior of the Cauchy type integrals-Second Ver-
sion) If s ≥ 0 and f ∈ Ĥs

(
R

n+1
0

)
, then∣∣∣(S[f ]

)
(w) − 1

2
f(∞)

∣∣∣ ≤ M

|w|s+ν
for 0 < ν < μ

(
w ∈ R

n+1
+

)
(6.92)

and∣∣∣(S[f ]
)
(w) +

1
2
f(∞)

∣∣∣ ≤ M

|w|s+ν
for 0 < ν < μ

(
w ∈ R

n+1
−
)
. (6.93)

Conclusion 6.6. (Order m ≤ −n ) Let m ≤ −n and g ∈ Ĥ−(m+1),0

(
R

n+1
0

)
,

then the jump problem (6.17) has unique solution (6.32) when the Cn
−m−1

conditions of solvability∫
R

n+1
0

Zα(x)dσg(x) = 0, |α| = 0, 1, . . . ,−(n + 1 + m) (6.94)

are fulfilled.

Proof. Uniqueness of the solution. The solution of the Rm (m ≤ −n) problem
must be the solution of the R−1 problem, so it is (6.32).

Sufficiency of condition of solvability. The growth condition holds by
Theorem 6.4.

Necessity of condition of solvability. By Auxiliary Theorem 6.2 and
Lemma 6.9, the growth condition holds only when Ξ = ∅. �

Summing up the above Conclusion 6.3, Conclusion 6.4, Conclusion 6.5
and Conclusion 6.6, we get the main result below.
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Theorem 6.6. For the Riemann boundary value problem Rm (6.17), four
cases will happen.

(1) Let m ≥ 0, g ∈ Ĥμ
(
R

n+1
0

)
, then its general solution is (6.19) with

Cm
n+m free hypercomplex constants.

(2) Let m = −1. If g ∈ Ĥ
(
R

n+1
0

)
, then it has the unique solution (6.22)

if and only if (6.23) holds.
(3) Let −n < m < −1 and r = −(m + 1). If g ∈ Ĥr,0

(
R

n+1
0

)
, then it

has the unique solution (6.32).
(4) Let m ≤ −n and r = −(m + 1). If g ∈ Ĥr,0

(
R

n+1
0

)
, then it has the

unique solution (6.32) when the Cn
−m−1 conditions (6.94) are fulfilled.
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