Integral Representations in Weighted Bergman Spaces on the Tube Domains

Yun Huang , Guan-Tie Deng ${ }^{\dagger}$ Tao Qian ${ }^{\ddagger}$

Abstract

Herein, the Laplace transform representations for functions of weighted holomorphic Bergman spaces on the tube domains are developed. Then a weighted version of the edge-of-the-wedge theorem is derived as a byproduct of the main results.

Key words: Weighted Bergman space, Tube domain, Laplace transform, Integral representation, Regular cone

1 Introduction

The classical Paley-Wiener theorem asserts that functions of the classical Hardy space $H^{2}\left(\mathbb{C}^{+}\right)$can be written as the Laplace transforms of L^{2} functions supported in the right half of the real axis, see [1]. This theorem has been extended to more general Hardy spaces, including the H^{p} spaces cases $(0<p \leq \infty)$, higher dimensional cases and weighted spaces, see [11, 13, 15, 14, 12, 9]. Integral representation theorems have also been investigated for Bergman spaces.

[^0]We first introduce some notations and definitions. Let B be a domain (open and connected set) in \mathbb{R}^{n} and $T_{B}=\mathbb{R}^{n}+i B \subset \mathbb{C}^{n}$ be the tube over B. For any element $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right), z_{k}=x_{k}+i y_{k}$, by definition, $z \in T_{B}$ is and only if $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in B$. The inner product of $z, w \in \mathbb{C}^{n}$ is defined as $z \cdot w=z_{1} w_{1}+z_{2} w_{2}+$ $\cdots+z_{n} w_{n}$. The associated Euclidean norm of z is $|z|=\sqrt{z \cdot \bar{z}}$, where $\bar{z}=\left(\bar{z}_{1}, \bar{z}_{2}, \ldots, \bar{z}_{n}\right)$.

A nonempty subset $\Gamma \subset \mathbb{R}^{n}$ is called an open cone if it satisfies (i) $0 \notin \Gamma$, and (ii) $\alpha x+\beta y \in \Gamma$ for any $x, y \in \Gamma$ and $\alpha, \beta>0$. The dual cone of Γ is defined as $\Gamma^{*}=\left\{y \in \mathbb{R}^{n}\right.$: $y \cdot x \geq 0$, for any $x \in \Gamma\}$, which is clearly a closed convex cone with vertex at 0 . We say that the cone Γ is regular if the interior of its dual cone Γ^{*} is nonempty.

For $\frac{1}{p}+\frac{1}{q}=1$, define
$B^{p}\left(T_{B}\right)=\left\{F: F\right.$ is holomorphic in T_{B} and satisfies $\left.\int_{B}\left(\int_{\mathbb{R}^{n}}|F(x+i y)|^{p} d x\right)^{q-1} d y<\infty\right\}$.
Among the previous studies, Genchev showed that the function spaces $B^{p}(1 \leq p \leq 2)$, in the one- and multi-dimensions in [3] and [4], respectively, admit integral representations in the Laplace transform form. These results can be applied to the Bergman spaces

$$
A^{p}\left(T_{\Gamma}\right)=\left\{F: F \text { is holomorphic on } T_{\Gamma} \text { and satisfies } \int_{T_{\Gamma}}|F(x+i y)|^{p} d x d y<\infty\right\}
$$

to obtain the corresponding integral representation results for $A^{p}\left(T_{\Gamma}\right)$ in the range $1 \leq p \leq$ 2([5]).

In this paper we initiate a study on a class of function spaces, denoted by $A^{p, s}(B, \psi)$, of which each is associated with a weight function of the form $e^{-2 \pi \psi(y)}$, where $\psi(y) \in C(B)$ is continuous on B. The space $A^{p, s}(B, \psi)(0<p \leq \infty, 0<s \leq \infty)$ is the collection of functions $F(z)$ that are holomorphic in T_{B} and satisfy

$$
\begin{gathered}
\|F\|_{A^{p, s}(B, \psi)}=\left(\int_{B}\left(\int_{\mathbb{R}^{n}}\left|F(x+i y) e^{-2 \pi \psi(y)}\right|^{p} d x\right)^{s} d y\right)^{\frac{1}{s p}}<\infty, 0<p, s<\infty, \\
\|F\|_{A^{p, \infty}(B, \psi)}=\sup \left\{e^{-2 \pi \psi(y)}\left(\int_{\mathbb{R}^{n}}|F(x+i y)|^{p} d x\right)^{\frac{1}{p}}, y \in B\right\}<\infty, 0<p<\infty, s=\infty
\end{gathered}
$$

and

$$
\|F\|_{A^{\infty}, \infty(B, \psi)}=\sup \left\{e^{-2 \pi \psi(y)}|F(x+i y)|, x \in \mathbb{R}^{n}, y \in B\right\}<\infty, p=\infty, s=\infty
$$

This paper is structured as follows. In $\S 2$, we introduce our main work on the integral representation for $A^{p, s}(B, \psi)$, which is separated into three cases, namely, $A^{p, s}(B, \psi)$ for
$1 \leq p \leq 2, A^{p, s}(B, \psi)$ for $0<p<1$ and $A^{p, s}(\Gamma, \psi)$ for $p>2$, corresponding to Theorem 1,2 and 3 respectively. The proofs are given in $\S 3$. Finally, some results, referring to Corollary 2, Theorem 4 and Theorem 5, are derived as applications of the integral representation theorems claimed in $\S 2$.

2 Main results

In order to introduce our main results, we define the set

$$
\begin{equation*}
U_{\alpha}(B, \psi)=\left\{t \in \mathbb{R}^{n}: \int_{B} e^{-2 \pi \alpha(t \cdot y+\psi(y))} d y<\infty\right\} \tag{1}
\end{equation*}
$$

for $\alpha \in(0, \infty)$ and

$$
\begin{equation*}
U_{\infty}(B, \psi)=\left\{t: \inf _{y \in \Gamma}(y \cdot t+\psi(y))>-\infty\right\} \tag{2}
\end{equation*}
$$

for $\alpha=\infty$.

The representation theorem for $A^{p, s}(B, \psi)$, where $1 \leq p \leq 2$ and $0<s \leq \infty$, is stated as follows.

Theorem 1. Assume that $1 \leq p \leq 2,0<s \leq \infty$, then each $F(z) \in A^{p, s}(B, \psi)$ admits an integral representation in the form

$$
\begin{equation*}
F(z)=\int_{\mathbb{R}^{n}} f(t) e^{2 \pi i t \cdot z} d t, z \in T_{B} \tag{3}
\end{equation*}
$$

in which, for $p=1, f(t) \in C\left(\mathbb{R}^{n}\right)$ satisfies

$$
\begin{equation*}
|f(t)|\left(\int_{B} e^{-2 s \pi(y \cdot t+\psi(y))} d y\right)^{\frac{1}{s}} \leq\|F\|_{A^{1, s}(B, \psi)} \tag{4}
\end{equation*}
$$

and, for $1<p \leq 2$ and $\frac{1}{p}+\frac{1}{q}=1, f(t)$ is a measurable function that satisfies

$$
\begin{equation*}
\left(\int_{B}\left(\int_{\mathbb{R}^{n}}\left|f(t) e^{-2 \pi(y \cdot t+\psi(y))}\right|^{q} d t\right)^{\frac{s p}{q}} d y\right)^{\frac{1}{s_{p}}} \leq\|F\|_{A^{p, s}(B, \psi)} \tag{5}
\end{equation*}
$$

Moreover, f is supported in $U_{s}(B, \psi)$ for $p=1$ and supported in $U_{s p}(B, \psi)$ for $1<p \leq 2$, $0<s(p-1) \leq 1$.

As given in the next theorem, integral representations in the form of Laplace transform are also available for $0<p<1$ and $0<s \leq \infty$.

Theorem 2. Assume that $F(z) \in A^{p, s}(B, \psi)$, where $0<p<1$ and $0<s \leq \infty$. Then there exists a continuous function $f(t)$ such that $f(t) e^{-2 \pi y \cdot t} \in L^{1}\left(\mathbb{R}^{n}\right)$ and (3) hold for $y \in B$.

Considering the property of $f(t)$ for the case of $0<p<1$, we let B be a regular open convex cone Γ and let $\psi \in C(\Gamma)$ satisfy

$$
\begin{equation*}
R_{\psi}=\varlimsup_{y \in \Gamma, y \rightarrow \infty} \frac{\psi(y)}{|y|}<\infty \tag{6}
\end{equation*}
$$

Then we obtain the following corollary.
Corollary 1. Assume that Γ is a regular open convex cone and $F(z) \in A^{p, s}(\Gamma, \psi)$ for $0<p<1,0<s \leq \infty$, where $\psi \in C(\Gamma)$ satisfies (6). Then there exists $f(t)$ supported in $\Gamma^{*}+\overline{D\left(0, R_{\psi}\right)}$ such that (3) holds and $|f(t)|\left(\int_{\Gamma} e^{-2 s \pi\left(y \cdot t+R_{\psi}|y|\right)} d y\right)^{\frac{1}{s}}$ is slowly increasing.

Similarly, we establish an analogy for $p>2$ and $0<s \leq \infty$.
Theorem 3. Assume that $p>2,0<s \leq \infty, \Gamma$ is a regular open convex cone in \mathbb{R}^{n} and $\psi \in C(\Gamma)$ satisfies (6]). If $F(z) \in A^{p, s}(\Gamma, \psi)$ satisfying

$$
\begin{equation*}
\lim _{y \in \Gamma, y \rightarrow 0} \int_{\mathbb{R}^{n}}|F(x+i y)|^{2} d x<\infty \tag{7}
\end{equation*}
$$

then there exists $f(t) \in L^{2}\left(\mathbb{R}^{n}\right)$ supported in $U_{s p}(\Gamma, \psi)$ such that (3) holds for all $z \in T_{\Gamma}$.
The definition of $A^{p, s}(B, \psi)$ shows that $A^{p, s}(B, \psi)$ is a weighted Hardy space when $s=\infty$ and a weighted Bergman space when $s=1$. Taking $\psi(y)=0$, it becomes, for $s=\infty$ and $s=1$, respectively, the classical Hardy space H^{p} and the classical Bergman space A^{p}. Therefore, our results herein can be regarded as generalizations of certain previously obtained results.

For example, taking $s=\infty$ and B a regular open convex cone $\Gamma, A^{p, \infty}(B, \psi)=H^{p}(\Gamma, \psi)$ is the weighted Hardy spaces investigated in our previous paper [15]. Then Theorem 1, 2 and 3 in [15] can be derived from our main work, including Theorem 1, 2, 3 and Corollary 1 herein. For $s=\infty$ and $\psi(y)=0$, letting B be some specific domains, some previous studies for the Hardy spaces, see [1, 13, 14, 12, 9], can be also derived from Theorem 1, 2, 3 and Corollary 1.

On the other hand, letting $s=1$, by using Theorem 1, 2, 3 and Corollary 1, we can obtain the representation theorems for the standard Bergman spaces. Note that for $s=1, B=\Gamma$ and $\psi(y)=0$, we have $A^{p, s}(B, \psi)=A^{p}\left(T_{\Gamma}\right)$. We therefore conclude from Theorem 1 that the counterpart results of Theorem 1, 2 and 3 in [5] hold for the classical Bergman spaces
$A^{p}\left(T_{\Gamma}\right)(1 \leq p \leq 2)$. If we set $\psi(y)=0$ and $s=q-1$, where $\frac{1}{p}+\frac{1}{q}=1$, then $A^{p, s}(B, \psi)=$ $B^{p}\left(T_{B}\right)$. The integral representation theorems for those function spaces $B^{p}\left(T_{B}\right)(1 \leq p \leq 2)$ can be derived from Theorem 1 herein, see [4]. Especially, letting $s=1, p=2, \psi(y)=$ $-\frac{\alpha}{4 \pi} \log |y|$ and B a regular open convex cone Γ, Theorem 1 implies a higher dimensional generalization of Theorem 1 of [10] in tube domains, which is established as Corollary 2 in the sequel.

3 Proofs

This section is devoted to proving the results stated in $\S 2$.
Proof of Theorem 1. We first prove the case of $p=1$. If $F(z) \in A^{1, s}(B, \psi)$, then $F_{y}(x) \in$ $L^{1}\left(\mathbb{R}^{n}\right)$ as a function of x, and $\check{F}_{y}(x)$ as well, are both well defined. Next we prove that $\check{F}_{y}(t) e^{-2 \pi y \cdot t}$ is independent of $y \in B$. Without loss of generality, assume that $a=\left(a^{\prime}, a_{n}\right)$, $b=\left(a^{\prime}, b_{n}\right) \in B$, and $a+\tau(b-a) \in B$ for $0 \leq \tau \leq 1$, where $a^{\prime}=\left(a_{1}, \ldots, a_{n-1}\right)$. The fact $F_{y}(x) \in L^{1}\left(\mathbb{R}^{n}\right)$ implies that
$\int_{0}^{\infty} \int_{0}^{1} \int_{\mathbb{R}^{n-1}}\left(\left|F\left(\left(x^{\prime}, x_{n}\right)+i(a+\tau(b-a))\right)\right|+\left|F\left(\left(x^{\prime},-x_{n}\right)+i(a+\tau(b-a))\right)\right|\right) d x^{\prime} d \tau d x_{n}<\infty$,
which implies

$$
\varliminf_{R \rightarrow \infty} \int_{0}^{1} \int_{\mathbb{R}^{n-1}}\left(\left|F\left(\left(x^{\prime}, R\right)+i(a+\tau(b-a))\right)\right|+\left|F\left(\left(x^{\prime},-R\right)+i(a+\tau(b-a))\right)\right|\right) d x^{\prime} d \tau=0
$$

Hence, we have

$$
\begin{aligned}
& \left|\check{F}_{b}(t) e^{-2 \pi b \cdot t}-\check{F}_{a}(t) e^{-2 \pi a \cdot t}\right| \\
= & \left|\int_{\mathbb{R}^{n}}\left(F(x+i b) e^{2 \pi i(x+i b) \cdot t}-F(x+i a) e^{2 \pi i(x+i a) \cdot t}\right) d x\right| \\
= & \left|\int_{\mathbb{R}^{n}} \int_{0}^{1} \frac{\partial}{\partial \tau}\left(F(x+i(a+\tau(b-a))) e^{2 \pi i(x+i(a+\tau(b-a))) \cdot t}\right) d \tau d x\right| \\
= & \left\lvert\, \int_{\mathbb{R}^{n}} \int_{0}^{1} \frac{\partial}{\partial y_{n}}\left(F\left(x+\left.i\left(\left(y^{\prime}, y_{n}\right)\right) e^{2 \pi i\left(x+i\left(y^{\prime}, y_{n}\right)\right) \cdot t}\right|_{y_{n}=a_{n}+\tau\left(b_{n}-a_{n}\right)}\left(b_{n}-a_{n}\right)\right) d \tau d x \mid\right.\right. \\
= & \left|b_{n}-a_{n}\right|\left|\int_{\mathbb{R}^{n}} \int_{0}^{1} i \frac{\partial}{\partial x_{n}}\left(F(x+i(a+\tau(b-a))) e^{2 \pi i(x+i(a+\tau(b-a))) \cdot t}\right) d \tau d x\right| \\
\leq & \left|b_{n}-a_{n}\right| \frac{\lim }{R \rightarrow \infty} \int_{0}^{1} \int_{\mathbb{R}^{n-1}}\left(\left|F\left(\left(x^{\prime}, R\right),(a+\tau(b-a))\right)\right|+\left|F\left(\left(x^{\prime},-R\right),(a+\tau(b-a))\right)\right|\right) \\
& e^{-2 \pi|t|(|a|+|b-a|)} d x^{\prime} d \tau \\
= & 0 .
\end{aligned}
$$

Remark that B is connected and open, by an iteration argument, we can show that $\check{F}_{y}(t) e^{-2 \pi y \cdot t}$ is independent of $y \in B$ and we write it as $g(t)$. Then $g(t)=\check{F}_{y}(t) e^{-2 \pi y \cdot t}$ holds for $y \in B$. Next, we show that $g(t) e^{2 \pi y \cdot t} \in L^{1}\left(\mathbb{R}^{n}\right)$. Let us decompose \mathbb{R}^{n} into a finite union of non-overlapping polygonal cones, $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{N}$ with their very vertexes at the origin, i.e., $\mathbb{R}^{n}=\bigcup_{k=1}^{N} \Gamma_{k}$. Then $\chi_{\Gamma_{k}}(t) g(t) e^{2 \pi y \cdot t}=\chi_{\Gamma_{k}}(t) \check{F}_{y_{k}}(t) e^{-2 \pi\left(y_{k}-y\right) \cdot t}$. For any $y_{0} \in B$, there exists δ such that $\overline{D\left(y_{0}, \delta\right)} \subset B$. Then for any $y \in D\left(y_{0}, \frac{\delta}{4}\right)$ and $y_{k} \in\left(y_{0}+\Gamma_{k}\right)$ satisfying $\frac{3 \delta}{4} \leq\left|y_{k}-y_{0}\right|<\delta$, we get $\left(y_{k}-y\right) \cdot t=\left(y_{k}-y_{0}\right) \cdot t+\left(y_{0}-y\right) \cdot t$. Since $y_{k}-y_{0}, t \in \Gamma_{k}$, the angle between the segments $O\left(y_{k}-y_{0}\right)$ and $O t$ is less than, say $\frac{\pi}{4}$. Then $\left(y_{k}-y\right) \cdot t \geq \frac{\left|y_{k}-y_{0}\right|}{\sqrt{2}}|t|-\left|y_{0}-y\right||t| \geq\left(\frac{3}{4 \sqrt{2}}-\frac{1}{4}\right) \delta|t| \geq \frac{1}{4} \delta|t|$. Thus, it follows from Hölder's inequality that

$$
\int_{\Gamma_{k}}\left|g(t) e^{2 \pi y \cdot t}\right| d t \leq \int_{\Gamma_{k}}\left|\check{F}_{y_{k}}(t) e^{-\pi \frac{\delta}{4}|t|}\right| d t \leq\left\|F_{y_{k}}(x)\right\|_{L^{1}\left(\mathbb{R}^{n}\right)} \int_{\Gamma_{k}} e^{-\pi \frac{\delta}{4}|t|} d t<\infty
$$

which shows that $g(t) e^{2 \pi y \cdot t} \in L^{1}\left(\Gamma_{k}\right)$. Hence $g(t) e^{2 \pi y \cdot t} \in L^{1}\left(\mathbb{R}^{n}\right)$. Together with the relation $g(t)=\check{F}_{y}(t) e^{-2 \pi y \cdot t}$ for $y \in B$, there holds $F(z)=\int_{\mathbb{R}^{n}} g(t) e^{-2 \pi i z \cdot t}$ for all $y \in B$. By letting $f(t)=g(-t)$, we then obtain the desired formula (3) for $p=1$ and $z \in T_{B}$.

Thus, $f(t) e^{-2 \pi y \cdot t} \in L^{1}\left(\Gamma_{k}\right)$ implies that

$$
\begin{align*}
\sup _{t \in \mathbb{R}^{n}}|f(t)| e^{-2 \pi y \cdot t} & \leq \int_{\mathbb{R}^{n}}|F(x+i y)| d x \\
|f(t)| e^{-2 \pi y \cdot t} e^{-2 \pi \psi(y)} & \leq \int_{\mathbb{R}^{n}}|F(x+i y)| e^{-2 \pi \psi(y)} d x \\
|f(t)|^{s} \int_{B} e^{-2 s \pi(y \cdot t+\psi(y))} d y & \leq \int_{B}\left(\int_{\mathbb{R}^{n}}|F(x+i y)| e^{-2 \pi \psi(y)} d x\right)^{s} d y \\
& =\|F\|_{A^{1, s}(B, \psi)}^{s}, \tag{8}
\end{align*}
$$

which implies (4). Next we prove $\operatorname{supp} f \subset U_{s}(B, \psi)$. Suppose that $t_{0} \notin U_{s}(B, \psi)$, then (11) implies $\int_{B} e^{-2 s \pi\left(y \cdot t_{0}+\psi(y)\right)} d y=+\infty$ for $y \in B$. It then follows from (8) that $f(t)=0$, which means the support of f, i.e., $\operatorname{supp} f \subset U_{s}(B, \psi)$.

Next we prove the case $1<p \leq 2$. Let $B_{0} \subseteq B$ be a bounded connected open set, so there exists a positive constant R_{0} such that $B_{0} \subseteq D\left(0, R_{0}\right)$. Assume that $l_{\varepsilon}(z)=$ $\left(1+\varepsilon\left(z_{1}^{2}+\cdots+z_{n}^{2}\right)\right)^{N}$, where N is an integer satisfying $N>n$. Then for $\varepsilon \leq \frac{1}{2 R_{0}^{2}}, z=x+i y$ with $|y| \leq R_{0}$,

$$
\begin{aligned}
\left|l_{\varepsilon}(z)\right| & =\left|\left(\left(1+\varepsilon\left(z_{1}^{2}+\cdots+z_{n}^{2}\right)\right)^{2}\right)^{\frac{N}{2}}\right| \\
& =\left(\left(1+\varepsilon\left(|x|^{2}-|y|^{2}\right)\right)^{2}+4 \varepsilon^{2}(x \cdot y)^{2}\right)^{\frac{N}{2}} \\
& \geq\left(1+\varepsilon\left(|x|^{2}-|y|^{2}\right)\right)^{N} \geq\left(\frac{1}{2}+\varepsilon|x|^{2}\right)^{N}
\end{aligned}
$$

for $|y| \leq R_{0}$, i.e., $\left|l_{\varepsilon}^{-1}(z)\right| \leq \frac{1}{\left(\frac{1}{2}+\varepsilon|x|^{2}\right)^{N}}$. For $F_{y}(x)=F(x+i y)$, set $F_{\varepsilon, y}(x)=F_{y}(x) l_{\varepsilon}^{-1}(z)$, then based on Hölder's inequality,

$$
\int_{\mathbb{R}^{n}}\left|F_{\varepsilon, y}(x)\right| d x \leq\left(\int_{\mathbb{R}^{n}}\left|F_{y}(x)\right|^{p} d x\right)^{\frac{1}{p}}\left(\int_{\mathbb{R}^{n}}\left|l_{\varepsilon}^{-1}(x+i y)\right|^{q} d x\right)^{\frac{1}{q}}<\infty
$$

where $\frac{1}{p}+\frac{1}{q}=1$, which implies that $F_{\varepsilon, y}(x) \in L^{1}\left(\mathbb{R}^{n}\right)$. Then as in the proof for $p=1$, $g_{\varepsilon, y}(t)=\check{F}_{\varepsilon, y}(t) e^{-2 \pi y \cdot t}$ can be also proved to be independent of $y \in B_{0}$ when $1<p \leq 2$. Put $g_{\varepsilon, y}(t)=g_{\varepsilon}(t)$, then $g_{\varepsilon}(t) e^{2 \pi y \cdot t}=\check{F}_{\varepsilon, y}(t) \in L^{1}\left(\mathbb{R}^{n}\right)$.

On the other hand, it is obvious that $F_{\varepsilon, y}(x) \rightarrow F_{y}(x)$ pointwise as $\varepsilon \rightarrow 0$. Now we prove that $\check{F}_{y}(t) e^{-2 \pi y \cdot t}$ is also independent of $y \in B_{0}$. Indeed, for $a, b \in B_{0}$ and any compact subset $K \subset \mathbb{R}^{n}$, let $R_{1}=\max \{|z|: z \in K\}$,

$$
\begin{aligned}
& \left(\int_{K}\left|\check{F}_{a}(t) e^{-2 \pi a \cdot t}-\check{F}_{b}(t) e^{-2 \pi b \cdot t}\right|^{q} d t\right)^{\frac{1}{q}} \\
\leq & \left(\int_{K}\left|\check{F}_{a}(t) e^{-2 \pi a \cdot t}-g_{\varepsilon}(t)\right|^{q} d t\right)^{\frac{1}{q}}+\left(\int_{K}\left|g_{\varepsilon}(t)-\check{F}_{b}(t) e^{-2 \pi b \cdot t}\right|^{q} d t\right)^{\frac{1}{q}} \\
= & \left(\int_{K}\left|\check{F}_{a}(t) e^{-2 \pi a \cdot t}-\check{F}_{\varepsilon, a}(t) e^{-2 \pi a \cdot t}\right|^{q} d t\right)^{\frac{1}{q}}+\left(\int_{K}\left|\check{F}_{\varepsilon, b}(t) e^{-2 \pi b \cdot t}-\check{F}_{b}(t) e^{-2 \pi b \cdot t}\right|^{q} d t\right)^{\frac{1}{q}} \\
\leq & e^{2 \pi R_{0} R_{1}}\left(\left(\int_{K}\left|\check{F}_{a}(t)-\check{F}_{\varepsilon, a}(t)\right|^{q} d t\right)^{\frac{1}{q}}+\left(\int_{K}\left|\check{F}_{\varepsilon, b}(t)-\check{F}_{b}(t)\right|^{q} d t\right)^{\frac{1}{q}}\right) \\
\leq & e^{2 \pi R_{0} R_{1}}\left(\left(\int_{\mathbb{R}^{n}}\left|F_{a}(t)-F_{\varepsilon, a}(t)\right|^{p} d t\right)^{\frac{1}{p}}+\left(\int_{\mathbb{R}^{n}}\left|F_{\varepsilon, b}(t)-F_{b}(t)\right|^{p} d t\right)^{\frac{1}{p}}\right) \\
\rightarrow & 0
\end{aligned}
$$

as $\varepsilon \rightarrow 0$. Hence we obtain that $\check{F}_{a}(t) e^{-2 \pi a \cdot t}=\check{F}_{b}(t) e^{-2 \pi b \cdot t}$ almost everywhere on \mathbb{R}^{n} and write it as $g(t)$. Then we have $g(t)=\check{F}_{y}(t) e^{-2 \pi y \cdot t}$.

Next, we show that $g(t) e^{2 \pi y \cdot t} \in L^{1}\left(\mathbb{R}^{n}\right)$. As in the proof for $p=1$, let $\mathbb{R}^{n}=\bigcup_{k=1}^{N} \Gamma_{k}$ and $\overline{D\left(y_{0}, \delta\right)} \subset B_{0}$. Then for any $y \in D\left(y_{0}, \frac{\delta}{4}\right)$ and $y_{k} \in\left(y_{0}+\Gamma_{k}\right)$ satisfying $\frac{3 \delta}{4} \leq\left|y_{k}-y_{0}\right|<\delta$, we have

$$
\left(y_{k}-y\right) \cdot t \geq \frac{\left|y_{k}-y_{0}\right|}{\sqrt{2}}|t|-\left|y_{0}-y\right||t| \geq\left(\frac{3}{4 \sqrt{2}}-\frac{1}{4}\right) \delta|t| \geq \frac{1}{4} \delta|t|
$$

for $y_{k}-y_{0}, t \in \Gamma_{k}$. Thus, from Hölder's inequality

$$
\int_{\Gamma_{k}}\left|g(t) e^{2 \pi y \cdot t}\right| d t \leq \int_{\Gamma_{k}}\left|\check{F}_{y_{k}}(t) e^{-\pi \frac{\delta_{0}}{4}|t|}\right| d t \leq\left(\int_{\Gamma_{k}}\left|\check{F}_{y_{k}}(t)\right|^{p} d t\right)^{\frac{1}{p}}\left(\int_{\Gamma_{k}}\left|e^{-q \pi \frac{\delta_{0}}{4}|t|}\right| d t\right)^{\frac{1}{q}}<\infty
$$

which shows that $g(t) e^{2 \pi y \cdot t} \in L^{1}\left(\Gamma_{k}\right)$ and the function $G(z)$ defined by

$$
G(z)=\int_{\mathbb{R}^{n}} g(t) e^{-2 \pi i(x+i y) \cdot t} d t
$$

is holomorphic in the tube domain $T_{D\left(y_{0}, \delta\right)}$.
Now we can prove that, for $y \in B_{0}$,

$$
\lim _{\varepsilon \rightarrow 0} \int_{\mathbb{R}^{n}} g_{\varepsilon}(t) e^{-2 \pi i(x+i y) \cdot t} d t=\int_{\mathbb{R}^{n}} g(t) e^{-2 \pi i(x+i y) \cdot t} d t .
$$

In fact, if $y \in B_{0}$,

$$
\begin{aligned}
& \left|\int_{\mathbb{R}^{n}}\left(g_{\varepsilon}(t)-g(t)\right) e^{-2 \pi i(x+i y) \cdot t} d t\right| \\
\leq & \int_{\mathbb{R}^{n}}\left|\left(\check{F}_{\varepsilon, y}(t) e^{-2 \pi y \cdot t}-\check{F}_{y}(t) e^{-2 \pi y \cdot t}\right) e^{2 \pi i z \cdot t}\right| d t \\
= & \sum_{k=1}^{n} \int_{\Gamma_{k}}\left|\left(\check{F}_{\varepsilon, y_{k}}(x)-\check{F}_{y_{k}}(x)\right) e^{-2 \pi i\left(y_{k}-y\right) \cdot t}\right| d t \\
\leq & \sum_{k=1}^{n}\left(\int_{\Gamma_{k}}\left|\check{F}_{\varepsilon, y_{k}}(x)-\check{F}_{y_{k}}(x)\right|^{q} d t\right)^{\frac{1}{q}}\left(\int_{\Gamma_{k}} e^{-p \pi \frac{\delta_{0}}{4}|t|} d t\right)^{\frac{1}{p}} \\
\leq & C_{\delta_{0}} \sum_{k=1}^{n}\left(\int_{\Gamma_{k}}\left|F_{\varepsilon, y_{k}}(x)-F_{y_{k}}(x)\right|^{p} d t\right)^{\frac{1}{p}} \\
\rightarrow & 0
\end{aligned}
$$

when $\varepsilon \rightarrow 0$, where $C_{\delta_{0}}^{p}=\int_{\mathbb{R}^{n}} e^{-p \pi \frac{\delta_{0}}{4}|t|} d t$. It follows that $\lim _{\varepsilon \rightarrow 0} F_{\varepsilon}(z)=G(z)$. Combining with $\lim _{\varepsilon \rightarrow 0} F_{\varepsilon}(z)=F(z)$, we can state $G(z)=F(z)$ for $y \in B_{0}$. Then there exists a measurable function $g(t)$ such that $F(z)=\int_{\mathbb{R}^{n}} g(t) e^{-2 \pi i z \cdot t} d t$ holds for $y \in B_{0}$. Since B is connected, we can choose a sequence of bounded connected open set $\left\{B_{k}\right\}$ such that $B_{0} \subset B_{1} \subset \cdots$ and $B=\bigcup_{k=0}^{\infty} B_{k}$. Together with the fact that $g(t)=\check{F}_{y}(t) e^{-2 \pi y \cdot t}$ is independent of $y \in B_{k}$, then $\check{F}_{y_{l}}(t) e^{-2 \pi y_{l} \cdot t}=\check{F}_{y_{j}}(t) e^{-2 \pi y_{j} \cdot t}=\check{F}_{y}(t) e^{-2 \pi y \cdot t}$ for $l \neq j, y_{l} \in B_{l}, y_{j} \in B_{j}$ and $y \in B_{0}$. Hence $g(t) e^{2 \pi y \cdot t}=\check{F}_{y}(t)$ holds for $y \in B_{k}, k=0,1,2, \ldots$ In other words, $f(z)=\int_{\mathbb{R}^{n}} g(t) e^{-2 \pi i z \cdot t} d t$ holds for all $y \in B$. By letting $f(t)=g(-t)$, we obtain the desired representation $F(z)=$ $\int_{\mathbb{R}^{n}} f(t) e^{2 \pi i z \cdot t} d t$ for $y \in B$ when $1<p \leq 2$.

For $\frac{1}{p}+\frac{1}{q}=1$, based on the Hausdorff-Young Inequality,

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{n}}\left|f(t) e^{-2 \pi y \cdot t}\right|^{q} d t\right)^{\frac{1}{q}} \leq\left(\int_{\mathbb{R}^{n}}|F(x+i y)|^{p} d x\right)^{\frac{1}{p}} \tag{9}
\end{equation*}
$$

then

$$
\left(\left(\int_{\mathbb{R}^{n}}\left|f(t) e^{-2 \pi y \cdot t}\right|^{q} d t\right)^{\frac{p}{q}} e^{-2 p \pi \psi(y)} d y\right)^{s} \leq\left(\int_{\mathbb{R}^{n}}\left|F(x+i y) e^{-2 \pi \psi(y)}\right|^{p} d x\right)^{s}
$$

Performing integral about $y \in B$ on both sides, we get

$$
\int_{B}\left(\left(\int_{\mathbb{R}^{n}}\left|f(t) e^{-2 \pi y \cdot t}\right|^{q} d t\right)^{\frac{p}{q}} e^{-2 p \pi \psi(y)}\right)^{s} d y \leq \int_{B}\left(\int_{\mathbb{R}^{n}}\left|F(x+i y) e^{-2 \pi \psi(y)}\right|^{p} d x\right)^{s} d y
$$

and

$$
\begin{equation*}
\int_{B}\left(\left(\int_{\mathbb{R}^{n}}\left|f(t) e^{-2 \pi y \cdot t}\right|^{q} d t\right)^{\frac{p}{q}} e^{-2 p \pi \psi(y)}\right)^{s} d y \leq\|F\|_{A^{p, s}(B, \psi)}^{s p} \tag{10}
\end{equation*}
$$

As a result, formulas (3) and (5) hold for $1<p \leq 2$. Now we prove that $\operatorname{supp} f \subset U_{s p}(B, \psi)$ when $0<s(p-1) \leq 1$. For $0<s(p-1) \leq 1$, we have $\frac{q}{s p} \geq 1$. Then Minkowski's inequality and (10) imply that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|f(t)|^{q}\left(\int_{B} e^{-2 \pi p s(y \cdot t+\psi(y))} d y\right)^{\frac{q}{p s}} d t \leq\|F\|_{A^{p, s}(B, \psi)}^{q}<\infty . \tag{11}
\end{equation*}
$$

Consequently, It follows from (11) and (1) that $f(t)=0$ for almost every $t \notin U_{s p}(B, \psi)$. Therefore, $\operatorname{supp} f \subset U_{s p}(B, \psi)$.

In order to prove Theorem 2, we first introduce a lemma.
Lemma 1. Suppose that $F(z) \in A^{p, s}(B, \psi)$, where $0<p<\infty$ and $0<s \leq \infty$, then for $y_{0} \in B$ and positive constant δ such that $D_{n}\left(y_{0}, \delta\right) \subset B$, there exist constants $N>1$ and $C_{n, N, p, s}$ depending on n, N, p, s such that

$$
\begin{equation*}
|F(z)| \leq C_{n, N, p, s} \delta^{-\frac{n}{p}\left(1+\frac{1}{s}\right)} e^{2 \pi \psi_{\delta}\left(y_{0}\right)} \tag{12}
\end{equation*}
$$

where $\psi_{\delta}\left(y_{0}\right)=\max \left\{\psi(\eta):\left|\eta-y_{0}\right| \leq \delta\right\}$.
Proof. For $y_{0} \in B$, there exists $\delta>0$ such that $B_{\delta}=D\left(y_{0}, \delta\right) \subset B$. Then for $F(z)=$ $F(x+i y) \in A^{p, s}(B, \psi)$, based on the subharmonic properties of $|F(z)|^{t}$, we have
$|F(z)|^{t} \leq \frac{1}{\Omega_{2 n} \delta^{2 n}} \int_{D_{2 n}(z, \delta)}|F(\xi+i \eta)|^{t} d \xi d \eta \leq \frac{1}{\Omega_{2 n} \delta^{2 n}} \int_{D_{n}\left(y_{0}, \delta\right)}\left(\int_{D_{n}(x, \delta)}|F(\xi+i \eta)|^{t} d \xi\right) d \eta$
for $y \in B_{\delta}$, where Ω_{k} is the volume of k-dimensional unit ball $D_{k}(0,1)$ centered at the origin with radius $1, k=n, 2 n$. Let $p_{1}=N=\frac{p}{t}>\max \left\{1, \frac{1}{s}\right\}$ and $\frac{1}{p_{1}}+\frac{1}{q_{1}}=1$. Hölder's Inequality implies that

$$
\begin{aligned}
|F(z)|^{t} & \leq \frac{1}{\Omega_{2 n} \delta^{2 n}} \int_{D_{n}\left(y_{0}, \delta\right)}\left(\int_{D_{n}(x, \delta)}|F(\xi+i \eta)|^{p} d \xi\right)^{\frac{1}{p_{1}}} d \eta\left(\int_{D_{n}(x, \delta)} 1^{q_{1}} d \xi\right)^{\frac{1}{q_{1}}} \\
& =\frac{\left(\delta^{n} \Omega_{n}\right)^{\frac{1}{q_{1}}}}{\delta^{2 n} \Omega_{2 n}} \int_{D_{n}\left(y_{0}, \delta\right)}\left(\int_{D_{n}(x, \delta)}|F(\xi+i \eta)|^{p} d \xi\right)^{\frac{1}{p_{1}}} d \eta
\end{aligned}
$$

For $0<s<\infty$, let $p_{2}=s N$. Then $p_{2}>1$. Again, by Hölder's Inequality, for $\frac{1}{p_{2}}+\frac{1}{q_{2}}=1$,

$$
\begin{aligned}
|F(z)|^{t} & \leq \frac{\left(\delta^{n} \Omega_{n}\right)^{\frac{1}{q_{1}}}}{\delta^{2 n} \Omega_{2 n}}\left(\int_{D_{n}\left(y_{0}, \delta\right)}\left(\int_{D_{n}(x, \delta)}|F(\xi+i \eta)|^{p} d \xi\right)^{s} d \eta\right)^{\frac{1}{p_{2}}}\left(\int_{D_{n}\left(y_{0}, \delta\right)} 1^{q_{2}} d \eta\right)^{\frac{1}{q_{2}}} \\
& \leq \frac{\left(\delta^{n} \Omega_{n}\right)^{\frac{1}{q_{1}}+\frac{1}{q_{2}}}}{\delta^{2 n} \Omega_{2 n}}\left(\int_{D_{n}\left(y_{0}, \delta\right)}\left(\int_{D_{n}(x, \delta)}\left|F(\xi+i \eta) e^{-2 \pi \psi(\eta)}\right|^{p} d \xi\right)^{s} e^{2 s p \pi \psi(\eta)} d \eta\right)^{\frac{1}{p_{2}}} \\
& \leq \frac{\left(\delta^{n} \Omega_{n}\right)^{2-\frac{1}{N}\left(1+\frac{1}{s}\right)} e^{2 \frac{s p}{p_{2}} \pi \psi_{\delta}\left(y_{0}\right)}}{\delta^{2 n} \Omega_{2 n}}\left(\int_{D_{n}\left(y_{0}, \delta\right)}\left(\int_{D_{n}(x, \delta)}\left|F(\xi+i \eta) e^{-2 \pi \psi(\eta)}\right|^{p} d \xi\right)^{s} d \eta\right)^{\frac{1}{p_{2}}} \\
& \leq \frac{\left(\delta^{n} \Omega_{n}\right)^{2-\frac{1}{N}\left(1+\frac{1}{s}\right)} e^{2 \frac{s p}{p_{2}} \pi \psi_{\delta}\left(y_{0}\right)}}{\delta^{2 n} \Omega_{2 n}}\left(\int_{B}\left(\int_{\mathbb{R}^{n}}\left|F(\xi+i \eta) e^{-2 \pi \psi(\eta)}\right|^{p} d \xi\right)^{s} d \eta\right)^{\frac{1}{p_{2}}},
\end{aligned}
$$

where $\psi_{\delta}\left(y_{0}\right)=\max \left\{\psi(\eta):\left|\eta-y_{0}\right| \leq \delta\right\}$. Hence,

$$
\begin{aligned}
|F(z)| & \leq\left(\frac{\delta^{-\frac{n}{N}\left(1+\frac{1}{s}\right)} \Omega_{n}^{2-\frac{1}{N}\left(1+\frac{1}{s}\right)} e^{\frac{s p}{p_{2}} \pi \psi_{\delta}\left(y_{0}\right)}}{\Omega_{2 n}}\right)^{\frac{1}{t}}\left(\int_{B}\left(\int_{\mathbb{R}^{n}} \mid F(\xi+i \eta) e^{-\left.2 \pi \psi(\eta)\right|^{p}} d \xi\right)^{s} d \eta\right)^{\frac{1}{t_{p}}} \\
& \leq \frac{\Omega_{n}^{\frac{2 N}{p}-\frac{1}{p}\left(1+\frac{1}{s}\right)}}{\Omega_{2 n}^{\frac{N}{p}} \delta^{\frac{n}{p}\left(1+\frac{1}{s}\right)}} e^{2 \frac{s p}{t p_{2}} \pi \psi_{\delta}\left(y_{0}\right)}\left(\int_{B}\left(\int_{\mathbb{R}^{n}}\left|F(\xi+i \eta) e^{-2 \pi \psi(\eta)}\right|^{p} d \xi\right)^{s} d \eta\right)^{\frac{1}{s p} \frac{s p}{t p_{2}}}
\end{aligned}
$$

Since $\frac{s p}{t p_{2}}=1$, by letting $C_{n, N, p, s}=\frac{\Omega_{n}^{\frac{2 N}{p}-\frac{1}{p}\left(1+\frac{1}{s}\right)}}{\Omega_{2 n}^{\frac{N}{p}}}\|F(z)\|_{A^{p, s}(B, \psi)}$, we obtain the desired inequality

$$
|F(z)| \leq C_{n, N, p, s} \delta^{-\frac{n}{p}\left(1+\frac{1}{s}\right)} e^{2 \pi \psi_{\delta}\left(y_{0}\right)}
$$

While $s=\infty$, for $p_{2}=s N=\infty$, we have

$$
|F(z)|^{t} \leq\left.\left.\frac{\left(\delta^{n} \Omega_{n}\right)^{2-\frac{1}{N}}}{\delta^{2 n} \Omega_{2 n}} \sup _{\eta \in D_{n}(y, \delta)}\left|\int_{D_{n}(x, \delta)}\right| F(\xi+i \eta)\right|^{p} d \xi\right|^{\frac{t}{p}}
$$

Then

$$
\begin{aligned}
|F(z)| & \leq \frac{\left(\delta^{n} \Omega_{n}\right)^{\left(2-\frac{1}{N}\right) \frac{N}{p}}}{\left(\delta^{2 n} \Omega_{2 n}\right)^{\frac{N}{p}}} e^{2 \pi \psi_{\delta}\left(y_{0}\right)} \sup _{\eta \in D_{n}(y, \delta)}\left|\left(\int_{D_{n}(x, \delta)}|F(\xi+i \eta)|^{p} d \xi\right)^{\frac{1}{p}} e^{-2 \pi \psi(y)}\right| \\
& =\frac{\Omega_{n}^{\frac{2 N}{p}-\frac{1}{p}}}{\Omega_{2 n}^{\frac{N}{p}}} \delta^{-\frac{n}{p}} e^{2 \pi \psi_{\delta}\left(y_{0}\right)}\|F(z)\|_{A^{p, \infty}(B, \psi)} .
\end{aligned}
$$

Obviously, the inequality (12) is also applicable in the case $s=\infty$.
Now we are ready to prove Theorem 2.
Proof of Theorem 2. For $y_{0} \in B$, there exists $\delta>0$ such that $B_{\delta}=D\left(y_{0}, \delta\right) \subset B$. Then for $F(z) \in A^{p, s}(B, \psi)$ and any $y \in B_{\delta}$, it follows from Lemma 1 that

$$
|F(z)| \leq C_{n, N, p, s} \delta^{-\frac{n}{p}\left(1+\frac{1}{s}\right)} e^{2 \pi \psi_{\delta}\left(y_{0}\right)}
$$

Thus,

$$
\int_{\mathbb{R}^{n}}|F(z)|^{2} d x=\int_{\mathbb{R}^{n}}|F(z)|^{p+2-p} d x \leq C_{n, N, p, s}^{2-p} \delta^{-\frac{n(2-p)}{p}\left(1+\frac{1}{s}\right)} e^{2(2-p) \pi \psi_{\delta}\left(y_{0}\right)} \int_{\mathbb{R}^{n}}|F(z)|^{p} d x .
$$

Therefore,

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}|F(z)|^{2} e^{-4 \pi \psi_{\delta}\left(y_{0}\right)} d x \\
\leq & C_{n, N, p, s}^{2-p} \delta^{-\frac{n(2-p)}{p}\left(1+\frac{1}{s}\right)} e^{2(2-p) \pi \psi_{\delta}\left(y_{0}\right)} \int_{\mathbb{R}^{n}}\left|F(z) e^{-2 \pi \psi(y)}\right|^{p} d x e^{2 p \pi \psi(y)} e^{-4 \pi \psi_{\delta}\left(y_{0}\right)} \\
\leq & C_{n, N, p, s}^{2-p} \delta^{-\frac{n(2-p)}{p}\left(1+\frac{1}{s}\right)} e^{2(2-p) \pi \psi_{\delta}\left(y_{0}\right)} \int_{\mathbb{R}^{n}}\left|F(z) e^{-2 \pi \psi(y)}\right|^{p} d x e^{2(p-2) \pi \psi_{\delta}\left(y_{0}\right)} \\
= & C_{n, N, p, s}^{2-p} \delta^{-\frac{n(2-p)}{p}\left(1+\frac{1}{s}\right)} \int_{\mathbb{R}^{n}}\left|F(z) e^{-2 \pi \psi(y)}\right|^{p} d x .
\end{aligned}
$$

Taking integral with respect to y to both sides of the inequality, we have

$$
\int_{B_{\delta}}\left(\int_{\mathbb{R}^{n}}|F(z)|^{2} e^{-4 \pi \psi_{\delta}\left(y_{0}\right)} d x\right)^{s} d y \leq C_{n, N, p, s}^{(2-p) s} \delta^{-\frac{n(2-p)(1+s)}{p}} \int_{B_{\delta}}\left(\int_{\mathbb{R}^{n}}\left|F(z) e^{-2 \pi \psi(y)}\right|^{p} d x\right)^{s} d y
$$

which concludes that $F \in A^{2, s}\left(B_{\delta}, \psi_{\delta}\right)$. Similarly, we can prove that

$$
\begin{equation*}
\int_{B_{\delta}}\left(\int_{\mathbb{R}^{n}}|F| e^{-2 \pi \psi_{\delta}\left(y_{0}\right)} d x\right)^{s} d y \leq C_{n, N, p, s}^{(1-p) s} \delta^{-\frac{n(1-p)(1+s)}{p}}\|F(z)\|_{A^{1, s}\left(B_{\delta}, \psi\right)}^{s p} \tag{13}
\end{equation*}
$$

Then $F(z) \in A^{1, s}\left(B_{\delta}, \psi_{\delta}\right)$.
Following the proof of the case $p=1$ in Theorem 1, there exists a continuous function $f(t)$ such that $F_{y}(x)=\int_{\mathbb{R}^{n}} f(t) e^{2 \pi i z \cdot t} d t$ holds for $y \in B_{\delta}$ and $f(t)=\hat{F}_{y}(t) e^{2 \pi y \cdot t}$ is independent of $y \in B$. Together with the fact that $f(t) e^{-2 \pi y \cdot t} \in L^{1}\left(\mathbb{R}^{n}\right)$ for all $y \in B$, we see that (3) holds for all $y \in B$. This completes the proof of Theorem 2 .

Before the proof of Corollary 1, we introduce the following lemma.
Lemma 2. Assume that Γ is a regular open convex cone of \mathbb{R}^{n}. Let $\psi \in C(\Gamma)$ satisfy (6), then $U_{\alpha}(\psi, \Gamma) \subset \Gamma^{*}+\overline{D\left(0, R_{\psi}\right)}$, where $U_{\alpha}(\psi, \Gamma)$ is defined by (11) for $0<\alpha<\infty$ and by (2) for $\alpha=\infty$.

Proof. For $t_{0} \notin \Gamma^{*}+\overline{D\left(0, R_{\psi}\right)}$, there exist $\varepsilon>0$ and $\xi \in \Gamma^{*}$ such that $d\left(t_{0}, \Gamma^{*}\right)=\left|\xi-t_{0}\right| \geq$ $R_{\psi}+3 \varepsilon$ and $\xi \cdot\left(t_{0}-\xi\right)=0$. Then for any $\tilde{t} \in \Gamma^{*}$,

$$
\left(\tilde{t}-t_{0}\right) \cdot \frac{\left(\xi-t_{0}\right)}{\left|\xi-t_{0}\right|} \geq\left|\xi-t_{0}\right|
$$

Hence $\tilde{t} \cdot\left(\xi-t_{0}\right)=\left(\tilde{t}-t_{0}+t_{0}-\xi+\xi\right) \cdot\left(\xi-t_{0}\right) \geq\left|\xi-t_{0}\right|^{2}-\left|\xi-t_{0}\right|^{2}=0$, which means $\xi-t_{0} \in \bar{\Gamma}$. For any $\delta>0$, it follows from (6) that there exists ρ_{0} such that $\psi(y) \leq\left(R_{\psi}+\delta\right)|y|$ for $|y| \geq \rho_{0}$. Let
$e_{0}=\frac{\xi-t_{0}}{\left|\xi-t_{0}\right|} \in \bar{\Gamma} \cap \partial D(0,1)$, then for any $\varepsilon_{1}>0$, we can find an $e_{1} \in \Gamma$ with $\left|e_{1}\right|=1$ such that $\left|e_{1}-e_{0}\right|<\varepsilon_{1}$, which means there exists a positive constant $\delta_{1}<\varepsilon_{1}$ such that $D\left(e_{1}, \delta_{1}\right) \subset \Gamma$. Thus, for any $e \in D\left(e_{1}, \delta_{1}\right)$ with $\left|e_{1}\right|=1$, we have $\left|e-e_{0}\right| \leq\left|e-e_{1}\right|+\left|e_{1}-e_{0}\right|<2 \varepsilon_{1}$. Choose ε_{1} satisfying $2 \varepsilon_{1}\left|t_{0}\right| \leq \varepsilon$ and let $\Gamma_{1}=\left\{y=\rho e: \rho>0\right.$ and $\left.e \in D\left(e_{1}, \delta\right) \cap \partial D(0,1)\right\} \subset \Gamma$. Then for any $y \in \Gamma_{1},-\rho e \cdot t_{0}=\rho\left(-e+e_{0}-e_{0}\right) \cdot t_{0} \geq \rho\left(-2 \varepsilon_{1}\left|t_{0}\right|+\left|\xi-t_{0}\right|\right) \geq \rho\left(R_{\psi}+2 \varepsilon\right)$ and

$$
\begin{aligned}
\int_{\Gamma} e^{-2 \pi \alpha\left(t_{0} \cdot y+\psi(y)\right)} d y & \geq \int_{\Gamma \cap\left\{|y| \geq \rho_{0}\right\}} e^{-2 \pi \alpha\left(t_{0} \cdot y+\left(R_{\psi}+\delta\right)|y|\right)} d y \\
& \geq \int_{\rho_{0}}^{\infty} \rho^{n-1} d \rho \int_{\partial D(0,1) \cap D\left(e_{1}, \delta_{1}\right)} e^{2 \pi \alpha \rho(2 \varepsilon-\delta)} d \sigma(\zeta)=+\infty
\end{aligned}
$$

which implies $t_{0} \notin U_{\alpha}(\psi, \Gamma)$. Therefore, $U_{\alpha}(\psi, \Gamma) \subset \Gamma^{*}+\overline{D\left(0, R_{\psi}\right)}$.
Now we prove Corollary 1.
Proof of Corollary 1. For $y_{0} \in \Gamma$, there exists δ such that $D\left(y_{0}, \delta\right) \subset \Gamma$. It follows from Theorem 2 that there exists $f(t)$ such that (3) holds for $y \in D\left(y_{0}, \delta\right)$. Since Γ is connected, (3) also holds for all $y \in \Gamma$. Applying the methods in the proof of Theorem 1 for $p=1$, we obtain that such an $f(t)$ is supported in $U_{s}\left(\Gamma, \psi_{\delta}\right)$. Combing with Lemma 2, we have $\operatorname{supp} f \subset U_{s}\left(\Gamma, \psi_{\delta}\right) \subset \Gamma^{*}+\overline{D\left(0, R_{\psi_{\delta}}\right)}$, where

$$
R_{\psi_{\delta}}=\varlimsup_{y \in \Gamma, y \rightarrow \infty} \frac{\psi_{\delta}(y)}{|y|} .
$$

Since $R_{\psi_{\delta}}=R_{\psi}$ for any $y \in \Gamma$, we see that $U_{s}\left(\Gamma, \psi_{\delta}\right)$ is also a subset of $\Gamma^{*}+\overline{D\left(0, R_{\psi}\right)}$. Hence, $\operatorname{supp} f \subset \Gamma^{*}+\overline{D\left(0, R_{\psi}\right)}$.

Now we show that $|f(t)|\left(\int_{\Gamma} e^{-2 s \pi\left(y \cdot t+R_{\psi}|y|\right)} d y\right)^{\frac{1}{s}}$ is slowly increasing. For $y_{0}, y \in \Gamma$, $y_{0}+y \in \Gamma, F_{y_{0}}(z)=F\left(x+i\left(y+y_{0}\right)\right) \in A^{p, s}(\Gamma, \psi)$. As in Theorem 1, we have $f(t)=g(-t)=$ $\check{F}_{y_{0}+y}(-t) e^{2 \pi\left(y_{0}+y\right) \cdot t}$. Due to the relation $R_{\psi}=\varlimsup_{y \in B, y \rightarrow \infty} \frac{\psi(y)}{|y|}$, we have $\psi_{\delta}(y) \leq R_{\psi}\left(1+\left|y_{0}\right|+|y|\right)$, where R_{ψ} is a positive constant independent of $y_{0}, y \in \Gamma$. Then

$$
\begin{aligned}
|f(t)| & =\left|\check{F}_{y_{0}+y}(-t) e^{2 \pi\left(y_{0}+y\right) \cdot t}\right|=\left|\int_{\mathbb{R}^{n}} F_{y_{0}+y}(x) e^{-2 \pi i x \cdot t} e^{-2 \pi \psi_{\delta}(y)} d x\right| e^{2 \pi\left(\psi_{\delta}(y)+\left(y_{0}+y\right) \cdot t\right)} \\
& \leq \int_{\mathbb{R}^{n}}\left|F_{y_{0}}(z)\right| e^{-2 \pi \psi_{\delta}(y)} d x e^{2 \pi\left(R_{\psi}\left(1+\left|y_{0}\right|+|y|\right)+\left(y_{0}+y\right) \cdot t\right)} .
\end{aligned}
$$

Combining with (13), it follows that

$$
\begin{aligned}
\left(\int_{\Gamma}|f(t)|^{s} e^{-2 s \pi\left(y \cdot t+R_{\psi}|y|\right)} d y\right)^{\frac{1}{s}} & \leq\left(\int_{\Gamma}\left(\int_{\mathbb{R}^{n}}\left|F_{y_{0}}(z)\right| e^{-2 \pi \psi_{\delta}(y)} d x\right)^{s} d y\right)^{\frac{1}{s}} e^{2 \pi\left(R_{\psi}\left(1+\left|y_{0}\right|\right)+y_{0} \cdot t\right)} \\
& \leq C_{n, N, p, s}^{1-p} \delta^{-\frac{n(1-p)(1+s)}{s p}}\left\|F_{y_{0}}\right\|_{A^{1, s}(B, \psi)}^{p} e^{2 \pi\left(R_{\psi}\left(1+\left|y_{0}\right|\right)+y_{0} \cdot t\right)} \\
& =C \exp \left\{J\left(y_{0}, t\right)\right\}
\end{aligned}
$$

where $C=C_{n, N, p, s}^{1-p}\left\|F_{y_{0}}\right\|_{A^{1, s}(\Gamma, \psi)}^{p}$ and $J\left(y_{0}\right)=-\frac{n(1-p)(1+s)}{s p} \log \delta+2 \pi\left(R_{\psi}\left(1+\left|y_{0}\right|\right)+y_{0} \cdot t\right)$. Let $J(t)=\inf \left\{J\left(y_{0}, t\right): y_{0} \in \Gamma\right\}$, then

$$
|f(t)|\left(\int_{\Gamma} e^{-2 s \pi\left(y \cdot t+R_{\psi}|y|\right)} d y\right)^{\frac{1}{s}} \leq C \exp \{J(t)\}
$$

Take $y_{0}=\rho v$ with $\rho>0$ and a fixed $v \in \Gamma$ with $|v|=1$, then $\delta=d(\rho v, \partial \Gamma) / 2=\rho \varepsilon$, where $\varepsilon=d(v, \partial \Gamma) / 2$. Therefore,

$$
J(t)=\inf _{\rho>0}\left\{-\frac{n(1-p)(1+s)}{s p} \log (\varepsilon \rho)+2 \pi R_{\psi}(1+\rho)+2 \pi \rho|t|\right\}
$$

in which the infimum can be attained when $\rho=\frac{n(1-p)(1+s)}{2 s p \pi\left(R_{\psi}+|t|\right)}$. It follows that

$$
J(t) \leq 2 \pi R_{\psi}+n\left(\frac{1}{p}-1\right)\left(\frac{1}{s}+1\right)\left(1-\log \varepsilon-\log n\left(\frac{1}{p}-1\right)\left(\frac{1}{s}+1\right)+\log 2 \pi\left(R_{\psi}+|t|\right)\right) .
$$

Thus, there exists a positive constant $M_{n, p, s, v}$ such that

$$
|f(t)|\left(\int_{\Gamma} e^{-2 s \pi\left(y \cdot t+R_{\psi}|y|\right)} d y\right)^{\frac{1}{s}} \leq C e^{J(t)} \leq M_{n, p, s, v}(1+|t|)^{n\left(\frac{1}{p}-1\right)\left(\frac{1}{s}+1\right)}
$$

The proof is complete.
Proof of Theorem 3. We first prove the case when $2<p<\infty$. Since Γ is a regular open convex cone, $\operatorname{int} \Gamma \neq \emptyset$, where $\operatorname{int} \Gamma$ is denoted as the interior of Γ. Then for $y \in \Gamma$, we can find a basis $\left\{e_{j}\right\} \subset \operatorname{int} \Gamma^{*}$ such that $y=\sum_{j=1}^{n} e_{j} y_{j}$ and $e_{j} \cdot y \geq 0$. For $\varepsilon>0$, let $l_{\varepsilon}(z)=\left(\prod_{j=1}^{n}\left(1-i \varepsilon e_{j} \cdot z\right)\right)^{2 N}$ with $N>\frac{n}{2}\left(1-\frac{1}{p}\right)$ and choose two positive constant A, B such that $B|x|^{2} \leq \varepsilon^{2} \sum_{j=1}^{n}\left(e_{j} \cdot x\right)^{2} \leq A|x|^{2}$ for all $x \in \mathbb{R}^{n}$. Thus,

$$
\begin{aligned}
\left|l_{\varepsilon}(z)\right| & =\left(\prod_{j=1}^{n}\left|1-i \varepsilon e_{j} \cdot z\right|^{2}\right)^{N}=\left(\prod_{j=1}^{n}\left(\left(1+\varepsilon e_{j} \cdot y\right)^{2}+\varepsilon^{2}\left(e_{1} \cdot x\right)^{2}\right)\right)^{N} \\
& \geq\left(\prod_{j=1}^{n}\left(1+\varepsilon^{2}\left(e_{j} \cdot x\right)^{2}\right)\right)^{N} \geq\left(1+\varepsilon^{2} \sum_{j=1}^{n}\left(e_{j} \cdot x\right)^{2}\right)^{N} \geq\left(1+\varepsilon^{2} B|x|^{2}\right)^{N},
\end{aligned}
$$

i.e., $\left|l_{\varepsilon}^{-1}(z)\right| \leq\left(1+\varepsilon^{2} B|x|^{2}\right)^{-N}$. For $F(x+i y) \in A^{p, s}(\Gamma, \psi), F_{y}(x)=F(x+i y) \in L^{p}\left(\mathbb{R}^{n}\right)$ as a function of x. Let $F_{\varepsilon}(z)=F_{\varepsilon, y}(x)=F_{y}(x) l_{\varepsilon}^{-1}(z)$, then $F_{\varepsilon, y}(x) \in L^{1}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)$. Indeed, Hölder's inequality implies that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left|F_{\varepsilon, y}(x)\right| d x \leq\left(\int_{\mathbb{R}^{n}}\left|F_{y}(x)\right|^{p} d x\right)^{\frac{1}{p}}\left(\int_{\mathbb{R}^{n}}\left|l_{\varepsilon}^{-1}(x+i y)\right|^{q} d x\right)^{\frac{1}{q}} \leq C_{1, \varepsilon}\left\|F_{y}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \tag{14}
\end{equation*}
$$

and

$$
\int_{\mathbb{R}^{n}}\left|F_{\varepsilon, y}(x)\right|^{2} d x \leq\left(\int_{\mathbb{R}^{n}}\left|F_{y}(x)\right|^{\frac{p}{2}} d x\right)^{\frac{2}{p}}\left(\int_{\mathbb{R}^{n}}\left|l_{\varepsilon}^{-1}(x+i y)\right|^{\frac{p}{p-2}} d x\right)^{\frac{p-2}{p}} \leq C_{2, \varepsilon}\left\|F_{y}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

where $C_{1, \varepsilon}=\left(\int_{\mathbb{R}^{n}} \frac{d x}{\left(1+\varepsilon^{2} B|x|^{2}\right)^{q N}}\right)^{\frac{1}{q}}<\infty, C_{2, \varepsilon}=\left(\int_{\mathbb{R}^{n}} \frac{d x}{\left(1+\varepsilon^{2} B|x|^{2}\right)^{\frac{p}{p-2} N}}\right)^{\frac{p-2}{p}}<\infty$.
As the proof of $p=1$ in Theorem 1 , we can show $g_{\varepsilon}(t) e^{2 \pi y \cdot t}=\check{F}_{\varepsilon, y}(t) \in L^{1}\left(\mathbb{R}^{n}\right)$. Thus,

$$
\begin{equation*}
g_{\varepsilon}(t) e^{2 \pi y \cdot t}=\int_{\mathbb{R}^{n}} F_{\varepsilon, y}(x) e^{2 \pi i x \cdot t} d x \tag{15}
\end{equation*}
$$

then $\left|g_{\varepsilon}(t)\right| e^{2 \pi y \cdot t} \leq \int_{\mathbb{R}^{n}}\left|F_{\varepsilon, y}(x)\right| d x$. Together with (14), there hold

$$
\begin{aligned}
\left|g_{\varepsilon}(t)\right| e^{2 \pi(y \cdot t-\psi(y))} & \leq C_{1, \varepsilon}\left(\int_{\mathbb{R}^{n}}\left|F(x+i y) e^{-2 \pi \psi(y)}\right|^{p} d x\right)^{\frac{1}{p}} \\
\int_{\Gamma}\left|g_{\varepsilon}(t)\right|^{s p} e^{2 s p \pi(y \cdot t-\psi(y))} d y & \leq C_{1, \varepsilon} \int_{\Gamma}\left(\int_{\mathbb{R}^{n}}\left|F(x+i y) e^{-2 \pi \psi(y)}\right|^{p} d x\right)^{s} d y \\
\left|g_{\varepsilon}(t)\right|^{s p} \int_{\Gamma} e^{2 s p \pi(y \cdot t-\psi(y))} d y & \leq C_{1, \varepsilon}\|F\|_{A^{p, s}(\Gamma, \psi)}^{s p}
\end{aligned}
$$

Now we prove that $\operatorname{supp} g_{\varepsilon}(t) \subset-U_{p s}(\Gamma, \psi)$. Note that $g_{\varepsilon}(t)$ is continuous in \mathbb{R}^{n}. Then for $t_{0} \notin-U_{p s}(\Gamma, \psi)$, formula (11) shows that $\int_{\Gamma} e^{2 p s \pi\left(y \cdot t_{0}-\psi(y)\right)} d y=\infty$ for $y \in \Gamma$. It follows from the above inequality that $g_{\varepsilon}\left(t_{0}\right)=0$ for $t_{0} \notin-U_{p s}(\Gamma, \psi)$. As a result, $\operatorname{supp} g_{\varepsilon}(t) \subset-U_{p s}(\Gamma, \psi)$.

Since $g_{\varepsilon}(t) e^{2 \pi y \cdot t} \in L^{1}\left(\mathbb{R}^{n}\right)$, we can rewrite (15) as

$$
\begin{equation*}
F_{\varepsilon, y}(x)=\int_{\mathbb{R}^{n}} g_{\varepsilon}(t) e^{-2 \pi i z \cdot t} \chi_{-U_{p s}(\Gamma, \psi)}(t) d t \tag{16}
\end{equation*}
$$

Plancherel's Theorem implies that $\int_{\mathbb{R}^{n}}\left|g_{\varepsilon}(t) e^{2 \pi y \cdot t}\right|^{2} d t=\int_{\mathbb{R}^{n}}\left|F_{\varepsilon, y}(x)\right|^{2} d x$. Then based on Fatou's lemma,

$$
\int_{\mathbb{R}^{n}}\left|g_{\varepsilon}(t)\right|^{2} \leq \lim _{y \in \Gamma, y \rightarrow 0} \int_{\mathbb{R}^{n}}|F(x+i y)|^{2} d x<\infty
$$

Thus, there exist $g(t) \in L^{2}\left(\mathbb{R}^{n}\right)$ and a sequence $\left\{\varepsilon_{k}\right\}$ tending to zero as $k \rightarrow \infty$ such that $\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{n}} g_{\varepsilon_{k}}(t) h(t) d t=\int_{\mathbb{R}^{n}} g(t) h(t) d t$ for $h(t) \in L^{2}$. In fact, for $t \in-U_{p s}(\Gamma, \psi)$, lemma 2 implies that $t \in-\Gamma_{k}^{*}+\overline{D\left(0, R_{\psi}\right)}$. Then t can always be written as $t_{1}+t_{2}$ with $t_{1} \in-\Gamma_{k}^{*}$ and $\left|t_{2}\right|<R_{\psi}$. Hence, for $y \in \Gamma$,

$$
y \cdot t=y \cdot\left(t_{1}+t_{2}\right) \leq-\left|t_{1}\right| k+\left|t_{2}\right||y| \leq-\left(|t|-\left|t_{2}\right|\right) k+R_{\psi}|t| \leq\left(R_{\psi}-k\right)|t|+R_{\psi} k,
$$

implying that $\int_{\mathbb{R}^{n}}\left|e^{2 \pi y \cdot t} \chi_{-U_{p s}\left(B_{k}, \psi\right)}(t)\right|^{2} d t<\infty$. Therefore, on the right hand side of (16),

$$
\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{n}} g_{\varepsilon_{k}}(t) e^{-2 \pi i z \cdot t} \chi_{-U_{p s}(\Gamma, \psi)}(t) d t=\int_{\mathbb{R}^{n}} g(t) e^{-2 \pi i z \cdot t} \chi_{-U_{p s}(\Gamma, \psi)}(t) d t
$$

for $e^{2 \pi y \cdot t} \chi_{-U_{p s}(\Gamma, \psi)}(t) \in L^{2}\left(\mathbb{R}^{n}\right)$. Whilst it is obvious that $F_{\varepsilon}(z) \rightarrow F(z)$ when $\varepsilon \rightarrow 0$. Sending k to ∞ on both sides of (16) and letting $f(t)=g(-t)$, we obtain that $f \in L^{2}\left(\mathbb{R}^{n}\right)$ and the support $\operatorname{supp} f$ is contained in $U_{p s}(\Gamma, \psi)$, as well as the desired representation (3) holds for all $z \in T_{\Gamma}$.

We now prove the case when $p=\infty$. For $z=\left(z_{1}, \ldots, z_{n}\right) \in T_{\Gamma}$ and $\varepsilon>0$, we can also construct a function $F_{\varepsilon, y}(x)=F_{\varepsilon}(z)=F_{y}(x) l_{\varepsilon}^{-1}(z)$, where $l_{\varepsilon}(z)=\left(\prod_{j=1}^{n}\left(1-i \varepsilon e_{j} \cdot z\right)\right)^{2 N}$ with $N>\frac{n}{2}$. Then

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left|F_{\varepsilon, y}(x)\right| d x \leq \sup _{x \in \mathbb{R}^{n}}\left|F_{y}(x)\right| \int_{\mathbb{R}^{n}}\left|l_{\varepsilon}^{-1}(x+i y)\right| d x \leq \widetilde{C}_{1, \varepsilon}\left\|F_{y}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}<\infty \tag{17}
\end{equation*}
$$

and

$$
\int_{\mathbb{R}^{n}}\left|F_{\varepsilon, y}(x)\right|^{2} d x \leq \sup _{x \in \mathbb{R}^{n}}\left|F_{y}(x)\right| \int_{\mathbb{R}^{n}}\left|l_{\varepsilon}^{-1}(x+i y)\right|^{2} d x \leq \widetilde{C}_{2, \varepsilon}\left\|F_{y}\right\|_{L^{\infty}}\left(\mathbb{R}^{n}\right)<\infty
$$

where $\widetilde{C}_{1, \varepsilon}=\int_{\mathbb{R}^{n}} \frac{d x}{\left(1+\varepsilon^{2} B|x|^{2}\right)^{N}}$ and $\widetilde{C}_{2, \varepsilon}=\left(\int_{\mathbb{R}^{n}} \frac{d x}{\left(1+\varepsilon^{2} B|x|^{2}\right)^{2 N}}\right)^{\frac{1}{2}}<\infty$. Hence $F_{\varepsilon, y} \in L^{1}\left(\mathbb{R}^{n}\right) \cap$ $L^{2}\left(\mathbb{R}^{n}\right)$. In this case, we also have $g_{\varepsilon}(t) e^{2 \pi y \cdot t}=\check{F}_{\varepsilon, y}(t) \in L^{1}\left(\mathbb{R}^{n}\right)$. Then $g_{\varepsilon}(t) e^{2 \pi y \cdot t}=$ $\int_{\mathbb{R}^{n}} F_{\varepsilon, y}(x) e^{2 \pi i x \cdot t} d x$. Therefore, together with (17),

$$
\begin{aligned}
\left|g_{\varepsilon}(t)\right| e^{2 \pi(y \cdot t-\psi(y))} & \leq \widetilde{C}_{1, \varepsilon} \sup _{x \in \mathbb{R}^{n}}\left|F_{y}(x)\right| e^{-2 \pi \psi(y)}, \\
\sup _{y \in \Gamma}\left|g_{\varepsilon}(t)\right| e^{2 \pi(y \cdot t-\psi(y))} & \leq \widetilde{C}_{1, \varepsilon} \sup _{x \in \mathbb{R}^{n}, y \in \Gamma}|F(x+i y)| e^{-2 \pi \psi(y)} \\
& =\widetilde{C}_{1, \varepsilon}\|F\|_{A^{\infty}, \infty(\Gamma, \psi)}<\infty .
\end{aligned}
$$

Then we can similarly show that $\operatorname{supp} g_{\varepsilon}(t) \subset-U_{\infty}(\Gamma, \psi) \subset-\Gamma^{*}+\overline{D\left(0, R_{\psi}\right)}$. Applying the same method for $2<p<\infty$, we obtain the desired formula (3) holds for all $z \in T_{\Gamma}$ and the support $\operatorname{supp} f$ is contained in $U_{\infty}(\Gamma, \psi) \subset \Gamma^{*}+\overline{D\left(0, R_{\psi}\right)}$.

4 Applications

In [10], denoting by $A_{\alpha}^{2}\left(\mathbb{C}^{+}\right)$a weighted Bergman space of functions holomorphic in \mathbb{C}^{+} satisfying $\|F\|_{A_{\alpha}^{2}\left(\mathbb{C}^{+}\right)}^{2}=\int_{\mathbb{C}^{+}}|F(x+i y)|^{2} y^{\alpha} d x d y<\infty$, and by $L_{\beta}^{2}\left(\mathbb{R}^{+}\right)$the space of complexvalued measurable functions f on \mathbb{R}^{+}satisfying $\|f\|_{L_{\beta}^{2}\left(\mathbb{R}^{+}\right)}^{2}=\frac{\Gamma(\beta)}{(4 \pi)^{\beta}} \int_{0}^{\infty}|f(t)|^{2} t^{-\beta} d t<\infty$, Duren stated an analogy of the Paley-Wiener theorem for Bergman space.

Theorem $\mathbf{A}([10])$ For each $\alpha>-1$, the space $A_{\alpha}^{2}\left(\mathbb{C}^{+}\right)$is isometrically isomorphic under the Fourier transform to the space $L_{\alpha+1}^{2}\left(\mathbb{R}^{+}\right)$. More precisely, $F \in A_{\alpha}^{2}\left(\mathbb{C}^{+}\right)$if and only if it is the Fourier transform $F(z)=\int_{0}^{\infty} f(t) e^{2 \pi i z \cdot t} d t$ of some function $f \in L_{\alpha+1}^{2}\left(\mathbb{R}^{+}\right)$, in which case $\|F\|_{A_{\alpha}^{2}\left(\mathbb{C}^{+}\right)}=\|f\|_{L_{\alpha+1}^{2}\left(\mathbb{R}^{+}\right)}$.

Based on Theorem 1, letting $s=1, p=2, \psi(y)=-\frac{\alpha}{4 \pi} \log |y|$ and B be a regular open convex cone Γ, we establish Corollary 2 , which can be regarded as a higher dimensional and tube domain generalization of Theorem A.

Corollary 2. For each $\alpha>-1, F \in A_{\alpha}^{2}\left(T_{\Gamma}\right)$ if and only if there exists $f(t) \in L_{\alpha+1}^{2}\left(\Gamma^{*}\right)$ such that

$$
F(z)=\int_{\Gamma^{*}} f(t) e^{2 \pi i z \cdot t} d t
$$

holds for $z \in T_{\Gamma}$ and $\|F\|_{A_{\alpha}^{2}\left(T_{\Gamma}\right)}=\|f\|_{L_{\alpha+1}^{2}\left(\Gamma^{*}\right)}$.
Proof. By restricting the base B to be a regular open convex cone Γ and letting $\psi(y)=$ $\psi_{\alpha}(y)=-\frac{\alpha}{4 \pi} \log |y|, F \in A_{\alpha}^{2}\left(T_{\Gamma}\right)$ is also an element of $A^{2,1}\left(\Gamma, \psi_{\alpha}\right)$. Applying Theorem 1 to such an F, we can show that there exists $f(t)$ satisfying (5) such that $F(z)=\int_{\mathbb{R}^{n}} f(t) e^{2 \pi i z \cdot t} d t$ and $\operatorname{supp} f \subset U_{1}\left(\Gamma, \psi_{\alpha}\right)$. Based on (6), we have

$$
R_{\psi_{\alpha}}=\varlimsup_{y \in \Gamma, y \rightarrow \infty} \frac{\psi_{\alpha}(y)}{|y|}=0
$$

Thus, together with Lemma2, the supporter of $f(t)$ is contained in Γ^{*} and $F(z)=\int_{\Gamma^{*}} f(t) e^{2 \pi i z \cdot t} d t$. Moreover, $\int_{\Gamma} \int_{\Gamma^{*}}|f(t)|^{2} e^{-4 \pi\left(y \cdot t+\psi_{\alpha}(y)\right)} d t d y \leq\|F\|_{A^{2,1}\left(\Gamma, \psi_{\alpha}\right)}$. Thus,

$$
\int_{\Gamma} \int_{\Gamma^{*}}|f(t)|^{2} e^{-4 \pi\left(y \cdot t+\psi_{\alpha}(y)\right)} d t d y=\int_{\Gamma^{*}} \int_{\Gamma}|f(t)|^{2} e^{-4 \pi y \cdot t} y^{\alpha} d y d t=\int_{\Gamma^{*}}|f(t)|^{2} \frac{\Gamma(\alpha)}{(4 \pi t)^{\alpha+1}} d t
$$

which shows $f \in L_{\alpha+1}^{2}\left(\Gamma^{*}\right)$. And Plancherel's Theorem assures that $\|F\|_{A_{\alpha}^{2}\left(T_{\Gamma}\right)}=\|f\|_{L_{\alpha+1}^{2}\left(\Gamma^{*}\right)}$.
Conversely, note that $F(z)=\int_{\Gamma^{*}} f(t) e^{2 \pi i t \cdot z} d t$. For $f(t) \in L_{\alpha+1}^{2}\left(\Gamma^{*}\right)$, Plancherel's theorem implies that

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}|F(x+i y)|^{2} d x & =\int_{\Gamma^{*}} e^{-4 \pi y \cdot t}|f(t)|^{2} d t \\
\int_{\Gamma} \int_{\mathbb{R}^{n}}|F(x+i y)|^{2} e^{-4 \pi \psi_{\alpha}(y)} d x d y & =\int_{\Gamma} \int_{\Gamma^{*}}|f(t)|^{2} e^{-4 \pi\left(y \cdot t+\psi_{\alpha}(y)\right)} d t d y<\infty
\end{aligned}
$$

in which $\psi_{\alpha}(y)=-\frac{\alpha}{4 \pi} \log |y|$. Hence, $F(z) \in A^{2,1}\left(\Gamma, \psi_{\alpha}\right)=A_{\alpha}^{2}\left(T_{\Gamma}\right)$. The proof is complete.

By restricting the base B to be a regular open convex cone Γ, we establish the following weighted version of the edge-of-the-wedge theorem (see [2]) as an application of Theorem 1.

Theorem 4. Assume that Γ is a regular open convex cone in $\mathbb{R}^{n}, \psi_{1} \in C(\Gamma)$ and $\psi_{2} \in$ $C(-\Gamma)$ satisfy

$$
\begin{equation*}
R_{\psi_{1}}=\varlimsup_{y \in \Gamma, y \rightarrow \infty} \frac{\psi_{1}(y)}{|y|}<\infty \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{\psi_{2}}=\varlimsup_{y \in \Gamma, y \rightarrow \infty} \frac{\psi_{2}(-y)}{|y|}<\infty \tag{19}
\end{equation*}
$$

respectively. If $1<p \leq 2,0<s(p-1) \leq 1, F_{1} \in A^{p, s}\left(\Gamma, \psi_{1}\right)$ and $F_{2} \in A^{p, s}\left(-\Gamma, \psi_{2}\right)$, satisfying

$$
\begin{equation*}
\frac{\lim _{y \rightarrow 0}}{\int_{\mathbb{R}^{n}}\left|F_{1}(x+i y)-F_{2}(x-i y)\right|^{p} d x=0, \text {, }, \text {. }} \tag{20}
\end{equation*}
$$

then F_{1} and F_{2} can be analytically extended to each other and further form an entire function F. Furthermore, there exists a function $f \in L^{1}\left(\mathbb{R}^{n}\right)$ supported in a bounded convex set K such that $F(z)=\int_{K} f(t) e^{2 \pi i t \cdot z} d t$.

Proof. Theorem 1 implies that there exists a function $f_{j}(j=1,2)$ such that

$$
F_{j}=\int_{\mathbb{R}^{n}} f_{j}(t) e^{2 \pi i t \cdot z} d t
$$

holds, in which the supporter of f_{j} is contained in $U_{s p}\left((-1)^{j+1} \Gamma, \psi_{j}\right)$ for for $1<p \leq 2$. Based on lemma 2 2, $\operatorname{supp} f_{j} \subset(-1)^{j+1} \Gamma^{*}+\overline{D\left(0, R_{\psi_{j}}\right)}$. By the Hausdorff-Young inequality,

$$
\left(\int_{\mathbb{R}^{n}}\left|f_{1}(t) e^{2 \pi y \cdot t}-f_{2}(t) e^{-2 \pi y \cdot t}\right|^{q} d t\right)^{\frac{1}{q}} \leq\left(\int_{\mathbb{R}^{n}}\left|F_{1}(x+i y)-F_{2}(x-i y)\right|^{p} d t\right)^{\frac{1}{p}}
$$

Then it follows from Fatou's lemma and (20) that $\left\|f_{1}-f_{2}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)}=0$. Thus, $f_{1}=f_{2}$ almost everywhere on \mathbb{R}^{n}. Let $f_{1}(t)=f_{2}(t)=f(t)$, and $R=\max \left\{R_{\psi_{1}}, R_{\psi_{2}}\right\}$, then $\operatorname{supp} f \subset$ $K \subset\left(\Gamma^{*}+\overline{D(0, R)}\right) \bigcap\left(-\Gamma^{*}+\overline{D(0, R)}\right)$. Thus, K is a bounded convex set. Consequently, $F(z)=\int_{K} e^{2 \pi i z \cdot t} f(t) d t$ is an entire function, where $F(z)=F_{1}(z)$ for $z \in T_{\Gamma}$ and $F(z)=F_{2}(z)$ for $z \in T_{-\Gamma}$.

Similarly, we can prove the weighted version of the edge-of-the-wedge theorem for $p>2$.
Theorem 5. Suppose that Γ is a regular open convex cone in $\mathbb{R}^{n}, \psi_{1} \in C(\Gamma)$ and $\psi_{2} \in C(-\Gamma)$ satisfy (18) and (19) respectively. If $F_{1} \in A^{p, s}\left(\Gamma, \psi_{1}\right)$ and $F_{2} \in A^{p, s}\left(-\Gamma, \psi_{2}\right)$, where $p>2$, satisfying

$$
\begin{equation*}
\lim _{y \in \overline{\Gamma, y \rightarrow 0}} \int_{\mathbb{R}^{n}}\left|F_{1}(x+i y)-F_{2}(x-i y)\right|^{2} d x=0 \tag{21}
\end{equation*}
$$

then F_{1} and F_{2} can be analytically extended to each other and further form an entire function F. Furthermore, there exists a measurable function $f(t)$ supported in a bounded convex set K such that $F(z)=\int_{K} f(t) e^{2 \pi i t \cdot z} d t$.

Proof. For $F_{j} \in A^{p, s}\left((-1)^{j+1} \Gamma, \psi_{j}\right)$ and $\frac{1}{p}+\frac{1}{q}=1$, exists a measurable function f_{j} such that $F_{j}=\int_{\mathbb{R}^{n}} f_{j}(t) e^{2 \pi i t \cdot z} d t$ and $\operatorname{supp} f_{j} \subset U_{s p}\left((-1)^{j+1} \Gamma, \psi_{j}\right)$, where $j=1,2$. It then follows from

Lemma 2 that $\operatorname{supp} f_{j} \subset(-1)^{j+1} \Gamma^{*}+\overline{D\left(0, R_{\psi_{j}}\right)}$. Plancherel's Theorem implies that

$$
\left(\int_{\mathbb{R}^{n}}\left|f_{1}(t) e^{2 \pi y \cdot t}-f_{2}(t) e^{-2 \pi y \cdot t}\right|^{2} d t\right)^{\frac{1}{2}}=\left(\int_{\mathbb{R}^{n}}\left|F_{1}(x+i y)-F_{2}(x-i y)\right|^{2} d x\right)^{\frac{1}{2}}
$$

Then based on (21) and Fatou's Lemma, $\left\|f_{1}-f_{2}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}=0$, which means $f_{1}=f_{2}$ almost everywhere on \mathbb{R}^{n}. Let $f_{1}(t)=f_{2}(t)=f(t)$ and $R=\max \left\{R_{\psi_{1}}, R_{\psi_{2}}\right\}$, then $\operatorname{supp} f(t) \subset$ $K=\left(\Gamma^{*}+\overline{D(0, R)}\right) \bigcap\left(-\Gamma^{*}+\overline{D(0, R)}\right)$. Thus, K is a bounded convex set. As a result, $F(z)=\int_{K} e^{2 \pi i z \cdot t} f(t) d t$ is an entire function, where $F(z)=F_{1}(z)$ for $z \in T_{\Gamma}$ and $F(z)=F_{2}(z)$ for $z \in T_{-\Gamma}$.

References

[1] E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, 1971.
[2] W. Rudin, Lectures on the edge-of-the-wedge theorem, Amer. Math. Soc., 1971.
[3] T.G. Genchev, Paley-Wiener type theorems for functions holomorphic in a half-plane, Dokl. Bulg. Akad. Nauk., 37 (1983), 141-144.
[4] T.G. Genchev, Integral representations for functions holomorphic in tube domains, Dokl. Bulg. Akad. Nauk., 37 (1984), 717-720.
[5] T.G. Genchev, Paley-Wiener type theorems for functions in Bergman spaces over tube domains, J. Math. Anal. Appl., 118 (1986), 496-501.
[6] J.B. Garnett, Bounded Analytic Functions, Academic Press, 1987.
[7] W. Rudin, Real and Complex Analysis, third ed., McGraw-Hill Book Co., New York, 1987.
[8] S. Saitoh, Fourier-Laplace transforms and the Bergman spaces, Appl. Anal., 102 (1988), 985-992.
[9] T. Qian, Characterization of boundary values of functions in Hardy spaces with applications in signal analysis, J. Integral Equ. Appl., 17 (2005), 159-198.
[10] P. Duren, E.A. Gallardo-Gutierrez, A. Montes-Rodriguez, A Paley-Wiener theorem for Bergman spaces with application to invariant subspaces, B. Lond. Math. Soc., 39 (2007), 459-466.
[11] T. Qian, Y.S. Xu, D.Y. Yan, L.X. Yan, B. Yu, Fourier Spectrum Characterization of Hardy Spaces and Applications, P. Am. Math. Soc., 137(2009), 971-980.
[12] H.C. Li, The theory of Hardy spaces on tube domains, Thesis of Doctor of Philosophy in Mathematics, University of Macau, 2015.
[13] G.-T. Deng, T. Qian, Rational approximation of functions in Hardy spaces, Complex Anal. Oper. Th., 10 (2016), 903-920.
[14] H.C. Li, G.-T. Deng, T. Qian, Fourier spectrum characterizations of H^{p} space on tubes over cones for $1 \leq p \leq \infty$, Complex Anal. Oper. Th., 12 (2018), 1193-1218.
[15] G.-T. Deng, Y. Huang, T. Qian, Paley-Wiener-type theorem for analytic functions in tubular domains, J. Math. Anal. Appl., 480 (2019), 123367.

[^0]: *Department of Mathematics, Faculty of Science and Technology, University of Macau, Macao (Via Hong Kong). Email: yhuang12@126.com.
 ${ }^{\dagger}$ Corresponding author. School of Mathematical Sciences, Beijing Normal University, Beijing, 100875. Email:denggt@bnu.edu.cn. This work was partially supported by NSFC (Grant 11971042) and by SRFDP (Grant 20100003110004)
 ${ }^{\ddagger}$ Institute of Systems Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau). Email: tqian1958@gmail.com. The work is supported by the Macau Science and Technology foundation No.FDCT079/2016/A2, FDCT0123/2018/A3, and the Multi-Year Research Grants of the University of Macau No. MYRG2018-00168-FST.

