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Abstract— Objective: Brain-computer interfaces (BCIs)
based on steady-state visual evoked potential (SSVEP)
require extensive and costly calibration to achieve high
performance. Using transfer learning to re-use existing
calibration data from old stimuli is a promising strategy,
but finding commonalities in the SSVEP signals across
different stimuli remains a challenge. Method: This study
presents a new perspective, namely time-frequency-joint
representation, in which SSVEP signals corresponding
to different stimuli can be synchronized, and thus can
emphasize common components. According to this time-
frequency-joint representation, an adaptive decomposition
technique based on the multi-channel adaptive Fourier
decomposition (MAFD) is proposed to adaptively decom-
pose SSVEP signals of different stimuli simultaneously.
Then, common components can be identified and trans-
formed across stimuli. Results: A simulation study on
public SSVEP datasets demonstrates that the proposed
stimulus-stimulus transfer method has the ability to extract
and transfer these common components across stimuli.
By using calibration data from eight source stimuli, the
proposed stimulus-stimulus transfer method can generate
SSVEP templates of other 32 target stimuli. It boosts the
stimulus-stimulus transfer based recognition method’s ITR
from 95.966 bits/min to 123.684 bits/min. Conclusion: By
extracting and transfer common components across stim-
uli in the proposed time-frequency-joint representation,
the proposed stimulus-stimulus transfer method produces
good classification performance without requiring calibra-
tion data of target stimuli. Significance: This study pro-
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vides a synchronization standpoint to analyze and model
SSVEP signals. In addition, the proposed stimulus-stimulus
method shortens the calibration time and thus improve
comfort, which could facilitate real-world applications of
SSVEP-based BCIs.

Index Terms— Adaptive Fourier decomposition, brain-
computer interface, multi-channel signal analysis, steady-
state visual evoked potential, stimulus-stimulus transfer.

I. INTRODUCTION

The brain-computer interfaces (BCIs) enable communica-

tion between the brain and the external world by directly

measuring brain activities [1]. Because of high signal-to-noise

ratio (SNR) and high information transfer rate (ITR), steady-

state visual evoked potential (SSVEP)-based BCIs have gained

increasing attention [2]–[13]. A good recognition method is

critical in SSVEP-based BCIs. Currently, the most widely

used SSVEP recognition methods are based on the canonical

correlation analysis (CCA) [2], [4], [6], [10]. The CCA-

based methods measure the similarity between the recorded

EEG signals and the corresponding set of the reference or

template signals. The stimulus with the highest similarity is

regarded as the target [8]. The conventional CCA method uses

combinations of the sine-cosine signals as the reference signals

[2]. Although the robustness of the conventional CCA method

in the SSVEP recognition has been proved in the literature, it

is susceptible to interference from spontaneous EEG activities

[6]. To reduce the interference from the spontaneous EEG

signals, calibration-based algorithms were introduced, includ-

ing the extended CCA (eCCA) [4], ensemble task-related

component analysis (eTRCA) [6], multi-stimulus eCCA (ms-

eCCA) [10], multi-stimulus eTRCA (ms-eTRCA) [10], and

task-discriminant component analysis (TDCA) [14]. Although

these methods can provide the state-of-the-art recognition

performance, the critical issue of these methods is that they

require a large number of calibration data to optimize spatial

filters and construct suitable template signals for high perfor-

mance. The calibration process of SSVEP-based BCIs is time-

consuming. Users can easily become fatigued by such a long

calibration process, discouraging them from using SSVEP-

based BCIs [15].

To solve this critical issue of these prominent SSVEP recog-

nition methods, the transfer learning technique was adopted to
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re-use calibration data across domains [9], [16]–[19]. The early

studies focus on transferring SSVEP templates across subjects,

including the transfer-template-based CCA (ttCCA) proposed

in [16] and the inter-subject transfer method proposed in [18].

In these studies, the weighted averages of source subjects’

SSVEP signals are used to form common templates and then

transferred to target subjects. Then, several studies extend

the transfer learning to more domains: 1) The least-square

transformation methods proposed in [9], [17] estimate the

transformation matrices to minimize the differences between

signals in the target and source sessions, subjects, and devices;

2) The align and pool for EEG headset domain adaptation

(ALPHA) proposed in [19] aligns the spatial patterns and

covariances across target and source devices. Although these

methods care effective at transferring signals across different

domain for SSVEP signals, the source and target signals

are corresponding to same stimuli. Recently, two stimulus-

stimulus transfer methods were proposed in [12], [20]. The

transfer-extended canonical correlation analysis (t-eCCA) [20]

models SSVEP responses as a Volterra filter, and transfers

frequency-domain features across stimuli using the spectrum

linear relationships of SSVEP signals with adjacent stimulus

frequencies. The transfer learning CCA (tlCCA) proposed

in our previous work [12] models SSVEP signals as the

convolution of the impulse response and the periodic stimulus

following the superposition theory [21], and uses the similarity

of the impulse responses with adjacent stimulus frequencies

to transfer SSVEP templates across stimuli. However, because

the visual stimuli in the SSVEP-based BCIs are designed to

induce SSVEP signals as different as possible [22], the com-

monality of SSVEP signals corresponding to various stimuli

are naturally not obvious in both time and frequency domains.

Therefore, these features or components extracted from the t-

eCCA and tlCCA are still stimulus-specific, resulting these

stimulus-stimulus transfer technique is limited to adjacent

frequencies. In order to develop a more general cross-stimulus

transfer learning method that can extract common components

of SSVEP signals corresponding to various stimuli, two key

issues in existing stimulus-stimulus transfer methods must be

addressed: 1) Existing SSVEP signal models are not designed

for the stimulus-stimulus transfer and thus cannot adequately

describe the commonality of SSVEP signals across stimuli; 2)

Conventional signal decomposition methods are not suitable

for extracting common components of SSVEP signals.

For the first issue, there are two well-known and widely-

used SSVEP signal models in the literature. One is the sine-

cosine-based SSVEP model proposed with the conventional

CCA method and commonly applied to generate reference

signals in SSVEP recognition methods [2], [4], [5], [18],

[23], [24]. The sine-cosine-based model describes SSVEP

signals as the weighted summation of the sinusoidal and

cosinusoidal signals with corresponding harmonic stimulus

frequencies. According to the properties of Fourier basis, the

sinusoidal signals with different frequencies are orthogonal,

which makes the sine-cosine-based model naturally emphasize

the differences between the SSVEP signals of different stimuli.

The other is the superposition-theory-based SSVEP model

[12], [21], in which SSVEP signals are described as the

convolution of periodic impulses and impulse responses. The

impulse responses and the periodic impulses are defined in

the time domain, making them still stimulus-specific. To solve

this issue, this study revisits these two models and develops a

general signal model that directly describes the commonality

of SSVEP signals across stimuli.

For the second issue, the conventional non-adaptive signal

decomposition methods typically use the pre-defined basis

to conduct the signal decomposition [25]. For example, the

conventional Fourier decomposition uses the complex expo-

nential basis and provides a useful frequency-domain analysis.

However, when the expected signal components cannot be

separated in the frequency domain, or contain the time-

varying frequencies, the conventional Fourier decomposition

cannot provide good performance. Another example is that the

wavelet decomposition uses the pre-defined mother wavelet

to provide a good localization in both time and frequency

domains simultaneously. However, pre-defining proper mother

wavelets requires enough prior knowledge. Due to the varying

properties of SSVEP signals on different channels, sessions,

subjects, and paradigms as well as the lack of prior knowl-

edge about common components across stimuli, it is difficult

to find or design proper pre-defined basis components for

conventional decomposition methods. Therefore, this study

considers the adaptive decomposition to solve this issue.

Most adaptive decomposition methods, such as the empirical

mode decomposition (EMD), the variation mode decompo-

sition (VMD), and the nonlinear chirp model decomposition

(NCMD), lack explicit mathematical explanations, thereby

making their decomposition results difficult to understand

and unsuitable for modeling [26]–[28]. To avoid these draw-

backs, this study adopts the multi-channel adaptive Fourier

decomposition (MAFD) to decompose the SSVEP signals.

The MAFD, which we proposed in previous research [29],

[30], is the multi-channel extension of the conventional AFD.

Specifically, the MAFD finds same adaptive basis components

to decompose a set of signals in different channels simulta-

neously. Common components can be extracted by analyzing

decomposition coefficients. However, the MAFD is designed

to analyze general signal, not dedicated to the SSVEP signal.

Hence, in this study, the MAFD is deliberately modified to

the MAFD with different phase (DP-MAFD) for the SSVEP

signal.

In order to develop a more general cross-stimulus transfer

learning method in the SSVEP-based BCIs, we firstly propose

the DP-MAFD to decompose periodic components among the

existing SSVEP templates corresponding to the known stimuli,

and then recommends three rules to find the shared knowledge

across stimuli. Then, based on the shared knowledge, we can

construct the new SSVEP templates for recognizing unknown

stimuli. These constructed SSVEP templates are used to recog-

nize of the target stimuli. The following is a summary of the

novelty of proposed method: 1) A new time-frequency-joint

representation is proposed, which emphasize commonality

and provides an effective way to describe SSVEP signals

of various stimuli together by synchronizing SSVEP signals;

2) Inspired by the sine-cosine-based and the superposition-

theory-based SSVEP signal models in the time-frequency-
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joint representation, this study proposes a new SSVEP signal

model, which directly describes SSVEP signals as the sum-

mation of common components; 3) This study proposes the

DP-MAFD, which incorporates the proposed SSVEP model

into the MAFD, allowing it adaptively decomposes periodic

SSVEP components of different stimuli simultaneously; 4)

This study recommends three rules to select common compo-

nents across stimuli based on the design of SSVEP-based BCIs

and characteristics of SSVEP signals; 5) The transferability

of common components extracted by the proposed method

is evaluated through simulations on widely-used and reliable

datasets. For SSVEP-based BCIs, this study is the first time

to model SSVEP signals using common components across

stimuli, which promotes the cross-stimulus transfer learning.

Section II and Section III provide the preliminaries and the

proposed stimulus-stimulus transfer learning method. After

we present the performance evaluation in Section IV and

discussions in Section V, the paper concludes in Section VI.

II. PRELIMINARIES

A. Notations

For a clear introduction to the time-frequency-joint repre-

sentation and the proposed stimulus-stimulus transfer method,

Table I summarizes the key notations used in this study. In

general, the variables or functions with right subscripts c and

n denote that they are corresponding to the c-th EEG channel

and n-th decomposition level, respectively. In addition, the

functions with t and θ as variables denote signals in the time-

domain and time-frequency-joint representations, respectively.

It should be noted that, the following contents of this paper

assume that there are total M stimuli, with the first J stimuli

being source stimuli that have calibration data, and the rest

Q stimuli being target stimuli that do not have calibration

data. The variables and functions with right subscripts j and

q denote that they are corresponding to source stimulus and

target stimuli, respectively, where j = 1, · · · , J , q = 1, · · · , Q,

and M = J +Q.

B. SSVEP dataset

This study used the benchmark dataset collected by the

Tsinghua group from 35 subjects participating in the SSVEP-

based BCI experiment [31]. This experiment uses 40-target

BCI speller and a sampled sinusoidal stimulation method

to present visual stimuli with the luminance of the screen

is controlled by the stimulus sequence sampled from 0.5 +
0.5 sin (2πfstimt+ θstim) where fstim and θstim denote the cor-

responding stimulus frequency and phase, respectively. The

stimulus frequencies start from 8 Hz to 15.8 Hz with 0.2 Hz

interval. The relevant stimulus phases range from 0 to 1.5π
with a 0.5π interval and are repeated for stimulus frequencies.

For each subject, this experiment included 6 blocks, with each

block consisting of 40 trials corresponding to 40 stimuli. Every

trial started with a 0.5-s target cue. Then, all stimuli were

flickered on the screen for 5 s. Finally, the screen went blank

for 0.5 s before next trial.

EEG signals from 64 channels were recorded and down-

sampled to 250 Hz. A notch filter at 50 Hz was applied to

TABLE I

KEY NOTATIONS

Notation Description

xsine-cosine(t) and
ssine-cosine(θ)

Sine-cosine-based SSVEP signal model in
the time-domain and time-frequency-joint
representations

xsuperpos(t) and
ssuperpos(θ)

Superposition-theory-based SSVEP signal
model in the time-domain and time-
frequency-joint representations

xsyn(t)
Proposed SSVEP signal model based on the
time-frequency representation

fstim, Tstim, and θstim Frequency, period, and initial phase of stim-
ulus

Tj , fj and θj
(j = 1, · · · , J)

Stimulus period, frequency, and phase of j-
th source stimulus

Tq , fq and θq
(q = 1, · · · , Q)

Stimulus period, frequency, and phase of q-
th target stimulus

xc,j(t) and gc,j(θ)

SSVEP signal in the time-domain represen-
tation and corresponding analytic signal in
the time-frequency-joint representation for
the c-th channel and the j-th stimulus

Bc,n(θ)
AFD basis component of the c-th channel
and the n-th decomposition level

Ac,j,n

Decomposition coefficient of the c-th chan-
nel, the j-th source stimulus, and the n-th
decomposition level

an,AFD and an,MAFD
Parameters of basis components of AFD and
MAFD in the n-th decomposition level

ac,n,DP-MAFD

Parameter of basis component of DP-
MAFD in the c-th channel and the n-th
decomposition level

e{a}(θ)
Evaluator of the basis component with the
parameter a

Sc
Averaged SSVEP signals across trials of all
source stimuli for the c-th channel

Ŝc

SSVEP template of all target stimuli con-
structed by the proposed stimulus-stimulus
transfer method for the c-th channel

Bc AFD basis components for the c-th channel

Ac
Matrix of decomposition coefficients of
source stimuli for the c-th channel

Asel
c

Matrix of selected decomposition coeffi-
cients of common components for the c-th
channel

Are
c

Matrix of re-arranged decomposition coef-
ficients that are applied to construct SSVEP
templates of target stimuli for the c-th chan-
nel

remove the power-line noise. Following [31], the EEG signals

from 9 selected channels (Pz, PO5, PO3, POz, PO4, PO6, O1,

Oz, and O2) are used in this study. Furthermore, EEG data in

each 6-s trial were filtered using a band-pass filter with low

and high cut-off frequencies of 7 Hz and 90 Hz, respectively,

based on the ranges of stimulus frequencies.

C. SSVEP signal models based on sine-cosine signals

and superposition theory

According to the working hypothesis of the conventional

CCA method [2], the SSVEP signals can be considered as

the output of a linear system with the corresponding stimulus

signals as the input, which is well-known and also widely

used in SSVEP recognition studies [4], [6], [10]. The idea

This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBME.2022.3198639

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universidade de Macau. Downloaded on August 17,2022 at 09:07:03 UTC from IEEE Xplore.  Restrictions apply. 



4 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

behind this hypothesis is that the fundamental frequencies

and phases of the SSVEP signals follow the corresponding

stimulus and thus differ among different stimuli. Therefore,

the conventional SSVEP signal model proposed in [2] uses

the sine-cosine signals to model the SSVEP signals as shown

in

xsine-cosine(t) =
K∑

k=1

{pk sin(2πkfstimt+ kθstim)

+ qk cos(2πkfstimt+ kθstim)} ,

(1)

where pk and qk are coefficients of sine-cosine signals with

the k-th harmonic stimulus frequency and normally calculated

by maximizing the correlation between EEG signals and these

sine-cosine signals.

Besides the sine-cosine SSVEP signal model, Capilla et

al. used the superposition theory to model SSVEP signals

as the convolutions of the periodic impulses and the impulse

responses following

xsuperpos(t) = r(t) ∗ h(t), (2)

where ∗ denotes the convolution computation, h(t) denotes

the periodic impulse, i.e., h(t) =
∑∞

k=−∞ δ (t− kTstim),
k ∈ Z, δ(t) is the Dirac delta function, Tstim is the period of

corresponding stimulus, i.e., Tstim = 1/fstim, and r(t) denotes

the impulse response [21]. Our previous work [12] adopts the

least-square method to estimate the impulse responses.

D. AFD and MAFD

The AFD is an adaptive signal decomposition method. It

generates adaptive basis {Bn}
∞
n=1

based on a matching pursuit

process, where

Bn(θ) =

√
1− |an|

2

1− anejθ

n−1∏

k=1

ejθ − ak
1− akejθ

, (3)

an ∈ D, D = {z ∈ C : |z| < 1}, C is the complex plane,

and n denotes the decomposition level [32]. It should be

noted that the basis components in {Bn}
∞
n=1

are periodic

with period of 2π and orthogonal to others. Because Bn(θ) is

determined solely by the sequence of an, selecting a suitable

an is a key procedure in each decomposition level of the

AFD. The value of an should be able to guarantee a fast

signal decomposition in terms of the energy convergence and

thus make the decomposition components match the processed

signal well, which can be achieved based on the attainability

of

an,AFD = argmax
a∈D

{
E{Bn}(a)

}
, (4)

where E{Bn}(a) denotes the extracted energy from using a
as the basis parameter of Bn(θ) at the n-th decomposition

level. To consider the common oscillations shared by a set

of signals, our previous work [29], [30] proposes the MAFD.

The MAFD considers a set of signals together and generates

common adaptive basis components for all signals. At each

decomposition level, the MAFD finds the basis parameter by

maximizing the total extracted energy, which can be expressed

as

an,MAFD = argmax
a∈D

{
C∑

c=1

E{c,Bn}(a)

}
, (5)

where E{c,Bn}(a) denotes the extracted energy of the c-th
channel, and C is the total number of channels.

III. PROPOSED METHOD

A. Time-frequency-joint representation based SSVEP

signal model

The fundamental difficulty in defining the commonality of

the SSVEP signals elicited by multiple stimuli stems from

the fact that the SSVEP signals elicited by different stimuli

are distinctive in the time domain. Fig. 1(a) uses the 2D

plots to illustrate the dynamic information and the inter-

stimulus differences of the SSVEP signals in the time-domain

represenation where the x-axis presents the time, the y-axis

presents the stimulus frequencies, and different colors present

signal amplitudes. The first 1s SSVEP signals elicited by each

stimulus are averaged across six trials (each block contains

one trial for every stimulus). It can be seen that the colors in

different rows have different distributions. The high amplitudes

(red pixels) and the low amplitudes (blue pixels) of different

rows are distributed in different columns, indicating that the

signals from different stimuli have different patterns. Signals

of the first subject are selected as examples depicted in the

conventional view. It can be seen that these signals are mingled

together. The averaged signals across all stimuli, as shown by

the thick red curve, are around 0. Obviously, it is difficult to

distinguish the commonality of SSVEP signals in the time-

domain representation.

To tackle this problem, we propose to present the SSVEP

signals of different stimuli using both time and the stim-

ulus frequencies. This time-frequency-joint representation is

inspired by the sine-cosine-based and superposition-theory-

based SSVEP signal models. Assuming that the signal lengths

of the impulse responses are equal to the periods of corre-

sponding stimuli, the superposition-theory-based signal model

can be simplified as xsuperpos(t) = R(t) where R(t) is a

periodic signal, and R(t) = R(t + kTstim), k ∈ Z. Consid-

ering both the sine-cosine-based model and the superposition-

theory-based model after regulating the signal length of the

impulse response, we can assume that

1) The main components in SSVEP signals are periodic;

2) The periods of the main components in SSVEP signals

are the same as the periods of corresponding stimuli.

Let us define the single-period signals (SPSs) as signals that

occur during the stimulus presentation. According to the two

assumptions mentioned above, comparing SPSs from different

stimuli is critical for creating the SSVEP signal model of

the stimulus-stimulus transfer and extracting the common

SSVEP components from different stimuli. By converting time

values to phase values based on the stimulus frequencies

and phases, SSVEP signals can be synchronized to make the

SPSs of different stimuli comparable. Such transformations
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Fig. 1. Dynamic information and inter-stimulus differences of the SSVEP signals in the time-domain representation and the time-frequency-joint
representation (averaged SSVEP signals of Oz channel as examples). (a) shows the SSVEP signals in the time-domain representation. (b) shows
the SSVEP signals in the time-frequency-joint representation. Different small subfigures show signals from different subjects. Each row in the
subfigures depicts the SSVEP signal of a specific stimulus. The y-axis presents the stimulus frequencies and denotes the corresponding stimuli of
rows. The x-axis denotes the time in (a) and the phase in (b), respectively. The z-axis presented by colors denotes the signal amplitudes. Signals
of the first subject are selected as an example and displayed in the conventional view. The averaged signals across all stimuli are shown by thick
red lines.

between signals in the time-domain and time-frequency-joint

representations are defined as follows:

s(θ) = x(θ
Tstim

2π
− θstim

Tstim

2π
) and x(t) = s(t

2π

Tstim

+ θstim).

(6)

In the time-frequency-joint representation, the sine-cosine-

based model and the superposition-theory-based model are

ssine-cosine(θ) =
K∑

k=1

pk sin(θ) + qk cos(θ), and

ssuperpos(θ) = sR(θ),

(7)

where sR(θ) is the signal R(t) in the time-frequency-joint

representation and sR(θ) = sR(θ + 2kπ), k ∈ Z. According

to (7), the sine-cosine-based and superposition-theory-based

SSVEP models both indicate that the SPSs in the time-

frequency-joint representation are similar across stimuli. Fig.

1(b) illustrates the dynamic information and inter-stimulus

differences of SSVEP signals in the time-frequency-joint rep-

resentation where the x-axis presents the phase, the y-axis

presents the stimulus frequencies, and different colors present

signal amplitudes. SSVEP signals from the 2nd to the 14th

periods of each stimulus are averaged across six trials. Because

all the SSVEP signals have the same sampling rate, the SSVEP

signals in response to stimuli whose stimulus frequencies are

high are up-sampled to ensure that the sampling numbers

of SPSs from different stimuli are the same in one period.

It can be seen that the colors in different rows show the

similar distribution. The high amplitude values (red pixels)

and the low amplitude values (blue pixels) of different rows

are distributed around the same columns. Signals from the first

subject are selected as examples displayed in the conventional

view. It can be seen that the signals are all distributed

around the averaged signal depicted by the thick red curve.

In contrast, the commonality of SSVEP signals of various

stimuli are evident in the time-frequency-joint representation.

In summary, another major assumption can be made, namely

that

3) The SPSs of different stimuli share commonality in the

time-frequency-joint representation.

With these three assumptions listed above, the SSVEP

signals can be modeled as

xsyn(t) = sstim(
2π

Tstim

t+ θstim)+wstim(
2π

Tstim

t+ θstim)+nstim(t),

(8)

where sstim(θ) denotes the common periodic component in

the time-frequency-joint representation, wstim(θ) denotes the

uncommon periodic component in the time-frequency-joint

representation, and nstim(t) denotes the noisy component in

the time-domain representation. In this signal model, the

components sstim(θ) are periodic with the period of 2π and

are the same for different stimuli, which can be regarded

as the SSVEP-task signal. The components wstim(θ) are also

periodic with the same period as sstim(θ), but they are not

shared between different stimuli. The components nstim(t) are

non-periodic or do not have the same period as the stimulus.

The components wstim(θ) and nstim(t) can be regarded as the

signals unrelated to the SSVEP task.

It should be noted that this study focuses on using the pro-

posed signal model to conduct the stimulus-stimulus transfer.

Therefore, the key issues of the following sections are decom-

posing the major periodic component in the SSVEP signals

and extracting the common SSVEP component sstim(θ) from

the decomposition components. Although analyzing compo-

nents wstim(θ) and nstim(t) in detail is also very helpful for

This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBME.2022.3198639

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universidade de Macau. Downloaded on August 17,2022 at 09:07:03 UTC from IEEE Xplore.  Restrictions apply. 



6 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

understanding the SSVEP signals, it is not directly related to

the stimulus-stimulus transfer and thus are not covered in this

study.

B. DP-MAFD of SSVEP signals

To estimate the components of (8), the SPSs must be

decomposed and analyzed. The MAFD is used to adaptively

decompose the SPSs of all source stimuli together. As the

MAFD uses same adaptive basis components to decompose

a set of signals, it can be applied to analyze common

components of these signals. The MAFD is designed as a

general multi-channel signal decomposition method, which

assumes that the processed signals are in a single period and

defines Bn(θ) from 0 to 2π. This study modifies the MAFD

and proposes the DP-MAFD to allow the MAFD focus on

analyzing the SPSs of different stimuli.

Assume the SSVEP signals are from total J source stimuli,

which are denoted as {Xj}
J
j=1

where Xj presents the SSVEP

signals of j-th stimulus with the stimulus frequency fj and the

stimulus phase θj and contains total C channels, then we can

select all SSVEP signals of c-th channel from {Xj}
J
j=1

to

construct a new set of signals Sc (Sc ∈ R
J×L where L is the

total sample number). According to (8), Sc can be written as

Sc =




xc,1(t)
xc,2(t)

...

xc,J(t)


+Nc, (9)

where xc,j(t) is

xc,j(t) = sc(2πfjt+ θj) + wc,j(2πfjt+ θj), (10)

and Nc represents the set of nc,j(t) for the c-th channel.

The MAFD can be modified to decompose Sc to extract the

common periodic component sc(θ) across stimuli.

To apply the AFD related methods, these signals must be

transferred to their analytic signals [33]. The analytic signal

gc,j(t) of xc,j(t) can be denoted as

gc,j(t) = xc,j(t) + jH{xc,j(t)} , (11)

where H{·} represents the Hilbert transform. Assuming that

the SSVEP-task signal sc(θ) and the non-SSVEP-task signals

{wc,j(θ)}
J
j=1

are independent, gc,j(t) can be represented by

the basis of the AFD. Moreover, to focus on analyzing SPSs,

the basis components Bn(θ) are limited in one period from

θj to θj + 2π for the j-th stimulus and repeatedly applied to

all periods. Then, gc,j(t) can be written as

gc,j(t) =
∑

n∈Sc

Ac,j,nBc,n( θ̃ )+
∑

n/∈Sc

Ac,j,nBc,n( θ̃ )+nc,j(t),

(12)

where Sc denotes the set of decomposition levels related to the

common periodic component sc(θ), θ̃ = 2πfjt−2πd+θj , d =
bt/Tjc, and b·c is the floor operation that returns the largest

integer less than or equal to the input. The decomposition

coefficient Ac,j,n can be computed as

Ac,j,n =
〈
Gc,j,n(t), e{ac,n}( θ̃ )

〉
. (13)

Fig. 2. Differences of (a) decomposing general signals in the con-
ventional MAFD and (b) decomposing SSVEP signals in the DP-MAFD.
The conventional MAFD assumes that processed signals are all in one
period from 0 to 2π. The DP-MAFD assumes that processed signals
contain several periods and divides them according to the stimulus
frequencies and the stimulus phases.

Gc,j,n(t) is called the reduced remainder and can be obtained

through the following recursive procedure:

Gc,j,n+1(t) = Rc,j,n(t)
n∏

k=1

1− ac,ke
jθ̃

ejθ̃ − ac,k

=
(
Gc,j,n(t)−Ac,j,n · e{ac,n}( θ̃ )

) 1− ac,ne
jθ̃

ejθ̃ − ac,n
,

(14)

where e{a}(θ) is the evaluator of searching an and is defined

as

e{a}(θ) =

√
1− |a|

2

1− aejθ
. (15)

The basis parameter an should make the decomposition com-

ponent Ac,j,nBc,n(θ̃) match all SPSs, which can be achieved

by solving

ac,n,DP-MAFD = argmax
a∈D





J∑

j=1

Dj∑

d=0

∣∣∣
〈
Gc,j,n(t), e{a}( θ̃ )

〉∣∣∣
2



 ,

(16)

where t is defined in [dTj , (d+ 1)Tj) for each value of

d, Dj = bTw/Tjc, and Tw is total signal length of the
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processed signal. Unlike the AFD and the MAFD, the DP-

MAFD searches for the basis parameters by splitting the

SSVEP signals into SPSs according to the stimulus frequencies

and then maximizing the total extracted energy of all SPSs.

Fig. 2 illustrates the differences of the conventional MAFD

and the proposed DP-MAFD.

C. Extraction of common components across source

stimuli

For each stimulus, the recorded SSVEP signals are averaged

across trials to enhance the SSVEP-task signals, which is

denoted as Xj of j-th source stimulus (Xj ∈ R
C×L where

C is the total number of channels and L is the total sample

number). Then, the DP-MAFD is used to decompose the

averaged SSVEP signals of different stimuli, as shown in

Section III-B. The DP-MAFD analyzes the averaged SSVEP

signals channel by channel. After the decomposition, the

averaged SSVEP signals in c-th channel denoted as Sc in (9)

can be represented as

Sc = Real {Ac ×Bc +Rc} , (17)

where Real {·} denotes the real part of the analytic signal,

Ac denotes the matrix of decomposition coefficients (Ac ∈
C

J×N ), Bc denotes the matrix of basis components (Bc ∈
C

N×L), Rc denotes the remainder, J is the total number

of source stimuli, and N is the maximum decomposition

level. Then, because the basis components are same for all

stimuli, the decomposition components related to the common

periodic component sc(θ) can be selected by analyzing the

decomposition coefficients. According to the prior knowledge

of the properties and the relationships of the SSVEP-task

and non-SSVEP-task signals, the following selection rules are

recommended.

1) According to the experimental settings in Section II-

B, the processed EEG signals were all recorded while

subjects were performing the SSVEP tasks. Furthermore,

the processed signals were already prepossessed and av-

eraged across trials to weaken non-SSVEP-task signals.

As a result, the SSVEP-task signals should have more

energy than non-SSVEP-task signals. Because the DP-

MAFD extracts the components that can best match

SPSs first, the remainder Rc will contain components

of {nj(t)}
J
j=1

and parts of components of {wj(θ)}
J
j=1

with tiny energy when N is large enough.

2) Following the energy relationship between the SSVEP-

task and the non-SSVEP-task signals mentioned in 1),

the energy of
∑

n∈Sc
Ac,j,nBc,n(θ̃) should be greater

than that of
∑

n/∈Sc
Ac,j,nBc,n(θ̃). As a result, the de-

composition levels in Sc should be the first several Nsel

decomposition levels where Nsel satisfies

Nsel∑

n=1

|Ac,j,n|
2
− α

N∑

n=1

|Ac,j,n|
2
< ε ∀ j = 1, · · · , J,

(18)

where ε denotes a small positive number, and the selec-

tion parameter α can be set based on the noise level of

the processed signals.

3) For each decomposition level n in Sc, the elements

in {Ac,j,n}
J
j=1

are coefficients of the common SSVEP

components and thus should be distributed closely.

The phases and the amplitudes of the decomposition

coefficients determine the time shifting and shapes of

decomposition components, respectively. Common sense

dictates that the shapes of the common components

should be similar for different stimuli, even if the time

locations of these common components are allowed to

vary. Therefore, this study selects the decomposition

levels based on the distributions of the decomposition

coefficient amplitudes. The interquatile range (IQR) is

used to measure the statistical dispersion of the ampli-

tudes of the decomposition coefficients [34], [35]. If the

decomposition level n is in Sc, then n should satisfy

Ω {|Ac,j,n| /∈ [llower, lhigher] ∀ j = 1, · · · , J} < β · J
(19)

where llower = Q1 − κ · IQR, lhigher = Q3 + κ · IQR,

IQR = Q3 − Q1, Q3 and Q1 denote the upper and

lower quartiles of {|Ac,j,n|}
J
j=1

, Ω {·} denotes the oper-

ation of counting the element number, and the selection

parameter β also can be adjusted by the noise levels of

processed signals.

According to these three rules, the decomposition coeffi-

cients of n ∈ Sc, denoted as A
sel
c , can be determined and

transferred across stimuli to construct SSVEP templates of the

target stimuli.

D. Construction of SSVEP templates for target stimuli

After the selection process mentioned in Section III-C, the

decomposition coefficients that are not common for different

stimuli in certain decomposition levels were rejected. Al-

though the remaining decomposition coefficients have similar

distributions for different stimuli, the decomposition coeffi-

cients of the stimuli with closer stimulus frequencies share

more commonalities. Therefore, for one target stimulus with

the stimulus frequency fq , this study constructs SSVEP tem-

plates using the decomposition components of the source stim-

ulus whose stimulus frequency f̂q is closest to fq , implying

that the chosen source stimulus for the q-th target stimulus can

be searched by

q̂ = arg min
j∈{1,··· ,J}

{|fj − fq|} . (20)

Following (12), the SSVEP template of the c-th channel for

the q-th target stimulus can be constructed by

X̂c,q(t) = Real

{
∑

n∈Sc

Ac,q̂,nBc,n(θ̃)

}
, (21)

where θ̃ = 2πfqt− 2πd+ θq , and d = bt/Tqc. Fig. S1 in the

supplementary material shows the entire processes from the

DP-MAFD decomposition of the source SSVEP templates to

the construction of the target SSVEP templates.

The SSVEP templates of the target stimuli built from the

selected decomposition coefficients of source stimuli can be

used to find the spatial filters of target stimuli and then
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TABLE II

PEARSON CORRELATION COEFFICIENTS BETWEEN THE SSVEP

SIGNALS OF DIFFERENT STIMULI IN THE TIME-DOMAIN AND

TIME-FREQUENCY-JOINT REPRESENTATIONS, ORIGINAL AND

RECONSTRUCTED SSVEP SIGNALS OF THE DP-MAFD, AS WELL AS

THE RECONSTRUCTED SPSS OF ALL PAIRS OF STIMULI? .

SSVEP signals of different
stimuli in time-domain

representation

SSVEP signals of different
stimuli in time-frequency-joint

representation

−0.003± 0.168 0.522± 0.315

Original and reconstructed
SSVEP signals of the

DP-MAFD

Reconstructed SPSs of all
pairs of stimuli

0.588± 0.154 0.775± 0.112

?: More detailed individual results are in the supplementary material.

perform the SSVEP recognition. This study considers two

types of spatial filters, i.e., the class-nonspecific and class-

specific spatial filters following [4] and [18]. The details are

shown in Section S.I of the supplementary material.

IV. RESULTS

The impact of each procedure in the proposed method is

illustrated through the simulations in this section. Firstly,

Section IV-A verifies the proposed time-frequency-joint

representation’s ability to synchronize SSVEP signals across

stimuli, laying the groundwork for the decomposition of the

DP-MAFD. Then, Section IV-B demonstrates that the DP-

MAFD has the ability to extract major periodic components. In

addition, Section IV-C verifies that the selected decomposition

components can be transferred across stimuli, which is the

groundwork for constructing proper SSVEP templates.

Finally, the recognition performance of constructed SSVEP

templates for target stimuli is further demonstrated in Section

IV-D. The related simulation codes are available at https:

//stimulus-stimulus-transfer-ssvep-bcis.

readthedocs.io.

A. Stressing common components in

time-frequency-joint representation

Whether the proposed time-frequency-joint representation

can synchronize the SSVEP signals of different stimuli is

verified by the similarities between the SSVEP signals of

different stimuli before and after presenting the SSVEP sig-

nals in the time-frequency-joint representation. The time-

frequency-joint representation is based on (6). The similarity

between each pair of 40 stimuli is evaluated by the Pearson

correlation coefficient. Before presenting the SSVEP signals

in the time-frequency-joint representation, signals are in the

time domain. The first 1s signals are averaged across trials for

each stimulus. After presenting SSVEP signals in the time-

frequency-joint representation, the first 14-period signals are

averaged across trials for each visual stimulus. As listed in

Table II, the averaged correlation coefficient of 35 subjects in

the time-domain is around −0.003, indicating that the common

knowledge shared across stimuli is difficult to be identify in

the time domain. In the time-frequency-joint representation,

Fig. 3. The averaged original SSVEP signals (blue lines) and the
SSVEP signals reconstructed by the decomposition components in
the first 50 decomposition levels (red lines) at Oz. The time-domain
and frequency-domain signals are shown in the left and right figures,
respectively. (a) Subject 1’s SSVEP signals induced by the 8.4 Hz
stimulus; (b) Subject 1’s SSVEP signals induced by 9.8 Hz stimulus; (c)
Subject 22’s SSVEP signals induced by 11.6 Hz stimulus; (d) Subject
22’s SSVEP signals induced by 14.4 Hz stimulus. The purple dotted
lines denote the harmonic stimulus frequencies.

the averaged correlation coefficient of 35 subjects is improved

to around 0.522. This considerable improvement indicates that

the proposed time-frequency-joint representation can effec-

tively synchronize SSVEP signals of different stimuli. The

individual results of these similarities are illustrated in Section

S.II of the supplementary material.

B. Decomposition of major periodic components by

DP-MAFD

Whether the DP-MAFD can extract major periodic compo-

nents in the SPSs in response to different stimuli simultane-

ously is validated by comparing the original and reconstructed

SSVEP signals. The first 2.5s SSVEP signals are averaged

across trials, and are regarded as the original SSVEP signals.

Then, for each channel, the averaged SSVEP signals of 40

stimuli are decomposed by the DP-MAFD together. Finally,

the decomposed components of the first 50 decomposition

levels are used to reconstruct the SSVEP signals.

Fig. 3 compares original signals shown in blue and the

reconstructed signals shown in red, with signals from the Oz

channel are selected as examples. The signals in (a) and (b)

are responses to the stimuli flickering at 8.4 Hz and 9.8 Hz

from Subject 1. The signals in (c) and (d) are responses to the

stimuli flickering at 11.6 Hz and 14.4 Hz from Subject 22.

Comparisons in the time and frequency domains both show

that, while some abrupt or non-periodic changes as well as

periodic components whose major frequencies are different

from the corresponding stimulus frequencies cannot be recov-

ered in the reconstructed signals, periodic components whose

major frequencies are same as the corresponding stimulus

frequencies can be extracted by the DP-MAFD.
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Fig. 4. Reconstructed SPSs of Oz channel. The thin lines with different
colors show reconstructed SPSs of different stimuli. The thick red line
shows the signal of reconstructed SPSs averaged over 40 stimuli.

Then, the similarities between the original and reconstructed

signals are evaluated by the Pearson correlation coefficients.

The averaged Pearson correlation coefficient is around 0.588
as shown in Table II. Such high correlation indicates that, after

modifying the MAFD, the DP-MAFD can extract the major

periodic components in SSVEP signals. Individual Pearson

correlation coefficients and mean square errors (MSEs) are

shown in Section S.III of the supplementary material.

C. Transferability of selected decomposition components

The transferability of the common components selected

by three rules recommended in Section III-C is verified by

comparing SPSs constructed by selected the decomposition

coefficients of different stimuli. Firstly, the DP-MAFD decom-

poses averaged SSVEP signals channel by channel. The SPSs

are then reconstructed after the decomposition coefficients

are selected based on the three recommended rules. Fig. 4

compares reconstructed SPSs of different stimuli, with exam-

ples drawn from the Oz channel. The reconstructed SPSs of

different stimuli, represented by thin lines of different colors,

are all distributed around the averaged SPS, represented by

the thick red curve, and are all very similar.

The similarities of reconstructed SPSs are then quantita-

tively validated by the Pearson correlation coefficients and

shown in Table II. The averaged Pearson correlation coef-

ficients between reconstructed SPSs of all pairs of stimuli

are around 0.775, which is much higher than the correlations

between the SSVEP signals of all pairs of stimuli before the

decomposition. This result indicates that the transferability is

improved from the SSVEP signals before the decomposition

to the decomposition components selected using recommended

rules. More individual results can be found in Section S.IV of

the supplementary material.

D. Classification performance of constructed SSVEP

templates

The leave-one-out cross validation is used to test the clas-

sification performance of the SSVEP templates created using

the proposed stimulus-stimulus transfer method. In six blocks,

the SSVEP signals of five blocks are selected for constructing

the templates and training the spatial filters. The remaining

block is used for testing. The entire evaluation process is

repeated to test all six blocks. From forty stimuli, source

stimuli are randomly chosen. To avoid the stochastic effects,

the source stimuli are randomly selected five times. In the

proposed method, the parameters in the selection rules stated

in Section III-C are set to α = 0.9, κ = 1.5, and β = 0.2. The

classification performance is evaluated by the classification

accuracy and the ITR. The ITR is computed as

ITR =
60

Tdet

[
log2 M + P log2 P + (1− P ) log2

1− P

M − 1

]
,

(22)

where P is the classification accuracy, M is the number of

stimuli, i.e., 40 (M = J + Q) in this study, and Tdet is the

total time for each detection [36]. Tdet is equal to the sum

of the time required for shifting visual attention and the time

required for recognizing the target. Because this study focuses

on verifying the performance of the stimulus-stimulus transfer,

the following analysis of the classification performance only

considers the performance of the target stimuli even though all

stimuli are considered during the classification. More results

from the BETA Dataset [37] are included in Section S.V of

the supplementary material to further verify classification per-

formance of SSVEP templates constructed using the proposed

stimulus-stimulus transfer method.

Firstly, the proposed method is compared to the calibration-

free method, namely the conventional CCA based on the

sine-cosine reference signals as well as another stimulus-

stimulus transfer based method, namely the tlCCA proposed

in [12]. These three methods do not use the calibration

data of the target stimuli to train the spatial filters and the

SSVEP templates. Fig. 5(a) and (b) show the classification

performance of these three methods. The proposed method

clearly outperforms the other two methods, especially for the

short signal lengths. In addition, the proposed method requires

a shorter signal length to achieve its highest ITR. The proposed

method achieves its highest ITR when the signal length is

around 1 s. The conventional CCA and the tlCCA achieve

their highest ITRs when the signal lengths are around 1.75 s

and 1.25 s, respectively.

Secondly, the proposed method is compared to the eCCA

proposed in [4]. The eCCA, like the proposed method, uses the

averaged SSVEP signals to generate the SSVEP templates and

uses the sine-cosine signals as the reference signals to train the

class-specific spatial filters and perform the stimulus frequency

recognition. However, the eCCA requires the calibration data
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Fig. 5. Comparisons of classification accuracy and ITR for the bench-
mark dataset. (a) and (b) compare the classification accuracy and ITR
of the methods that do not use the calibration data of target stimuli, such
as the conventional CCA, the tlCCA, and the proposed method. (c) and
(d) compare the classification accuracy and ITR of the proposed method
and the method with calibration data of target stimuli, i.e., the eCCA.

of the target stimuli to build the SSVEP templates. The

classification performance of the proposed method and the

eCCA is illustrated in Fig. 5(c) and (d). The proposed method

cannot perform better than the eCCA because the proposed

method does not use the calibration data of the target stimuli.

However, the differences in performance between the proposed

method and the eCCA are small.

Individual differences cause differences in classification

performance for different subjects. Fig. 6 shows the maximum

ITRs of 35 subjects. Each blue dot represents one subject’s

maximum ITR. In Fig. 6(a) and (b), all points are in the upper

left region and far away from the diagonal red line, indicating

that the proposed method outperforms the conventional CCA

and the tlCCA for all subjects. Fig. 6(c) shows that most points

are in the lower right region and very close to the diagonal red

curve, indicating that, for most subjects, while the proposed

Fig. 6. Comparisons of individual maximum ITRs (bits/min) for the
benchmark dataset. (a) ITRs of the proposed method and the con-
ventional CCA. (b) ITRs of the proposed method and the tlCCA. (c)
ITRs of the proposed method and the eCCA. Each point represents the
maximum ITR of a single subject.

TABLE III

COMPARISONS OF THE MAXIMUM AVERAGED ITR AND REQUIRED

CALIBRATION TIMES FOR ONE SUBJECT.

Method

Number

of stimuli

for training

Maximum

averaged ITR

(bits/min)

Required

calibration

time (s)

Conventional

CCA
0 78.805 (1.75 s) 0

tlCCA 8 95.966 (1.25 s) 90

Proposed

method
8 123.684 (1.00 s) 80

eCCA 32 138.021 (1.00 s) 320

method cannot perform better than the eCCA, the classification

performance of the proposed method and the eCCA is very

close.

Although the performance of the proposed method is

slightly inferior to that of eCCA, we have to point out that

the proposed method does not require the calibration data of

target stimuli and thus can significantly shorten the calibration

time. Table III summarizes the maximum ITRs and required

calibration times of the conventional CCA, tlCCA, eCCA,

and the proposed method for a single subject. The required

calibration time is calculated by

tcal = Ntrial ×Nstim × Tcal, (23)

where Ntrial denotes the number of training trials for each

stimulus, which is 5 (Ntrial = J) in this study, Nstim denotes the

number of stimuli for training, which is 0 for the conventional

CCA, 8 for the tlCCA and the proposed method, and 32 for the

eCCA, and Tcal denotes the required calibration time of each

trial and is computed as the sum of the time for subject to shift

visual attention (0.5 s in this study), the time for displaying the

target cue (0.5 s in this study), and the signal length required

to achieve the highest ITR. Although the eCCA has the highest

ITR, it requires considerably longer calibration time than the
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Fig. 7. Comparisons of classification accuracy and ITR of the proposed
method with three numbers of source stimuli for the benchmark dataset
(blue: 4 source stimuli, red: 8 source stimuli, and yellow: 12 source
stimuli). (a) the classification accuracy. (b) the ITR. The statistical results
are indicated as ? (p < 0.05), ?? (p < 0.01), and ??? (p < 0.001).

proposed method.

E. Effects of source-stimulus number on classification

performance

According to Section III-D, the proposed stimulus-stimulus

transfer method requires calibration data from a little number

of source stimuli (at least one) to construct different SSVEP

templates to a greater number of target stimuli. Fig. 7 shows

the effects of source-stimulus number on classification. The

source stimuli are chosen at random for each source-stimulus

number and repeated five times. Because the number of the

SPSs that can be analyzed increases with the number of source

stimuli, the estimations of the common periodic components

become more accurate, and thus the classification performance

enhances, especially for the short signal lengths.

V. DISCUSSIONS

The proposed method extracts the common components of

different stimuli to build the SSVEP templates without cali-

bration data. From the signal modeling point of view, because

the different stimuli are same in one period, we assume that

the responses of our brains are the same as well. Fig. 8 uses

examples to demonstrate this key assumption of the proposed

method. The blue curve in the left polar plot represents the

SSVEP-related component, which is assumed to be stable

for all stimuli. The black straight arrow denotes the current

signal state that rotates counterclockwise and follows the blue

curve. The differences between the EEG signals elicited by

different stimuli are caused by the rotation speeds of the

signal states and the disturbance of the non-SSVEP-related

components as shown in the right part. From the perspective

of the transfer learning, the common components extracted by

the proposed method can be regarded as being in a high-level

common domain that links sub-domains of different stimuli.

The proposed method can be considered as an asymmetric

transfer [38]. As illustrated in Fig. 9(a), if the calibration data

in the target domain is sufficient, the classification model of the

target domain can be directly obtained by the calibration-based

Fig. 8. Examples to show the fundamental assumption of the proposed
stimulus-stimulus transfer based on the time-frequency-joint representa-
tion. The left side shows the signal state that follows the SSVEP-related
component for all stimuli. The right side shows the real EEG signals with
signal states rotating at different speeds for different stimuli and being
disturbed by non-SSVEP-related components.

Fig. 9. Diagrams of (a) the classification with calibration data of
target stimuli and (b) the classification based on the proposed stimulus-
stimulus transfer without calibration data of target stimuli.

methods, such as the eCCA. However, when the calibration

data in the target domain is unavailable or insufficient, the pro-

posed method can be used to generate the classification model

of the target domain by transferring the classification model

of the non-target domain through the time-frequency-joint

representation as shown in Fig. 9(b). The differences between

features before and after the transformation are discussed in

Section S.VI of the supplementary material. This is the first

study to extract the general non-stimulus-specific components

in SSVEP signals. The comparisons between the previous and

proposed transfer schemes are discussed in Section S.VII of

the supplementary material.

Although the proposed method can produce good classi-

fication performance, it still has some practical limitations.

Firstly, because the proposed method is based on the assump-

tion that the stimulus-specific and -nonspecific components

are linearly combined, the non-linear components in SSVEP

signals mentioned in [39] are not considered in this study. The

performance may be further improved by taking into account

the non-linearity of SPSs. Secondly, the selection method of

decomposition coefficients shown in Section III-C is empirical

and preliminary, particularly for parameter settings in the

selection rules. The qualities of generated classification models

may be improved further in the future by delving deeper

into these decomposition coefficients and considering novel
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transfer learning methods. Third, this study mainly focuses

on how to extract and transfer commonality across stimuli,

so some advanced recognition techniques that are not directly

related to the stimulus-stimulus transfer are not included in this

study, such as the filter-bank technique and the classification

methods based on the artificial neural network [6], [40]. The

performance of the proposed method may also benefit from

these techniques.

VI. CONCLUSIONS

This study proposes a cross-stimulus transfer learning

framework to investigate the commonality of SSVEP sig-

nals. Based on the time-frequency-joint representation, a new

SSVEP signal model is proposed, which directly uses the

common periodic components to describe SSVEP signals of

different stimuli. Moreover, the DP-MAFD incorporates the

characteristics of SSVEP signals to adaptively decompose pe-

riodic components of source stimuli simultaneously. The major

common periodic components can be selected from these de-

composed components. The simulation results show that these

common components extracted by the proposed method can be

transferred across stimuli. The proposed method outperforms

other stimulus-stimulus transfer methods in term of practical

utility. This is the first study to analyze SSVEP signals from a

synchronization standpoint and model SSVEP signals using

SPSs, which will inspire further research on the transfer

learning of the SSVEP signals. In addition, the proposed

stimulus-stimulus transfer method shortens the calibration time

and thus improve comfort. In this regard, this research could

facilitate real-world applications of SSVEP-based BCIs.
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