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Integral Representations in Weighted Bergman Spaces

on the Tube Domains

Yun Huang ∗, Guan-Tie Deng †, Tao Qian ‡

Herein, the Laplace transform representations for functions of

weighted holomorphic Bergman spaces on the tube domains are

developed. Then a weighted version of the edge-of-the-wedge

theorem is derived as a byproduct of the main results.
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1 Introduction

The classical Paley–Wiener theorem asserts that functions of the classical Hardy space

H2(C+) can be written as the Laplace transforms of L2 functions supported in the right

half of the real axis, see [1]. This theorem has been extended to more general Hardy spaces,

including the Hp spaces cases (0 < p ≤ ∞), higher dimensional cases and weighted spaces,

see [11, 13, 15, 14, 12, 9]. Integral representation theorems have also been investigated for

Bergman spaces.
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We first introduce some notations and definitions. Let B be a domain (open and

connected set) in Rn and TB = Rn + iB ⊂ Cn be the tube over B. For any element

z = (z1, z2, . . . , zn), zk = xk + iyk, by definition, z ∈ TB is and only if x = (x1, . . . , xn) ∈ Rn

and y = (y1, . . . , yn) ∈ B. The inner product of z, w ∈ Cn is defined as z ·w = z1w1+ z2w2+

· · ·+ znwn. The associated Euclidean norm of z is |z| =
√
z · z̄, where z̄ = (z̄1, z̄2, . . . , z̄n).

A nonempty subset Γ ⊂ Rn is called an open cone if it satisfies (i) 0 /∈ Γ, and (ii)

αx+ βy ∈ Γ for any x, y ∈ Γ and α, β > 0. The dual cone of Γ is defined as Γ∗ = {y ∈ Rn :

y · x ≥ 0, for any x ∈ Γ}, which is clearly a closed convex cone with vertex at 0. We say

that the cone Γ is regular if the interior of its dual cone Γ∗ is nonempty.

For 1
p
+ 1

q
= 1, define

Bp(TB) =

{
F : F is holomorphic in TB and satisfies

∫

B

(∫

Rn

|F (x+ iy)|pdx
)q−1

dy <∞
}
.

Among the previous studies, Genchev showed that the function spaces Bp(1 ≤ p ≤ 2), in

the one- and multi-dimensions in [3] and [4], respectively, admit integral representations in

the Laplace transform form. These results can be applied to the Bergman spaces

Ap(TΓ) =

{
F : F is holomorphic on TΓ and satisfies

∫

TΓ

|F (x+ iy)|pdxdy <∞
}

to obtain the corresponding integral representation results for Ap(TΓ) in the range 1 ≤ p ≤
2([5]).

In this paper we initiate a study on a class of function spaces, denoted by Ap,s(B,ψ), of

which each is associated with a weight function of the form e−2πψ(y), where ψ(y) ∈ C(B) is

continuous on B. The space Ap,s(B,ψ)(0 < p ≤ ∞, 0 < s ≤ ∞) is the collection of functions

F (z) that are holomorphic in TB and satisfy

‖F‖Ap,s(B,ψ) =
(∫

B

(∫

Rn

|F (x+ iy)e−2πψ(y)|pdx
)s

dy

) 1
sp

<∞, 0 < p, s <∞,

‖F‖Ap,∞(B,ψ) = sup

{
e−2πψ(y)

(∫

Rn

|F (x+ iy)|pdx
) 1

p

, y ∈ B

}
<∞ , 0 < p <∞, s = ∞

and

‖F‖A∞,∞(B,ψ) = sup
{
e−2πψ(y)|F (x+ iy)|, x ∈ R

n, y ∈ B
}
<∞, p = ∞, s = ∞.

This paper is structured as follows. In §2, we introduce our main work on the integral

representation for Ap,s(B,ψ), which is separated into three cases, namely, Ap,s(B,ψ) for
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1 ≤ p ≤ 2, Ap,s(B,ψ) for 0 < p < 1 and Ap,s(Γ, ψ) for p > 2, corresponding to Theorem 1, 2

and 3 respectively. The proofs are given in §3. Finally, some results, referring to Corollary

2, Theorem 4 and Theorem 5, are derived as applications of the integral representation

theorems claimed in §2.

2 Main results

In order to introduce our main results, we define the set

Uα(B,ψ) =

{
t ∈ R

n :

∫

B

e−2πα(t·y+ψ(y))dy <∞
}

(1)

for α ∈ (0,∞) and

U∞(B,ψ) = {t : inf
y∈Γ

(y · t + ψ(y)) > −∞} (2)

for α = ∞.

The representation theorem for Ap,s(B,ψ), where 1 ≤ p ≤ 2 and 0 < s ≤ ∞, is stated as

follows.

Theorem 1. Assume that 1 ≤ p ≤ 2, 0 < s ≤ ∞, then each F (z) ∈ Ap,s(B,ψ) admits an

integral representation in the form

F (z) =

∫

Rn

f(t)e2πit·zdt, z ∈ TB, (3)

in which, for p = 1, f(t) ∈ C(Rn) satisfies

|f(t)|
(∫

B

e−2sπ(y·t+ψ(y))dy

)1
s

≤ ‖F‖A1,s(B,ψ) (4)

and, for 1 < p ≤ 2 and 1
p
+ 1

q
= 1, f(t) is a measurable function that satisfies

(∫

B

(∫

Rn

|f(t)e−2π(y·t+ψ(y))|qdt
) sp

q

dy

) 1
sp

≤ ‖F‖Ap,s(B,ψ). (5)

Moreover, f is supported in Us(B,ψ) for p = 1 and supported in Usp(B,ψ) for 1 < p ≤ 2,

0 < s(p− 1) ≤ 1.

As given in the next theorem, integral representations in the form of Laplace transform

are also available for 0 < p < 1 and 0 < s ≤ ∞.
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Theorem 2. Assume that F (z) ∈ Ap,s(B,ψ), where 0 < p < 1 and 0 < s ≤ ∞. Then there

exists a continuous function f(t) such that f(t)e−2πy·t ∈ L1(Rn) and (3) hold for y ∈ B.

Considering the property of f(t) for the case of 0 < p < 1, we let B be a regular open

convex cone Γ and let ψ ∈ C(Γ) satisfy

Rψ = lim
y∈Γ,y→∞

ψ(y)

|y| <∞. (6)

Then we obtain the following corollary.

Corollary 1. Assume that Γ is a regular open convex cone and F (z) ∈ Ap,s(Γ, ψ) for

0 < p < 1, 0 < s ≤ ∞, where ψ ∈ C(Γ) satisfies (6). Then there exists f(t) supported in

Γ∗ +D(0, Rψ) such that (3) holds and |f(t)|
(∫

Γ
e−2sπ(y·t+Rψ |y|)dy

)1
s is slowly increasing.

Similarly, we establish an analogy for p > 2 and 0 < s ≤ ∞.

Theorem 3. Assume that p > 2, 0 < s ≤ ∞, Γ is a regular open convex cone in Rn and

ψ ∈ C(Γ) satisfies (6). If F (z) ∈ Ap,s(Γ, ψ) satisfying

lim
y∈Γ,y→0

∫

Rn

|F (x+ iy)|2dx <∞, (7)

then there exists f(t) ∈ L2(Rn) supported in Usp(Γ, ψ) such that (3) holds for all z ∈ TΓ.

The definition of Ap,s(B,ψ) shows that Ap,s(B,ψ) is a weighted Hardy space when s = ∞
and a weighted Bergman space when s = 1. Taking ψ(y) = 0, it becomes, for s = ∞
and s = 1, respectively, the classical Hardy space Hp and the classical Bergman space Ap.

Therefore, our results herein can be regarded as generalizations of certain previously obtained

results.

For example, taking s = ∞ and B a regular open convex cone Γ, Ap,∞(B,ψ) = Hp(Γ, ψ)

is the weighted Hardy spaces investigated in our previous paper [15]. Then Theorem 1, 2

and 3 in [15] can be derived from our main work, including Theorem 1, 2, 3 and Corollary 1

herein. For s = ∞ and ψ(y) = 0, letting B be some specific domains, some previous studies

for the Hardy spaces, see [1, 13, 14, 12, 9], can be also derived from Theorem 1, 2, 3 and

Corollary 1.

On the other hand, letting s = 1, by using Theorem 1, 2, 3 and Corollary 1, we can obtain

the representation theorems for the standard Bergman spaces. Note that for s = 1, B = Γ

and ψ(y) = 0, we have Ap,s(B,ψ) = Ap(TΓ). We therefore conclude from Theorem 1 that

the counterpart results of Theorem 1, 2 and 3 in [5] hold for the classical Bergman spaces

4



Ap(TΓ)(1 ≤ p ≤ 2). If we set ψ(y) = 0 and s = q − 1, where 1
p
+ 1

q
= 1, then Ap,s(B,ψ) =

Bp(TB). The integral representation theorems for those function spaces Bp(TB)(1 ≤ p ≤ 2)

can be derived from Theorem 1 herein, see [4]. Especially, letting s = 1, p = 2, ψ(y) =

− α
4π

log |y| and B a regular open convex cone Γ, Theorem 1 implies a higher dimensional

generalization of Theorem 1 of [10] in tube domains, which is established as Corollary 2 in

the sequel.

3 Proofs

This section is devoted to proving the results stated in §2.

Proof of Theorem 1. We first prove the case of p = 1. If F (z) ∈ A1,s(B,ψ), then Fy(x) ∈
L1(Rn) as a function of x, and F̌y(x) as well, are both well defined. Next we prove that

F̌y(t)e
−2πy·t is independent of y ∈ B. Without loss of generality, assume that a = (a′, an),

b = (a′, bn) ∈ B, and a + τ(b − a) ∈ B for 0 ≤ τ ≤ 1, where a′ = (a1, . . . , an−1). The fact

Fy(x) ∈ L1(Rn) implies that

∫ ∞

0

∫ 1

0

∫

Rn−1

(|F ((x′, xn) + i(a+ τ(b− a)))|+ |F ((x′,−xn) + i(a + τ(b− a)))|) dx′dτdxn <∞,

which implies

lim
R→∞

∫ 1

0

∫

Rn−1

(|F ((x′, R) + i(a + τ(b− a)))|+ |F ((x′,−R) + i(a+ τ(b− a)))|) dx′dτ = 0.

Hence, we have

|F̌b(t)e−2πb·t − F̌a(t)e
−2πa·t|

=

∣∣∣∣
∫

Rn

(
F (x+ ib)e2πi(x+ib)·t − F (x+ ia)e2πi(x+ia)·t

)
dx

∣∣∣∣

=

∣∣∣∣
∫

Rn

∫ 1

0

∂

∂τ

(
F (x+ i(a+ τ(b− a)))e2πi(x+i(a+τ(b−a)))·t

)
dτdx

∣∣∣∣

=

∣∣∣∣
∫

Rn

∫ 1

0

∂

∂yn

(
F (x+ i((y′, yn))e

2πi(x+i(y′,yn))·t
∣∣
yn=an+τ(bn−an)(bn − an)

)
dτdx

∣∣∣∣

= |bn − an|
∣∣∣∣
∫

Rn

∫ 1

0

i
∂

∂xn

(
F (x+ i(a + τ(b− a)))e2πi(x+i(a+τ(b−a)))·t

)
dτdx

∣∣∣∣

≤ |bn − an| lim
R→∞

∫ 1

0

∫

Rn−1

(|F ((x′, R), (a+ τ(b− a)))|+ |F ((x′,−R), (a+ τ(b− a)))|)

e−2π|t|(|a|+|b−a|)dx′dτ

= 0.
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Remark thatB is connected and open, by an iteration argument, we can show that F̌y(t)e
−2πy·t

is independent of y ∈ B and we write it as g(t). Then g(t) = F̌y(t)e
−2πy·t holds for

y ∈ B. Next, we show that g(t)e2πy·t ∈ L1(Rn). Let us decompose Rn into a finite

union of non-overlapping polygonal cones, Γ1,Γ2, . . . ,ΓN with their very vertexes at the

origin, i.e., Rn =
⋃N

k=1 Γk. Then χΓk(t)g(t)e
2πy·t = χΓk(t)F̌yk(t)e

−2π(yk−y)·t. For any y0 ∈ B,

there exists δ such that D(y0, δ) ⊂ B. Then for any y ∈ D(y0,
δ
4
) and yk ∈ (y0 + Γk)

satisfying 3δ
4

≤ |yk − y0| < δ, we get (yk − y) · t = (yk − y0) · t + (y0 − y) · t. Since

yk − y0, t ∈ Γk, the angle between the segments O(yk − y0) and Ot is less than, say
π
4
. Then

(yk − y) · t ≥ |yk−y0|√
2

|t| − |y0 − y||t| ≥ ( 3
4
√
2
− 1

4
)δ|t| ≥ 1

4
δ|t|. Thus, it follows from Hölder’s

inequality that
∫

Γk

|g(t)e2πy·t|dt ≤
∫

Γk

|F̌yk(t)e−π
δ
4
|t||dt ≤ ‖Fyk(x)‖L1(Rn)

∫

Γk

e−π
δ
4
|t|dt <∞,

which shows that g(t)e2πy·t ∈ L1(Γk). Hence g(t)e
2πy·t ∈ L1(Rn). Together with the relation

g(t) = F̌y(t)e
−2πy·t for y ∈ B, there holds F (z) =

∫
Rn
g(t)e−2πiz·t for all y ∈ B. By letting

f(t) = g(−t), we then obtain the desired formula (3) for p = 1 and z ∈ TB.

Thus, f(t)e−2πy·t ∈ L1(Γk) implies that

sup
t∈Rn

|f(t)|e−2πy·t ≤
∫

Rn

|F (x+ iy)|dx

|f(t)|e−2πy·te−2πψ(y) ≤
∫

Rn

|F (x+ iy)|e−2πψ(y)dx

|f(t)|s
∫

B

e−2sπ(y·t+ψ(y))dy ≤
∫

B

(∫

Rn

|F (x+ iy)|e−2πψ(y)dx

)s
dy

= ‖F‖sA1,s(B,ψ), (8)

which implies (4). Next we prove suppf ⊂ Us(B,ψ). Suppose that t0 /∈ Us(B,ψ), then (1)

implies
∫
B
e−2sπ(y·t0+ψ(y))dy = +∞ for y ∈ B. It then follows from (8) that f(t) = 0, which

means the support of f , i.e., suppf ⊂ Us(B,ψ).

Next we prove the case 1 < p ≤ 2. Let B0 ⊆ B be a bounded connected open set,

so there exists a positive constant R0 such that B0 ⊆ D(0, R0). Assume that lε(z) =

(1+ ε(z21 + · · ·+ z2n))N , where N is an integer satisfying N > n. Then for ε ≤ 1
2R2

0
, z = x+ iy

with |y| ≤ R0,

|lε(z)| = |((1 + ε(z21 + · · ·+ z2n))
2)

N
2 |

=
((

1 + ε(|x|2 − |y|2)
)2

+ 4ε2 (x · y)2
)N

2

≥
(
1 + ε(|x|2 − |y|2)

)N ≥
(
1

2
+ ε|x|2

)N

6



for |y| ≤ R0, i.e., |l−1
ε (z)| ≤ 1

( 1
2
+ε|x|2)

N . For Fy(x) = F (x + iy), set Fε,y(x) = Fy(x)l
−1
ε (z),

then based on Hölder’s inequality,

∫

Rn

|Fε,y(x)| dx ≤
(∫

Rn

|Fy(x)|p dx
) 1

p
(∫

Rn

∣∣l−1
ε (x+ iy)

∣∣q dx
) 1

q

<∞,

where 1
p
+ 1

q
= 1, which implies that Fε,y(x) ∈ L1(Rn). Then as in the proof for p = 1,

gε,y(t) = F̌ε,y(t)e
−2πy·t can be also proved to be independent of y ∈ B0 when 1 < p ≤ 2. Put

gε,y(t) = gε(t), then gε(t)e
2πy·t = F̌ε,y(t) ∈ L1(Rn).

On the other hand, it is obvious that Fε,y(x) → Fy(x) pointwise as ε → 0. Now we prove

that F̌y(t)e
−2πy·t is also independent of y ∈ B0. Indeed, for a, b ∈ B0 and any compact subset

K ⊂ Rn, let R1 = max{|z| : z ∈ K},
(∫

K

∣∣F̌a(t)e−2πa·t − F̌b(t)e
−2πb·t∣∣q dt

) 1
q

≤
(∫

K

∣∣F̌a(t)e−2πa·t − gε(t)
∣∣q dt

) 1
q

+

(∫

K

∣∣gε(t)− F̌b(t)e
−2πb·t∣∣q dt

) 1
q

=

(∫

K

∣∣F̌a(t)e−2πa·t − F̌ε,a(t)e
−2πa·t∣∣q dt

) 1
q

+

(∫

K

∣∣F̌ε,b(t)e−2πb·t − F̌b(t)e
−2πb·t∣∣q dt

) 1
q

≤ e2πR0R1

((∫

K

∣∣F̌a(t)− F̌ε,a(t)
∣∣q dt

) 1
q

+

(∫

K

∣∣F̌ε,b(t)− F̌b(t)
∣∣q dt

) 1
q

)

≤ e2πR0R1

((∫

Rn

|Fa(t)− Fε,a(t)|p dt
) 1

p

+

(∫

Rn

|Fε,b(t)− Fb(t)|p dt
) 1

p

)

→ 0,

as ε → 0. Hence we obtain that F̌a(t)e
−2πa·t = F̌b(t)e

−2πb·t almost everywhere on R
n and

write it as g(t). Then we have g(t) = F̌y(t)e
−2πy·t.

Next, we show that g(t)e2πy·t ∈ L1(Rn). As in the proof for p = 1, let Rn =
⋃N

k=1 Γk and

D(y0, δ) ⊂ B0. Then for any y ∈ D(y0,
δ
4
) and yk ∈ (y0 + Γk) satisfying

3δ
4
≤ |yk − y0| < δ,

we have

(yk − y) · t ≥ |yk − y0|√
2

|t| − |y0 − y||t| ≥ (
3

4
√
2
− 1

4
)δ|t| ≥ 1

4
δ|t|

for yk − y0, t ∈ Γk. Thus, from Hölder’s inequality

∫

Γk

|g(t)e2πy·t|dt ≤
∫

Γk

|F̌yk(t)e−π
δ0
4
|t||dt ≤

(∫

Γk

|F̌yk(t)|pdt
) 1

p
(∫

Γk

|e−qπ
δ0
4
|t||dt

) 1
q

<∞,

which shows that g(t)e2πy·t ∈ L1(Γk) and the function G(z) defined by

G(z) =

∫

Rn

g(t)e−2πi(x+iy)·tdt

7



is holomorphic in the tube domain TD(y0,δ).

Now we can prove that, for y ∈ B0,

lim
ε→0

∫

Rn

gε(t)e
−2πi(x+iy)·tdt =

∫

Rn

g(t)e−2πi(x+iy)·tdt.

In fact, if y ∈ B0,
∣∣∣∣
∫

Rn

(gε(t)− g(t))e−2πi(x+iy)·tdt

∣∣∣∣

≤
∫

Rn

∣∣(F̌ε,y(t)e−2πy·t − F̌y(t)e
−2πy·t) e2πiz·t

∣∣ dt

=
n∑

k=1

∫

Γk

∣∣(F̌ε,yk(x)− F̌yk(x)
)
e−2πi(yk−y)·t

∣∣ dt

≤
n∑

k=1

(∫

Γk

|F̌ε,yk(x)− F̌yk(x)|qdt
) 1

q
(∫

Γk

e−pπ
δ0
4
|t|dt

) 1
p

≤ Cδ0

n∑

k=1

(∫

Γk

|Fε,yk(x)− Fyk(x)|pdt
) 1

p

→ 0

when ε → 0, where Cp
δ0
=
∫
Rn
e−pπ

δ0
4
|t|dt. It follows that lim

ε→0
Fε(z) = G(z). Combining with

lim
ε→0

Fε(z) = F (z), we can state G(z) = F (z) for y ∈ B0. Then there exists a measurable

function g(t) such that F (z) =
∫
Rn
g(t)e−2πiz·tdt holds for y ∈ B0. Since B is connected, we

can choose a sequence of bounded connected open set {Bk} such that B0 ⊂ B1 ⊂ · · · and

B =
⋃∞
k=0Bk. Together with the fact that g(t) = F̌y(t)e

−2πy·t is independent of y ∈ Bk, then

F̌yl(t)e
−2πyl·t = F̌yj (t)e

−2πyj ·t = F̌y(t)e
−2πy·t for l 6= j, yl ∈ Bl, yj ∈ Bj and y ∈ B0. Hence

g(t)e2πy·t = F̌y(t) holds for y ∈ Bk, k = 0, 1, 2, . . . . In other words, f(z) =
∫
Rn
g(t)e−2πiz·tdt

holds for all y ∈ B. By letting f(t) = g(−t), we obtain the desired representation F (z) =
∫
Rn
f(t)e2πiz·tdt for y ∈ B when 1 < p ≤ 2.

For 1
p
+ 1

q
= 1, based on the Hausdorff-Young Inequality,

(∫

Rn

|f(t)e−2πy·t|qdt
) 1

q

≤
(∫

Rn

|F (x+ iy)|pdx
) 1

p

, (9)

then ((∫

Rn

|f(t)e−2πy·t|qdt
) p

q

e−2pπψ(y)dy

)s

≤
(∫

Rn

|F (x+ iy)e−2πψ(y)|pdx
)s

.

Performing integral about y ∈ B on both sides, we get

∫

B

((∫

Rn

|f(t)e−2πy·t|qdt
) p

q

e−2pπψ(y)

)s

dy ≤
∫

B

(∫

Rn

|F (x+ iy)e−2πψ(y)|pdx
)s
dy

8



and ∫

B

((∫

Rn

|f(t)e−2πy·t|qdt
) p

q

e−2pπψ(y)

)s

dy ≤ ‖F‖sp
Ap,s(B,ψ). (10)

As a result, formulas (3) and (5) hold for 1 < p ≤ 2. Now we prove that suppf ⊂ Usp(B,ψ)

when 0 < s(p− 1) ≤ 1. For 0 < s(p− 1) ≤ 1, we have q

sp
≥ 1. Then Minkowski’s inequality

and (10) imply that

∫

Rn

|f(t)|q
(∫

B

e−2πps(y·t+ψ(y))dy

) q
ps

dt ≤ ‖F‖q
Ap,s(B,ψ) <∞. (11)

Consequently, It follows from (11) and (1) that f(t) = 0 for almost every t 6∈ Usp(B,ψ).

Therefore, suppf ⊂ Usp(B,ψ).

In order to prove Theorem 2, we first introduce a lemma.

Lemma 1. Suppose that F (z) ∈ Ap,s(B,ψ), where 0 < p < ∞ and 0 < s ≤ ∞, then for

y0 ∈ B and positive constant δ such that Dn(y0, δ) ⊂ B , there exist constants N > 1 and

Cn,N,p,s depending on n,N, p, s such that

|F (z)| ≤ Cn,N,p,sδ
−n
p
(1+ 1

s
)e2πψδ(y0), (12)

where ψδ(y0) = max{ψ(η) : |η − y0| ≤ δ}.

Proof. For y0 ∈ B, there exists δ > 0 such that Bδ = D(y0, δ) ⊂ B. Then for F (z) =

F (x+ iy) ∈ Ap,s(B,ψ), based on the subharmonic properties of |F (z)|t, we have

|F (z)|t ≤ 1

Ω2nδ2n

∫

D2n(z,δ)

|F (ξ + iη)|tdξdη ≤ 1

Ω2nδ2n

∫

Dn(y0,δ)

(∫

Dn(x,δ)

|F (ξ + iη)|tdξ
)
dη

for y ∈ Bδ, where Ωk is the volume of k-dimensional unit ball Dk(0, 1) centered at the origin

with radius 1, k = n, 2n. Let p1 = N = p

t
> max{1, 1

s
} and 1

p1
+ 1

q1
= 1. Hölder’s Inequality

implies that

|F (z)|t ≤ 1

Ω2nδ2n

∫

Dn(y0,δ)

(∫

Dn(x,δ)

|F (ξ + iη)|pdξ
) 1

p1

dη

(∫

Dn(x,δ)

1q1dξ

) 1
q1

=
(δnΩn)

1
q1

δ2nΩ2n

∫

Dn(y0,δ)

(∫

Dn(x,δ)

|F (ξ + iη)|pdξ
) 1

p1

dη.

9



For 0 < s <∞, let p2 = sN . Then p2 > 1. Again, by Hölder’s Inequality, for 1
p2

+ 1
q2

= 1,

|F (z)|t ≤ (δnΩn)
1
q1

δ2nΩ2n

(∫

Dn(y0,δ)

(∫

Dn(x,δ)

|F (ξ + iη)|pdξ
)s
dη

) 1
p2
(∫

Dn(y0,δ)

1q2dη

) 1
q2

≤ (δnΩn)
1
q1

+ 1
q2

δ2nΩ2n

(∫

Dn(y0,δ)

(∫

Dn(x,δ)

|F (ξ + iη)e−2πψ(η)|pdξ
)s
e2spπψ(η)dη

) 1
p2

≤ (δnΩn)
2− 1

N
(1+ 1

s
)e

2 sp
p2
πψδ(y0)

δ2nΩ2n

(∫

Dn(y0,δ)

(∫

Dn(x,δ)

|F (ξ + iη)e−2πψ(η)|pdξ
)s
dη

) 1
p2

≤ (δnΩn)
2− 1

N
(1+ 1

s
)e

2 sp
p2
πψδ(y0)

δ2nΩ2n

(∫

B

(∫

Rn

|F (ξ + iη)e−2πψ(η)|pdξ
)s
dη

) 1
p2

,

where ψδ(y0) = max{ψ(η) : |η − y0| ≤ δ}. Hence,

|F (z)| ≤
(
δ−

n
N
(1+ 1

s
)Ω

2− 1
N
(1+ 1

s
)

n e
2 sp
p2
πψδ(y0)

Ω2n

) 1
t (∫

B

(∫

Rn

|F (ξ + iη)e−2πψ(η)|pdξ
)s
dη

) 1
tp2

≤ Ω
2N
p

− 1
p
(1+ 1

s
)

n

Ω
N
p

2nδ
n
p
(1+ 1

s
)
e
2 sp
tp2

πψδ(y0)

(∫

B

(∫

Rn

|F (ξ + iη)e−2πψ(η)|pdξ
)s
dη

) 1
sp

sp
tp2

.

Since sp

tp2
= 1, by letting Cn,N,p,s =

Ω
2N
p −

1
p (1+ 1

s )

n

Ω
N
p
2n

‖F (z)‖Ap,s(B,ψ), we obtain the desired inequal-

ity

|F (z)| ≤ Cn,N,p,sδ
−n
p
(1+ 1

s
)e2πψδ(y0).

While s = ∞, for p2 = sN = ∞, we have

|F (z)|t ≤ (δnΩn)
2− 1

N

δ2nΩ2n

sup
η∈Dn(y,δ)

∣∣∣∣
∫

Dn(x,δ)

|F (ξ + iη)|pdξ
∣∣∣∣

t
p

.

Then

|F (z)| ≤ (δnΩn)
(2− 1

N
)N
p

(δ2nΩ2n)
N
p

e2πψδ(y0) sup
η∈Dn(y,δ)

∣∣∣∣∣

(∫

Dn(x,δ)

|F (ξ + iη)|pdξ
) 1

p

e−2πψ(y)

∣∣∣∣∣

=
Ω

2N
p

− 1
p

n

Ω
N
p

2n

δ−
n
p e2πψδ(y0)‖F (z)‖Ap,∞(B,ψ).

Obviously, the inequality (12) is also applicable in the case s = ∞.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. For y0 ∈ B, there exists δ > 0 such that Bδ = D(y0, δ) ⊂ B. Then for

F (z) ∈ Ap,s(B,ψ) and any y ∈ Bδ, it follows from Lemma 1 that

|F (z)| ≤ Cn,N,p,sδ
−n
p
(1+ 1

s
)e2πψδ(y0).
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Thus,
∫

Rn

|F (z)|2dx =

∫

Rn

|F (z)|p+2−pdx ≤ C2−p
n,N,p,sδ

−n(2−p)
p

(1+ 1
s
)e2(2−p)πψδ(y0)

∫

Rn

|F (z)|pdx.

Therefore,
∫

Rn

|F (z)|2e−4πψδ(y0)dx

≤ C2−p
n,N,p,sδ

−n(2−p)
p

(1+ 1
s
)e2(2−p)πψδ(y0)

∫

Rn

|F (z)e−2πψ(y)|pdxe2pπψ(y)e−4πψδ(y0)

≤ C2−p
n,N,p,sδ

−n(2−p)
p

(1+ 1
s
)e2(2−p)πψδ(y0)

∫

Rn

|F (z)e−2πψ(y)|pdxe2(p−2)πψδ(y0)

= C2−p
n,N,p,sδ

−n(2−p)
p

(1+ 1
s
)

∫

Rn

|F (z)e−2πψ(y)|pdx.

Taking integral with respect to y to both sides of the inequality, we have

∫

Bδ

(∫

Rn

|F (z)|2e−4πψδ(y0)dx

)s
dy ≤ C

(2−p)s
n,N,p,sδ

−n(2−p)(1+s)
p

∫

Bδ

(∫

Rn

|F (z)e−2πψ(y)|pdx
)s

dy,

which concludes that F ∈ A2,s(Bδ, ψδ). Similarly, we can prove that

∫

Bδ

(∫

Rn

|F |e−2πψδ(y0)dx

)s
dy ≤ C

(1−p)s
n,N,p,sδ

−n(1−p)(1+s)
p ‖F (z)‖sp

A1,s(Bδ ,ψ)
. (13)

Then F (z) ∈ A1,s(Bδ, ψδ).

Following the proof of the case p = 1 in Theorem 1, there exists a continuous function

f(t) such that Fy(x) =
∫
Rn
f(t)e2πiz·tdt holds for y ∈ Bδ and f(t) = F̂y(t)e

2πy·t is independent

of y ∈ B. Together with the fact that f(t)e−2πy·t ∈ L1(Rn) for all y ∈ B, we see that (3)

holds for all y ∈ B. This completes the proof of Theorem 2.

Before the proof of Corollary 1, we introduce the following lemma.

Lemma 2. Assume that Γ is a regular open convex cone of Rn. Let ψ ∈ C(Γ) satisfy (6),

then Uα(ψ,Γ) ⊂ Γ∗ +D(0, Rψ), where Uα(ψ,Γ) is defined by (1) for 0 < α < ∞ and by (2)

for α = ∞.

Proof. For t0 /∈ Γ∗ +D(0, Rψ), there exist ε > 0 and ξ ∈ Γ∗ such that d(t0,Γ
∗) = |ξ − t0| ≥

Rψ + 3ε and ξ · (t0 − ξ) = 0. Then for any t̃ ∈ Γ∗,

(t̃− t0) ·
(ξ − t0)

|ξ − t0|
≥ |ξ − t0|.

Hence t̃·(ξ−t0) = (t̃−t0+t0−ξ+ξ)·(ξ−t0) ≥ |ξ−t0|2−|ξ−t0|2 = 0, which means ξ−t0 ∈ Γ. For

any δ > 0, it follows from (6) that there exists ρ0 such that ψ(y) ≤ (Rψ+δ)|y| for |y| ≥ ρ0. Let
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e0 =
ξ−t0
|ξ−t0| ∈ Γ∩ ∂D(0, 1), then for any ε1 > 0, we can find an e1 ∈ Γ with |e1| = 1 such that

|e1 − e0| < ε1, which means there exists a positive constant δ1 < ε1 such that D(e1, δ1) ⊂ Γ.

Thus, for any e ∈ D(e1, δ1) with |e1| = 1, we have |e−e0| ≤ |e−e1|+ |e1−e0| < 2ε1. Choose

ε1 satisfying 2ε1|t0| ≤ ε and let Γ1 = {y = ρe : ρ > 0 and e ∈ D(e1, δ) ∩ ∂D(0, 1)} ⊂ Γ.

Then for any y ∈ Γ1, −ρe · t0 = ρ(−e+ e0 − e0) · t0 ≥ ρ(−2ε1|t0|+ |ξ− t0|) ≥ ρ(Rψ +2ε) and
∫

Γ

e−2πα(t0 ·y+ψ(y))dy ≥
∫

Γ∩{|y|≥ρ0}
e−2πα(t0·y+(Rψ+δ)|y|)dy

≥
∫ ∞

ρ0

ρn−1dρ

∫

∂D(0,1)∩D(e1,δ1)

e2παρ(2ε−δ)dσ(ζ) = +∞,

which implies t0 /∈ Uα(ψ,Γ). Therefore, Uα(ψ,Γ) ⊂ Γ∗ +D(0, Rψ).

Now we prove Corollary 1.

Proof of Corollary 1. For y0 ∈ Γ, there exists δ such that D(y0, δ) ⊂ Γ. It follows from

Theorem 2 that there exists f(t) such that (3) holds for y ∈ D(y0, δ). Since Γ is connected,

(3) also holds for all y ∈ Γ. Applying the methods in the proof of Theorem 1 for p = 1,

we obtain that such an f(t) is supported in Us(Γ, ψδ). Combing with Lemma 2, we have

suppf ⊂ Us(Γ, ψδ) ⊂ Γ∗ +D(0, Rψδ), where

Rψδ = lim
y∈Γ,y→∞

ψδ(y)

|y| .

Since Rψδ = Rψ for any y ∈ Γ, we see that Us(Γ, ψδ) is also a subset of Γ∗+D(0, Rψ). Hence,

suppf ⊂ Γ∗ +D(0, Rψ).

Now we show that |f(t)|
(∫

Γ
e−2sπ(y·t+Rψ |y|)dy

) 1
s is slowly increasing. For y0, y ∈ Γ,

y0+y ∈ Γ, Fy0(z) = F (x+ i(y+y0)) ∈ Ap,s(Γ, ψ). As in Theorem 1, we have f(t) = g(−t) =
F̌y0+y(−t)e2π(y0+y)·t. Due to the relationRψ = lim

y∈B,y→∞
ψ(y)
|y| , we have ψδ(y) ≤ Rψ(1+|y0|+|y|),

where Rψ is a positive constant independent of y0, y ∈ Γ. Then

|f(t)| = |F̌y0+y(−t)e2π(y0+y)·t| =
∣∣∣∣
∫

Rn

Fy0+y(x)e
−2πix·te−2πψδ(y)dx

∣∣∣∣ e
2π(ψδ(y)+(y0+y)·t)

≤
∫

Rn

|Fy0(z)|e−2πψδ(y)dxe2π(Rψ(1+|y0|+|y|)+(y0+y)·t).

Combining with (13), it follows that

(∫

Γ

|f(t)|se−2sπ(y·t+Rψ |y|)dy

) 1
s

≤
(∫

Γ

(∫

Rn

|Fy0(z)|e−2πψδ(y)dx

)s
dy

) 1
s

e2π(Rψ(1+|y0|)+y0·t)

≤ C1−p
n,N,p,sδ

−n(1−p)(1+s)
sp ‖Fy0‖pA1,s(B,ψ)e

2π(Rψ(1+|y0|)+y0·t)

= C exp{J(y0, t)},
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where C = C1−p
n,N,p,s‖Fy0‖pA1,s(Γ,ψ) and J(y0) = −n(1−p)(1+s)

sp
log δ+2π(Rψ(1+ |y0|)+ y0 · t). Let

J(t) = inf{J(y0, t) : y0 ∈ Γ}, then

|f(t)|
(∫

Γ

e−2sπ(y·t+Rψ |y|)dy

)1
s

≤ C exp{J(t)}.

Take y0 = ρv with ρ > 0 and a fixed v ∈ Γ with |v| = 1, then δ = d(ρv, ∂Γ)/2 = ρε,

where ε = d(v, ∂Γ)/2. Therefore,

J(t) = inf
ρ>0

{
−n(1− p)(1 + s)

sp
log(ερ) + 2πRψ(1 + ρ) + 2πρ|t|

}
,

in which the infimum can be attained when ρ = n(1−p)(1+s)
2spπ(Rψ+|t|) . It follows that

J(t) ≤ 2πRψ+n

(
1

p
− 1

)(
1

s
+ 1

)(
1− log ε− logn

(
1

p
− 1

)(
1

s
+ 1

)
+ log 2π(Rψ + |t|)

)
.

Thus, there exists a positive constant Mn,p,s,v such that

|f(t)|
(∫

Γ

e−2sπ(y·t+Rψ |y|)dy

) 1
s

≤ CeJ(t) ≤Mn,p,s,v(1 + |t|)n( 1p−1)( 1
s
+1).

The proof is complete.

Proof of Theorem 3. We first prove the case when 2 < p < ∞. Since Γ is a regular open

convex cone, intΓ 6= ∅, where intΓ is denoted as the interior of Γ. Then for y ∈ Γ, we

can find a basis {ej} ⊂ intΓ∗ such that y =
∑n

j=1 ejyj and ej · y ≥ 0. For ε > 0, let

lε(z) =
(∏n

j=1(1− iεej · z)
)2N

with N > n
2

(
1− 1

p

)
and choose two positive constant A, B

such that B|x|2 ≤ ε2
∑n

j=1(ej · x)2 ≤ A|x|2 for all x ∈ Rn. Thus,

|lε(z)| =

(
n∏

j=1

|1− iεej · z|2
)N

=

(
n∏

j=1

(
(1 + εej · y)2 + ε2(e1 · x)2

)
)N

≥
(

n∏

j=1

(
1 + ε2(ej · x)2

)
)N

≥
(
1 + ε2

n∑

j=1

(ej · x)2
)N

≥
(
1 + ε2B|x|2

)N
,

i.e., |l−1
ε (z)| ≤ (1 + ε2B|x|2)−N . For F (x+ iy) ∈ Ap,s(Γ, ψ), Fy(x) = F (x+ iy) ∈ Lp(Rn) as

a function of x. Let Fε(z) = Fε,y(x) = Fy(x)l
−1
ε (z), then Fε,y(x) ∈ L1(Rn)∩L2(Rn). Indeed,

Hölder’s inequality implies that

∫

Rn

|Fε,y(x)|dx ≤
(∫

Rn

|Fy(x)|pdx
) 1

p
(∫

Rn

|l−1
ε (x+ iy)|qdx

) 1
q

≤ C1,ε‖Fy‖Lp(Rn) (14)

13



and

∫

Rn

|Fε,y(x)|2dx ≤
(∫

Rn

|Fy(x)|
p
2dx

) 2
p
(∫

Rn

|l−1
ε (x+ iy)|

p
p−2dx

) p−2
p

≤ C2,ε‖Fy‖Lp(Rn),

where C1,ε =
(∫

Rn
dx

(1+ε2B|x|2)qN

) 1
q

<∞, C2,ε =

(∫
Rn

dx

(1+ε2B|x|2)
p
p−2N

) p−2
p

<∞.

As the proof of p = 1 in Theorem 1, we can show gε(t)e
2πy·t = F̌ε,y(t) ∈ L1(Rn). Thus,

gε(t)e
2πy·t =

∫

Rn

Fε,y(x)e
2πix·tdx, (15)

then |gε(t)|e2πy·t ≤
∫
Rn

|Fε,y(x)|dx. Together with (14), there hold

|gε(t)|e2π(y·t−ψ(y)) ≤ C1,ε

(∫

Rn

|F (x+ iy)e−2πψ(y)|pdx
) 1

p

,

∫

Γ

|gε(t)|spe2spπ(y·t−ψ(y))dy ≤ C1,ε

∫

Γ

(∫

Rn

|F (x+ iy)e−2πψ(y)|pdx
)s

dy,

|gε(t)|sp
∫

Γ

e2spπ(y·t−ψ(y))dy ≤ C1,ε‖F‖spAp,s(Γ,ψ).

Now we prove that suppgε(t) ⊂ −Ups(Γ, ψ). Note that gε(t) is continuous in R
n. Then for

t0 /∈ −Ups(Γ, ψ), formula (1) shows that
∫
Γ
e2psπ(y·t0−ψ(y))dy = ∞ for y ∈ Γ. It follows from

the above inequality that gε(t0) = 0 for t0 /∈ −Ups(Γ, ψ). As a result, suppgε(t) ⊂ −Ups(Γ, ψ).
Since gε(t)e

2πy·t ∈ L1(Rn), we can rewrite (15) as

Fε,y(x) =

∫

Rn

gε(t)e
−2πiz·tχ−Ups(Γ,ψ)(t)dt. (16)

Plancherel’s Theorem implies that
∫
Rn

|gε(t)e2πy·t|2dt =
∫
Rn

|Fε,y(x)|2dx. Then based on

Fatou’s lemma, ∫

Rn

|gε(t)|2 ≤ lim
y∈Γ,y→0

∫

Rn

|F (x+ iy)|2dx <∞.

Thus, there exist g(t) ∈ L2(Rn) and a sequence {εk} tending to zero as k → ∞ such that

lim
k→∞

∫
Rn
gεk(t)h(t)dt =

∫
Rn
g(t)h(t)dt for h(t) ∈ L2. In fact, for t ∈ −Ups(Γ, ψ), lemma 2

implies that t ∈ −Γ∗
k +D(0, Rψ). Then t can always be written as t1 + t2 with t1 ∈ −Γ∗

k and

|t2| < Rψ. Hence, for y ∈ Γ,

y · t = y · (t1 + t2) ≤ −|t1|k + |t2||y| ≤ −(|t| − |t2|)k +Rψ|t| ≤ (Rψ − k)|t|+Rψk,

implying that
∫
Rn

|e2πy·tχ−Ups(Bk ,ψ)(t)|2dt <∞. Therefore, on the right hand side of (16),

lim
k→∞

∫

Rn

gεk(t)e
−2πiz·tχ−Ups(Γ,ψ)(t)dt =

∫

Rn

g(t)e−2πiz·tχ−Ups(Γ,ψ)(t)dt
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for e2πy·tχ−Ups(Γ,ψ)(t) ∈ L2(Rn). Whilst it is obvious that Fε(z) → F (z) when ε → 0. Sending

k to ∞ on both sides of (16) and letting f(t) = g(−t), we obtain that f ∈ L2(Rn) and the

support suppf is contained in Ups(Γ, ψ), as well as the desired representation (3) holds for

all z ∈ TΓ.

We now prove the case when p = ∞. For z = (z1, . . . , zn) ∈ TΓ and ε > 0, we can also

construct a function Fε,y(x) = Fε(z) = Fy(x)l
−1
ε (z), where lε(z) =

(∏n

j=1(1− iεej · z)
)2N

with N > n
2
. Then

∫

Rn

|Fε,y(x)|dx ≤ sup
x∈Rn

|Fy(x)|
∫

Rn

|l−1
ε (x+ iy)|dx ≤ C̃1,ε‖Fy‖L∞(Rn) <∞ (17)

and ∫

Rn

|Fε,y(x)|2dx ≤ sup
x∈Rn

|Fy(x)|
∫

Rn

|l−1
ε (x+ iy)|2dx ≤ C̃2,ε‖Fy‖L∞(Rn) <∞,

where C̃1,ε =
∫
Rn

dx

(1+ε2B|x|2)N and C̃2,ε =
(∫

Rn
dx

(1+ε2B|x|2)2N

) 1
2
< ∞. Hence Fε,y ∈ L1(Rn) ∩

L2(Rn). In this case, we also have gε(t)e
2πy·t = F̌ε,y(t) ∈ L1(Rn). Then gε(t)e

2πy·t =
∫
Rn
Fε,y(x)e

2πix·tdx. Therefore, together with (17),

|gε(t)|e2π(y·t−ψ(y)) ≤ C̃1,ε sup
x∈Rn

|Fy(x)|e−2πψ(y),

sup
y∈Γ

|gε(t)|e2π(y·t−ψ(y)) ≤ C̃1,ε sup
x∈Rn,y∈Γ

|F (x+ iy)|e−2πψ(y)

= C̃1,ε‖F‖A∞,∞(Γ,ψ) <∞.

Then we can similarly show that suppgε(t) ⊂ −U∞(Γ, ψ) ⊂ −Γ∗ +D(0, Rψ). Applying the

same method for 2 < p <∞, we obtain the desired formula (3) holds for all z ∈ TΓ and the

support suppf is contained in U∞(Γ, ψ) ⊂ Γ∗ +D(0, Rψ).

4 Applications

In [10], denoting by A2
α(C

+) a weighted Bergman space of functions holomorphic in C+

satisfying ‖F‖2
A2
α(C

+) =
∫
C+ |F (x+ iy)|2yαdxdy < ∞, and by L2

β(R
+) the space of complex–

valued measurable functions f on R+ satisfying ‖f‖2
L2
β
(R+)

= Γ(β)
(4π)β

∫∞
0

|f(t)|2t−βdt < ∞,

Duren stated an analogy of the Paley–Wiener theorem for Bergman space.

Theorem A([10]) For each α > −1, the space A2
α(C

+) is isometrically isomorphic under

the Fourier transform to the space L2
α+1(R

+). More precisely, F ∈ A2
α(C

+) if and only if it

is the Fourier transform F (z) =
∫∞
0
f(t)e2πiz·tdt of some function f ∈ L2

α+1(R
+), in which

case ‖F‖A2
α(C

+) = ‖f‖L2
α+1(R

+).
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Based on Theorem 1, letting s = 1, p = 2, ψ(y) = − α
4π

log |y| and B be a regular open

convex cone Γ, we establish Corollary 2, which can be regarded as a higher dimensional and

tube domain generalization of Theorem A.

Corollary 2. For each α > −1, F ∈ A2
α(TΓ) if and only if there exists f(t) ∈ L2

α+1(Γ
∗)

such that

F (z) =

∫

Γ∗

f(t)e2πiz·tdt

holds for z ∈ TΓ and ‖F‖A2
α(TΓ) = ‖f‖L2

α+1(Γ
∗).

Proof. By restricting the base B to be a regular open convex cone Γ and letting ψ(y) =

ψα(y) = − α
4π

log |y|, F ∈ A2
α(TΓ) is also an element of A2,1(Γ, ψα). Applying Theorem 1 to

such an F , we can show that there exists f(t) satisfying (5) such that F (z) =
∫
Rn
f(t)e2πiz·tdt

and suppf ⊂ U1(Γ, ψα). Based on (6), we have

Rψα = lim
y∈Γ,y→∞

ψα(y)

|y| = 0.

Thus, together with Lemma 2, the supporter of f(t) is contained in Γ∗ and F (z) =
∫
Γ∗
f(t)e2πiz·tdt.

Moreover,
∫
Γ

∫
Γ∗

|f(t)|2e−4π(y·t+ψα(y))dtdy ≤ ‖F‖A2,1(Γ,ψα). Thus,

∫

Γ

∫

Γ∗

|f(t)|2e−4π(y·t+ψα(y))dtdy =

∫

Γ∗

∫

Γ

|f(t)|2e−4πy·tyαdydt =

∫

Γ∗

|f(t)|2 Γ(α)

(4πt)α+1
dt,

which shows f ∈ L2
α+1(Γ

∗). And Plancherel’s Theorem assures that ‖F‖A2
α(TΓ) = ‖f‖L2

α+1(Γ
∗).

Conversely, note that F (z) =
∫
Γ∗
f(t)e2πit·zdt. For f(t) ∈ L2

α+1(Γ
∗), Plancherel’s theorem

implies that
∫

Rn

|F (x+ iy)|2dx =

∫

Γ∗

e−4πy·t|f(t)|2dt,
∫

Γ

∫

Rn

|F (x+ iy)|2e−4πψα(y)dxdy =

∫

Γ

∫

Γ∗

|f(t)|2e−4π(y·t+ψα(y))dtdy <∞,

in which ψα(y) = − α
4π

log |y|. Hence, F (z) ∈ A2,1(Γ, ψα) = A2
α(TΓ). The proof is complete.

By restricting the base B to be a regular open convex cone Γ, we establish the following

weighted version of the edge-of-the-wedge theorem (see [2]) as an application of Theorem 1.

Theorem 4. Assume that Γ is a regular open convex cone in Rn , ψ1 ∈ C(Γ) and ψ2 ∈
C(−Γ) satisfy

Rψ1 = lim
y∈Γ,y→∞

ψ1(y)

|y| <∞ (18)
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and

Rψ2 = lim
y∈Γ,y→∞

ψ2(−y)
|y| <∞ (19)

respectively. If 1 < p ≤ 2, 0 < s(p − 1) ≤ 1 , F1 ∈ Ap,s(Γ, ψ1) and F2 ∈ Ap,s(−Γ, ψ2),

satisfying

lim
y→0

∫

Rn

|F1(x+ iy)− F2(x− iy)|pdx = 0, (20)

then F1 and F2 can be analytically extended to each other and further form an entire function

F . Furthermore, there exists a function f ∈ L1(Rn) supported in a bounded convex set K

such that F (z) =
∫
K
f(t)e2πit·zdt.

Proof. Theorem 1 implies that there exists a function fj(j = 1, 2) such that

Fj =

∫

Rn

fj(t)e
2πit·zdt

holds, in which the supporter of fj is contained in Usp((−1)j+1Γ, ψj) for for 1 < p ≤ 2. Based

on lemma 2, suppfj ⊂ (−1)j+1Γ∗ +D(0, Rψj). By the Hausdorff-Young inequality,

(∫

Rn

|f1(t)e2πy·t − f2(t)e
−2πy·t|qdt

) 1
q

≤
(∫

Rn

|F1(x+ iy)− F2(x− iy)|pdt
) 1

p

.

Then it follows from Fatou’s lemma and (20) that ‖f1 − f2‖Lq(Rn) = 0. Thus, f1 = f2

almost everywhere on R
n. Let f1(t) = f2(t) = f(t), and R = max{Rψ1 , Rψ2}, then suppf ⊂

K ⊂ (Γ∗ + D(0, R))
⋂
(−Γ∗ + D(0, R)). Thus, K is a bounded convex set. Consequently,

F (z) =
∫
K
e2πiz·tf(t)dt is an entire function, where F (z) = F1(z) for z ∈ TΓ and F (z) = F2(z)

for z ∈ T−Γ.

Similarly, we can prove the weighted version of the edge-of-the-wedge theorem for p > 2.

Theorem 5. Suppose that Γ is a regular open convex cone in Rn,ψ1 ∈ C(Γ) and ψ2 ∈ C(−Γ)

satisfy (18) and (19) respectively. If F1 ∈ Ap,s(Γ, ψ1) and F2 ∈ Ap,s(−Γ, ψ2), where p > 2,

satisfying

lim
y∈Γ,y→0

∫

Rn

|F1(x+ iy)− F2(x− iy)|2dx = 0, (21)

then F1 and F2 can be analytically extended to each other and further form an entire function

F . Furthermore, there exists a measurable function f(t) supported in a bounded convex set

K such that F (z) =
∫
K
f(t)e2πit·zdt.

Proof. For Fj ∈ Ap,s((−1)j+1Γ, ψj) and
1
p
+ 1

q
= 1, exists a measurable function fj such that

Fj =
∫
Rn
fj(t)e

2πit·zdt and suppfj ⊂ Usp((−1)j+1Γ, ψj), where j = 1, 2. It then follows from
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Lemma 2 that suppfj ⊂ (−1)j+1Γ∗ +D(0, Rψj). Plancherel’s Theorem implies that

(∫

Rn

|f1(t)e2πy·t − f2(t)e
−2πy·t|2dt

) 1
2

=

(∫

Rn

|F1(x+ iy)− F2(x− iy)|2dx
) 1

2

.

Then based on (21) and Fatou’s Lemma, ‖f1 − f2‖L2(Rn) = 0, which means f1 = f2 almost

everywhere on Rn. Let f1(t) = f2(t) = f(t) and R = max{Rψ1 , Rψ2}, then suppf(t) ⊂
K = (Γ∗ + D(0, R))

⋂
(−Γ∗ + D(0, R)). Thus, K is a bounded convex set. As a result,

F (z) =
∫
K
e2πiz·tf(t)dt is an entire function, where F (z) = F1(z) for z ∈ TΓ and F (z) = F2(z)

for z ∈ T−Γ.
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