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By making a seminal use of the maximum modulus principle of holomorphic 
functions we prove existence of n-best kernel approximation for a wide class of 
reproducing kernel Hilbert spaces of holomorphic functions in the unit disc, and for 
the corresponding class of Bochner type spaces of stochastic processes. This study 
thus generalizes the classical result of n-best rational approximation for the Hardy 
space and a recent result of n-best kernel approximation for the weighted Bergman 
spaces of the unit disc. The type of approximations has significant applications 
to signal and image processing and system identification, as well as to numerical 
solutions of the classical and the stochastic type integral and differential equations.
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1. Introduction

A main form of application of mathematical analysis is approximation by basic functions of the underly-
ing space. Various forms and topics of polynomial and rational approximations have been studied, including 
convergence models, capacity and rates, existence and uniqueness of best approximation, as well as algo-
rithms, etc. See for instance the selected list of the literature [62,19,14,53,12,29,55,27,10,11,9,18,66,8,57,54]
and the references therein. The present study will concentrate in approximation of reproducing kernel Hilbert 
spaces (RKHSs) of complex holomorphic functions, the latter being related to Z-transforms of system trans-
fer functions. In RKHSs the most natural basic functions are the parameterized reproducing kernels. Tasks 
of signal and image processing are based on effective reconstruction of a given signal or image. To measure 
reconstruction efficiency, among the most commonly used, there are two dual models. One is, for a previ-

E-mail address: tqian@must.edu.mo.
1 Funded by The Science and Technology Development Fund, Macau SAR (File no. 0123/2018/A3).
https://doi.org/10.1016/j.acha.2023.06.003
1063-5203/© 2023 Published by Elsevier Inc.

https://doi.org/10.1016/j.acha.2023.06.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/acha
http://crossmark.crossref.org/dialog/?doi=10.1016/j.acha.2023.06.003&domain=pdf
mailto:tqian@must.edu.mo
https://doi.org/10.1016/j.acha.2023.06.003


2 T. Qian / Appl. Comput. Harmon. Anal. 67 (2023) 101568
ously given ε, to determine the smallest integer n such that the difference, measured in the underlying space 
norm, between the given function and some n-linear combination of the basic functions is already dominated 
by ε. The second model is, for a given resource limitation represented by a natural integer n, to find an 
n-tuple of parameterized basic functions and an n-tuple of coefficients such that the n-linear combination 
that they compose gives rise to the best possible approximation to the given function. The second model 
is abbreviated as n-best approximation or more briefly n-best problem. The present paper restricts to study 
the second model, and only the existence part of the n-best solutions. The corresponding algorithm part for 
actually finding one or all n-best solutions, as a consequence of the technical results of the existence proof, 
will be separately studied.

We will be based on the general concept reproducing kernel Hilbert space (RKHS). In 1930, to study the 
partial differential equation

∂2u

∂x2 + ∂2u

∂y2 + α(x, y)∂u
∂x

+ β(x, y)∂u
∂y

+ γ(x, y)u = 0,

where α(x, y), β(x, y), γ(x, y) ∈ C2(Ω), Ω is a bounded region, α(x, y), β(x, y), γ(x, y) ∈ C2(Ω), Ω are all 
real-analytic functions, S. Bergman proposed the reproducing kernel concept and gave the related formulas. 
The theoretical study of reproducing kernel may be divided into two stages. Of which the first started from 
J. Mercer ([35]), at the beginning of the 20th century, who in his studies of integral equations brought up 
the concept positive definite kernel:

n∑
i,j=1

K(yi, yj)ξiξj ≥ 0.

The second stage is the development by E. H. Moore ([36]), around 1930’s, who proved that every positive 
Hermitian matrix induces a Hilbert space that has a kernel function K(x, y) enjoying the property

f(y) = 〈f,K(·, y)〉.

The same phenomenon was observed by S. Bochner in the convolution kernel form connected to Fourier 
theory ([7]). Around 1940’s the most popular reproducing kernels were the Bergman type ones. Bergman 
developed the idea of S. Zaremba ([69]) to solve boundary value problems by using reproducing kernels, 
showing that reproducing kernels are effective tools to solve elliptic boundary value problems.

Combined with various science and engineering objects there have developed new theories and algorithms, 
including signal processing ([3]), system identification ([4,38,39,47]), scholastics processing ([25,43,50,65]), 
estimation theory ([22,41]), wavelet transform ([56]), reproducing kernel particle method ([24,23,26,17,60]), 
the moving least-square reproducing kernel method ([31,32]), multi-scale reproducing kernel particle meth-
ods ([30]), etc., with ample applications.

F. M. Larkin ([37]) and M. M. Chawla ([13]) studied the approximation aspect. Formats of interpolation 
with reproducing kernel have been used to numerical solutions of partial differential equations and integral 
equations. The latest reproducing kernel approximation methodology, called adaptive Fourier decomposition 
(AFD), uses the maximal energy extraction principle similar to what is in greedy algorithm or matching 
pursuit ([40,58]). Greedy algorithms are based on general Hilbert space theory with a dictionary ([59]). The 
AFD methods, originated from analytic positive frequency decomposition, validate attainability of the best 
suited parameters. Technically, AFDs are based on delicate mathematical analysis, and, in particular, allow 
repeating selection of parameters through defining multiple kernels, when necessary. The technical treatment 
is a blend of functional analysis, complex analysis and harmonic analytic. Recent studies on approximation 
in Hardy spaces, including the latest n-best and stochastic AFD approximations, may be found in a sequence 
of articles [44,42,1,2,15,16,46,61,43,50]. Some early studies of adaptive Fourier decomposition in Bergman 
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and weighted Bergman spaces are given in [48,49]. Celebrating results for the n-best type approximation in 
weighted Bergman spaces are presented in [51].

Recent studies given by Ball et al.’s papers ([5,6]) show that approximations of Hilbert spaces of holo-
morphic functions have intimate connections with system identification and in particular with time-variant 
linear systems. In the Hardy space case there holds the Sz.-Nagy-Foias model theory for C·0 contraction 
operators. The model theory combined with the Burling-Lax theorem addresses a correspondence between 
any two of the four kinds of objects: shift invariant subspaces, operator-valued inner functions, conservative 
discrete-time input/state/output linear system, and C·0 Hilbert-space contraction operators. The studies 
of [5] and [6] extend such correspondence to weighted Bergman and weighted Hardy spaces. Under such 
frame work and via the Z-transform of the system, n-best approximation in each of the mentioned spaces 
determines the optimal shift invariant subspaces for effective and efficient system identification.

To complete the introduction for science and engineering motivations and involvements, we at last, but 
not least, mention that there have been forerunner but recent developments on the stochastic n-best model 
as cited in [43,50,65]. Stochastic n-best approximation of our general setting will be given in §5. Stochastic 
AFD offers a new approach to stochastic processes, including solutions of stochastic partial differential 
equations. It, in particular, stands as an alternative method to the Karhunen-Loéve decomposition together 
with several advantages. Further developments along this direction are to be reported in separate and 
forthcoming papers.

Next, we introduce the related preliminary knowledge and raise the n-best problem in our general setting. 
The Hardy space is defined

H2(D) = {f : D → C : f is analytic in D and ‖f‖H2 = sup
0≤r<1

2π∫
0

|f(reit)|2 < ∞}.

As a fundamental result, functions in the Hardy space have non-tangential boundary limits a.e. on the unit 
circle ∂D. The Hardy space is isometric to the function space H2

∂D consisting of the non-tangential limiting 
functions. One of the alternative definitions of the space H2

∂D is

H2
∂D = {f : ∂D → C : f ∈ L2(∂D), f(eit) =

∞∑
k=0

ckeikt,
∞∑
k=0

|ck|2 < ∞}.

H2
∂D is a closed subspace of the Hilbert space L2(∂D) equipped with the inner product

〈f, g〉 = 1
2π

2π∫
0

f(eit)g(eit)dt. (1.1)

For a given positive integer n, an ordered pair of polynomials (p, q) is called an n-admissible pair if p and 
q are co-prime, q 	= 0 in D, and both the degrees of p and q do not exceed n. The famous n-best rational 
approximation problem in H2(D) is as follows: For f ∈ H2(D), find an n-admissible ordered pair (p̃, q̃) such 
that

‖f − p̃

q̃
‖H2(D) = inf{‖f − p

q
‖H2(D) : (p, q) is an n-admissible pair}. (1.2)

Closely related to rational approximation there exist studies on what is called Takenaka-Malmquist (TM) 
system, or rational orthogonal system:

{Ba1a2...an
(z)}∞n=1 =

{√
1 − |an|2
1 − ānz

n−1∏ z − ak
1 − ākz

}∞

, a1, · · · , an, · · · ,∈ D, (1.3)

k=1 n=1
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where Ba1a2...an
(z) = ean

(z)φa1a2...an−1(z), where ean
is the normalized Szegö kernel at an,

ean
(z) =

√
1 − |an|2
1 − anz

,

and the canonical Blaschke product with zeros a1, · · · , an−1,

φa1a2...an−1(z) =
n−1∏
k=1

z − ak
1 − ākz

. (1.4)

There further holds the relation, for a ∈ D,

ea(z) =
√

1 − |a|2
1 − az

= ka
‖ka‖

, (1.5)

where

ka(z) = 1
1 − az

and ‖ka‖ = 1√
1 − |a|2

are, respectively, the reproducing kernel of H2(D) and the normalizing constant making ‖ea‖ = 1.
The above formulated n-best rational approximation problem (1.2) is, in essence, equivalent to the fol-

lowing n-best Blaschke form approximation problem ([45,46]): Let n be a given positive integer. If f itself 
is not an m-Blaschke form for some m < n, find a set of n parameters a1, · · · , an, all in D, such that

‖f −
n∑

k=1

〈f,Ba1···ak
〉Ba1···ak

‖ = inf{‖f −
n∑

k=1

〈f,Bb1···bk〉Bb1···bk‖ : b1, · · · , bn ∈ D}. (1.6)

The formulation of the problem allows multiplicity of the zeros ak’s. A solution of (1.6) will be referred as an 
“n-best Blaschke form approximation”([46,45]). Regardless unimodular constants (see Lemma 3.2 below), 
an n-TM system is the Gram-Schmidt orthogonalization of a set of n Szegö kernels, or multiple kernels 
(formulated in (2.12) below) when the parameters are with multiplicities. See explanations in §2). The 
n-best Blaschke form approximation is, again, equivalent with the n-best kernel approximation formulated 
as: Find (a1, · · · , an) ∈ Dn and (c1, · · · , cn) ∈ Cn such that

‖f −
n∑

j=1
cj k̃aj

‖ = inf{‖f −
n∑

j=1
c′jka′

j
‖ : a′1, · · · , a′n ∈ D (1.7)

are distinct, andc′1, · · · , c′n ∈ C},

where k̃aj
are multiple kernels (see (2.12)).

Considerable amount of studies have been devoted to the above problem with the three equivalent 
forms. See [62,63,11,9,46,45,38,51]. Amongst, researchers have obtained several new proofs for existence of 
a solution to (1.2). The motivation of exploring new proofs of the existence, including that of the author 
himself’s, would be at least two-folder: (i) The known existence proofs for the Hardy space case do not 
seem to be adaptable to prove existence of an n-best approximation in any non-Hardy spaces, including 
weighted Bergman spaces and weighted Hardy spaces. In fact, before the work [51] whether there is a 
solution to the problem in any non-Hardy space was unknown; and (ii) On top of the existence, an ultimate 
algorithm of finding even one n-best solution of (1.2) has yet to be sought: The commonly adopted empirical 
algorithms are all local that cannot theoretically avoid the possibility of sinking into a local minimum. See 
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[9,11,44,42,48,52] and the references therein. As an extension of the traditional Fourier method, both the 
n-best and the repeated one-by-one types have been found to have effective applications in signal and image 
processing and system identification ([47,34,38]).

The question for n-best kernel approximation can be raised in general RKHSs, or even in Hilbert spaces 
with a dictionary. The recently published new proof of existence of n-best approximation in the Hardy 
space case ([64]) uses the maximum modulus principle of holomorphic functions as a crucial technical trick. 
Inspired by this complex analysis method, through proving some necessary new crucial pointwise estimations 
of the kernels of the involved zero- and Blaschke-weighted spaces, the study [51] was able to prove existence 
of the n-best kernel approximation of all the weighted Bergman spaces A2

α(D), −1 < α < ∞.
The study in the present paper is directly motivated by the recent new proofs of existence of n-best 

approximation on the Hardy space ([61]) and one on the weighted Bergman spaces ([51]). We achieve 
a clever and concise proof without requiring pointwise estimation of the involved reproducing kernels, 
contrasting with [51] in which pointwise estimations have to be used, and thus prove existence of the n-
best approximation for a larger class of reproducing kernel Hilbert spaces including all the weighted Hardy 
spaces, having the weighted Bergman spaces as particular cases.

Based on further analysis of the orthogonalization projection operator Qa1a2...ak
and factorization of 

higher order generalized backward shift operators Qa1a2...ak
/φa1···am−1 (see §3), the present paper is able 

to avoid use of the pointwise estimations of the reproducing kernels of the involved zero spaces and the 
Blaschke weighted spaces. For RKHSs more general than the Bergman ones such kernel estimations may 
be impossible. As a result, we are able to assert existence of the n-best problem for a class of RKHSs more 
general than the weighted Hardy spaces. Precisely, we can declare existence of solutions of the n-best kernel 
approximation for all RKHSs of holomorphic functions in D that satisfy the following three conditions (see 
Theorem 2.1):

(i) The reproducing kernel K(z, w) enjoys the analyticity condition: When w ∈ D is fixed, K(z, w) is analytic 
for z in a neighborhood of the closed unit disc D, and, when z ∈ D is fixed, K(z, w) is anti-analytic for w
in a neighborhood of D;
(ii) The kernel K(z, w) satisfies the infinite-norm-property at the boundary, that is,

lim
w→∂D

‖Kw‖ = ∞; (1.8)

and,
(iii) K(z, w) satisfies the uniformly boundedness condition

|Kw(z)|
‖Kw‖2 ≤ CH, w, z ∈ D, (1.9)

where CH is a constant depending on the space. Below, we will call a RKHS of holomorphic functions in D
satisfying the conditions (i), (ii), (iii) as our “general H space setting”.

There is an ordered sub-family, HWβ
(D), −∞ < β < ∞, called the Hardy-Sobolev spaces, within the 

family of weighted Hardy spaces ([5,6], also see §4). The index range β < 0 corresponds to the weighted 
Bergman spaces including the standard Bergman space case for β = −1 whose n-best existence results 
are proved in [51]. The β = 0 case corresponds to the Hardy space [64]. The n-best existence results for 
the Hardy-Sobolev spaces for 0 < β ≤ 1 (β = 1 corresponds to the Dirichlet space) are obtained as a 
consequence of the main result of this paper (see §4). The Hardy-Sobolev spaces for β > 1 do not fall 
into the category of the RKHSs considered in the main theorem of this paper, but we show that they are 
governed by the Sobolev Embedding Theorem (also see [49]).

The writing plan of the paper is as follows. In §2 we discuss in detail the Gram-Schmidt orthogonalization 
of reproducing kernels that induces the concept multiple kernels. It is in terms of the multiple kernel concept 
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that the n-best problem is precisely formulated. In §3 our main result, Theorem 2.1, on existence of the 
n-best approximation of a wide class of RKHSs is proved through a number of technical lemmas in relation 
to orthogonal projections and analysis of the involved reproducing kernels. In §4, as examples of using the 
main result Theorem 2.1, we give re-proofs of the Hardy and the weighted Bergman space results of [64]
and [51], and to prove, using the unified method, the n-best existence result for the range −∞ < β ≤ 1 of 
the Hardy-Sobolev spaces HWβ

(D), in which the results for the range (−∞, 1] are known to be equivalent 
to the weighted Bergman and the Hardy space cases. The results for the range β ∈ (0, 1] are new as 
applications of Theorem 2.1. We include a remark in §4 concerning the range β ∈ (1, ∞) through invoking 
the Sobolev Embedding theorem that provides complete understanding to the n-best issue for the whole 
range −∞ < β < ∞. In §5 we extend Theorem 2.1 to the stochastic signal case based on the Bochner type 
Hilbert space setting. For the existing related studies in the stochastic signal direction we refer to [43] and 
[50]. To the end of §5 we include a remark for the impact of this study on obtaining algorithms in finding 
the n-best solutions.

2. Main theorem

Let H be a RKHS of holomorphic functions in D with reproducing kernel Kw, w ∈ D, satisfying the con-
ditions (i), (ii), (iii) set in §1. Throughout the paper n is a fixed positive integer. Let Zk = (a1, · · · , ak), 1 ≤
k ≤ n, be an ordered k-tuple of complex numbers in D allowing multiplicity.

Denote by l(ak) the multiple of ak in the k-tuple (a1, · · · , ak), k ≤ n. Denote

K̃ak
(z) =

[(
d

dw

)l(ak)−1

Kw(z)
]
w=ak

. (2.10)

We will call K̃ak
the multiple reproducing kernel corresponding to (a1, · · · , ak). It is easy to show, for f

being in the holomorphic function space, there holds

〈f, K̃ak
〉 = f (l(ak)−1)(ak). (2.11)

The consecutive derivatives of the kernel function correspond to repeating use of kernel parameters.
In the Hardy space case, for instance, ka(z) = 1

1−az , and

k̃ak
(z) =

[(
d

dw

)l(ak)−1

kw(z)
]
w=ak

= l!al

(1 − az)l+1 . (2.12)

In general cases, let (a1, · · · , an) be any n-tuple of complex numbers in D. Denote by (Ea1 , · · · , Ea1···am
)

the Grand-Schmidt orthonormalization of (K̃a1 , · · · , K̃am
), m = 1, · · · , n, given by

Ea1···am
(z) =

K̃am
(z) −

∑m−1
l=1 〈K̃am

, Ea1···al
〉Ea1···al

(z)√
‖K̃am

‖2 −
∑m−1

l=1 |〈K̃am
, Ea1···al

〉|2
. (2.13)

We will denote the orthogonal projection of f into the linear subspace X by PX(f). The projection into 
the orthogonal complement of X is denoted QX = I −PX . In particular, denote by Pa1···am

the orthogonal 
projection from H to span{K̃a1 , · · · , K̃am

}, and by Qa1···am
= I−Pa1···am

, the projection into the orthogonal 
complement subspace of span{K̃a1 , · · · , K̃am

}. It is recognized that Qa1a2...ak
corresponds to the Gram-

Schmidt process, precisely,

Ea1a2...ak
=

Qa1a2...ak−1(K̃ak
)

˜ . (2.14)

‖Qa1a2...ak−1(Kak

)‖
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We have been using the notation {Ba1a2,...ak
}∞k=1 for the TM system in the Hardy space case. Now we 

use {Ea1a2...ak
}∞k=1 for the Gram-Schmidt orthonormalization of the multiple reproducing kernels {K̃ak

}∞k=1
in H given by (2.13) and (2.14). In the classical Hardy space case they are essentially the same, as, in fact, 
Ea1a2...ak

= ckBa1a2...ak
, where ck are unimodular constants, k = 1, · · · , (see Lemma 3.2 and the relevant 

references). None of the Ea1a2...ak
of any holomorphic Hilbert spaces other than the Hardy space seem to 

have such nice construction: the orthonormalization of the Szegö kernel kak
with respect to the span of 

{Ba1a2...aj−1}k−1
j=1 , which is Ba1a2...ak

, is just the product of the added normalized Szegö kernel eak
with 

the canonical Blaschke φa1a2...ak−1 . This extraordinary property, together with the complex unimodular 
property of Blaschke products on the circle, as well as the equivalent norm property restricted to the circle, 
offer decisive conveniences in developing the Hardy space theory in contrast with that of the non-Hardy 
space cases.

The n-best kernel approximation questions in the general context are formulated as follows. Let f ∈ H. 
Whether there exist a1, · · · , an, all in D, such that

‖f − Pa1···an
f‖ = inf{‖f − Pb1···bnf‖ : (b1 · · · bn) ∈ Dn}? (2.15)

We note that a finite and non-negative infimum defined by the right-hand-side of (2.15) always exists. 
The infimum value will be denoted as df (n) in the rest part of this paper. Since n is fixed, df (n) is often 
abbreviated as df . The n-best problem addresses existence of an n-tuple (a1, · · · , an) that gives rise to the 
infimum value. Further more, if there exist such (a1, · · · , an), how to find all of them computationally? In 
the present paper we will prove the following existence result.

Theorem 2.1. Suppose that H is a RKHS of holomorphic functions satisfying (i), (ii), and (iii), and n is 
a positive integer. Then there must hold one of the following two cases: (1) f is a linear combination of 
K̃b1 , · · · , K̃bm1

for some m1-tuple (b1, · · · , bm1) ∈ Dm1 , m1 ≤ n; or (2) there exists an n-tuple (a1, · · · , an) ∈
Dn such that (2.15) holds for a positive infimum df > 0. Moreover, in the case,

df = ‖f −
n∑

l=1

〈f,Ea1···al
〉Ea1···al

‖. (2.16)

3. Some technical lemmas

We start with giving some descriptions of the idea of the proof. We first admit that the infimum (2.15) is 
attainable through a sequence of n-tuples (a(l)

1 , · · · , a(l)
n ), l = 1, 2, · · · , when n parameters are truly necessary. 

Through a compact argument, and without loss of generality, we may assume that liml→∞ a
(l)
k = ak ∈ D, k =

1, · · · , n. We are to prove in such case all the limiting points ak are, in fact, right inside the open unit disc but 
not on the boundary. To quantitatively show this we would have to compute the projections, through using 
the Gram-Schmidt (GS) orthogonalization, of f onto the spans of the involved reproducing kernels. The GS 
process then establishes the mutual relations between each l-level parameters. The technical difficulty arises 
in proving the corresponding k-projection components tending to zero along with l → ∞ when the limiting 
point ak being, as assumed, on the boundary, and it has to be proved irrelevantly or uniformly with locations 
of the other parameters a(l)

j , l → ∞, j 	= k. The uniform convergence is proved eventually through use of the 
maximum modulus principle in one complex variable. To proceed the proof one needs to analyze the rela-
tions between zeros, orthogonality with reproducing kernels, orthogonal projections, zero-reproducing kernel 
Hilbert spaces and Blaschke-weighted reproducing kernel Hilbert spaces, and boundedness behavior of an 
analytic function after applying GS operation. The details are treated through a series of technical lemmas.

We will use the notation fa1a2...ak
= Qa1a2...ak

f , where aj , j = 1, · · · , k, are allowed to repeat.

Lemma 3.1. If aj is among a1, · · · , ak, then fa1a2...ak
(aj) = 0, including the multiplicity.
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Proof. The proof is straightforward if a1, · · · , ak are all different. In that case l(aj) = 1, j = 1, · · · , k. Due 
to the self-adjoint property of the projection operators and the orthogonality gained from G-S process, for 
aj being among a1, · · · , ak,

fa1a2...ak
(aj) = 〈Qa1a2...ak

f,Kaj
〉

= 〈f,Qa1a2...ak
Kaj

〉
= 〈f, (I − Pa1a2...ak

)Kaj
〉

= 〈f, 0〉
= 0.

Let aj have multiplicity l(aj) > 1, and as1 = as2 = · · · = asl(aj) = aj . For m = 1, · · · , l(aj), in view of 
(2.11),

(
d

dz

)m−1

[fa1a2...ak
](aj) = 〈

(
d

dz

)m−1

Qa1a2...ak
f,Kaj

〉

= 〈f,Qa1a2...ak

(
d

dw

)m−1

Kw(z)|w=aj
〉

= 〈f, (I − Pa1a2...ak
)K̃aj

〉
= 0.

So, fa1a2...ak
has l(aj)-multiple zero at aj . �

The new methodology of this paper involves higher order generalized backward shift operator

Qa1···am−1(f)(z)
φa1···am−1(z)

and its factorization (see Lemma 3.2 below). The order-1 generalized backward shift operator Qa/[ z−a
1−az ]

gives rise to what we call reduced remainder ([44]) that plays a central role in the formulation of AFD.

Lemma 3.2. Let a1, · · · , am be complex numbers in D allowing multiplicity. Then

(1) In the general H space setting the Gram-Schmidt orthonormalization has the explicit representations

Ea1···am
(z) =

Qa1···am−1(Kam
)(z)

‖Qa1···am−1(Kam
)‖ =

K̃am
(z) −

∑m−1
l=1 〈K̃am

, Ea1···al
〉Ea1···al

(z)
‖K̃am

−
∑m−1

l=1 〈K̃am
, Ea1···al

〉Ea1···al
‖

. (3.17)

(2) In the Hardy space case, with the notations defined in (1.5), (1.3) and (1.4), the function given by 
(3.17) is identical with eiceam

(z)φa1···am−1(z), where

eic =
φa1···am−1

(am)
|φa1···am−1

(am)|
.

There further hold the relations

eiceam
(z)φa1···am−1(z) = eicBa1···am

(z),

〈f,Ea1···am
〉Ea1···am

= 〈f,Ba1···am
〉Ba1···am

, (3.18)



T. Qian / Appl. Comput. Harmon. Anal. 67 (2023) 101568 9
and

〈f,Ea1···am
〉 =

Qa1···am−1(f)(am)
φa1···am−1(am)

√
1 − |am|2. (3.19)

(3) In the general H space setting, the higher order generalized shift operators (to generalize the reduced 
remainders) can be factorized as

Qa1···am−1(f)(z)
φa1···am−1(z)

=
(
Qam−1

φam−1

◦ · · · ◦ Qa1

φa1

)
(f)(z). (3.20)

Proof. The proofs of (1) and (2) are referred to [43]. We now prove (3). For k > 1, denote by gk the k-reduced 
remainder ([44])

gk+1(z) = gk(z) − 〈gk, Eak
〉Eak

(z)
φak

(z) =
(
Qak

φak

)
(gk)(z),

where g1 = f . Inductively there holds

gk+1(z) =
(
Qak

φak

◦ Qak−1

φak−1

)
(gk−1)(z) =

(
Qak

φak

◦ Qak−1

φak−1

◦ · · · Qa1

φa1

)
(f)(z).

On the other hand, the AFD formulation given in [44] implies

Qa1···ak
f = gk+1

k∏
j=1

φaj
.

We thus have

gk+1 = Qa1···ak
f∏k

j=1 φaj

=
(
Qak

φak

◦ Qak−1

φak−1

◦ · · · Qa1

φa1

)
(f). �

Remark 3.3. It is recognized that the operator Qa

φa
is the generalized backward shift operator defined in [44]. 

Repeating use of the operator yields the reduced remainders Qa1···ak
f∏k

j=1 φaj

. The following lemma shows that the 

reduced remainders of a function bounded by M are still bounded with explicit bounds in terms of M and 
the involved parameters a1, · · · , ak. The result plays a crucial role in the proof of the main result of the 
paper.

Lemma 3.4. Let f be an analytic function in an open neighborhood of D and

|f(z)| ≤ M

for some M > 0 on D. Then for any sequence a1, a2, ..., ak ∈ D the reduced remainder functions

fa1a2...ak
(z)

φa1a2...ak
(z)

are analytic in an open neighborhood of D with the bounds over D:∣∣∣∣ fa1a2...ak
(z)

φa1a2...ak
(z)

∣∣∣∣ ≤ M(1 + CH)k, z ∈ D, (3.21)

where CH is the constant in (1.9).
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Proof. For a1 ∈ D and z ∈ ∂D,

|fa1(z)| = |f(z) − 〈f,Ea1〉Ea1(z)|

≤ |f(z)| + |f(a1)|
|Ka1(z)|
‖Ka1‖2

≤ |f(z)| + |f(a1)|CH

≤ M(1 + CH).

Since the zero of φa1 is a zero of Qa1f , Qa1f

φa1
is a holomorphic function in an open neighborhood of D. The 

maximum modulus principle over D gives
∣∣∣∣Qa1f(w)
φa1(w)

∣∣∣∣ ≤ max{|fa1(z)| : z ∈ ∂D} ≤ M(1 + CH)

for all w ∈ D. By invoking the result of (iii), Lemma 3.2, and repeating k times the above estimation 
procedure for Qa1f

φa1
, we obtain the bounds claimed in the statement of the lemma. �

We will first prove the following result which is directly related to the n = 1 case of existence of n-best 
kernel approximation, and on the other hand, it is by itself important.

Lemma 3.5. With the general H space setting, Boundary Vanishing Condition (BVC) holds. That is,

lim
|a|→1−

|〈f,Ea〉| = 0. (3.22)

Proof. Due to the assumption of the underlying Hilbert space the given function f ∈ H may be approx-
imated in energy within an error ε > 0 by a bounded holomorphic function g as a linear combination of 
some parameterized reproducing kernels. By the Cauchy-Schwarz inequality, we have

|〈f,Ea〉| ≤ |〈f − g,Ea〉| + |〈g,Ea〉| ≤ ‖f − g‖ + |g(a)|
‖Ka‖

≤ ε + |g(a)|
‖Ka‖

.

As a consequence of (1.8) and boundedness of g, BVC (3.22) is concluded. �
For any zero set Z possibly with multiplicities we use the general notation KZ(z, a) for the reproducing 

kernel at a of the zero space HZ , where

HZ = {f ∈ H : f vanishes at points in Z including multiplicities}.

The space HZ uses the same inner product as H. We denote by HφZ
the Hilbert space

HφZ
= {f : D → C : f is analytic, ‖fφZ‖H < ∞},

where φZ is the canonical Blaschke product generated by the elements of Z including multiplicities. The 
inner product of HφZ

is denoted as 〈·, ·〉HφZ
. The reproducing kernel of HφZ

is denoted KφZ
. In this paper 

we only need to treat zero sets Z with finite points. Note that H ⊂ HφZ
, and ‖f‖HφZ

≤ ‖f‖H.
The next two lemmas follow similar idea in [28,67,68,20,51].

Lemma 3.6. For any finite zero set Z, by denoting KZ(z, w) the reproducing kernel of the zero space HZ, 
there holds
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KZ(z, w) = φZ(z)KφZ
(z, w)φZ(w) (3.23)

and

‖KZ(·, w)‖H ≤ ‖KφZ
(·, w)‖HφZ

, (3.24)

where φZ is the canonical Blaschke product defined by Z, HφZ
is the |φZ |2-weighted H space, KφZ

is its 
reproducing kernel. As a consequence, the normalized reproducing kernel is

KZ(z, w)
‖KZ(·, w)‖ = φZ(w)

|φZ(w)|
φZ(z)KφZ

(z, w)
K

1/2
φZ

(w,w)
. (3.25)

Proof. We note that KZ(z, w) has zero set Z for the variable z when w is fixed in a neighborhood of D; 
and zero set Z for the variable w when z is fixed in a neighborhood of D. Therefore, φ−1

Z (z)KZ(z, w)φ−1
Z (w)

is analytic for z in a neighborhood of D, and anti-analytic for w in a neighborhood of D. Let f ∈ HφZ
. In 

the case fφZ ∈ HZ . We have

〈f, φ−1
Z (·)KZ(·, w)φ−1

Z (w)〉HφZ
= φ−1

Z (w)〈fφZ ,KZ(·, w)〉HZ

= φ−1
Z (w)〈fφZ ,KZ(·, w)〉HZ

= φ−1
Z (w)f(w)φZ(w)

= f(w).

Therefore, HφZ
is a RKHS. Due to uniqueness of reproducing kernel, its kernel KφZ

(z, w) satisfies the 
relation (3.23). To prove (3.24) we have

‖KZ(·, w)‖2
H = KZ(w,w)

= φZ(w)KφZ
(w,w)φZ(w)

= KφZ
(w,w)|φZ(w)|2

≤ KφZ
(w,w)

= ‖KφZ
(·, w)‖2

HφZ
.

The relation (3.25) is just by dividing KZ(z, w) with ‖KZ(·, w)‖ =
√
KZ(w,w) and invoking (3.23). �

Lemma 3.7. For any Hilbert space H with reproducing kernel K and any a ∈ D there hold

K(a, a) = sup{|f(a)|2 : f ∈ H, ‖f‖ ≤ 1} (3.26)

and

K(a, a) ≤ KφZ
(a, a). (3.27)

Proof. Recall that Ea(z) = K(z, a)/‖Ka‖. On one hand, ‖Ea‖ = 1. On the other hand, for any f satisfying 
‖f‖ = 1, using the Cauchy-Schwarz inequality,

|f(a)|2 = |〈f,Ka〉|2 ≤ ‖Ka‖2 = K(a, a).

So, Ea is a solution for the extremal problem. Using this argument also to HφZ
and KφZ

, we obtain
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K(a, a) = sup{|f(a)|2 : f ∈ H, ‖f‖H ≤ 1}
≤ sup{|f(a)|2 : f ∈ HφZ

, ‖f‖HφZ
≤ 1}

= KφZ
(a, a),

as desired. �
4. The proof of Theorem 2.1

The proof of Theorem 2.1 will not be according to mathematical induction. The case n = 1, therefore, 
does not need to be firstly addressed. Since the proof for n = 1 contains a basic idea for general n, we 
incorporate its proof for easy reference later.

To prove existence of 1-best approximation amounts to finding a1 ∈ D such that

|〈f,Ea1〉| = |f(a1)|
‖Ka1‖

attains the global maximum value over all possible choices of the parameter in D (this is what we called 
Maximal Selection Principle (MSP) in the previous relevant studies ([44,48,49])). In fact, if f is not identical 
with the zero function, due to density of the span of the parameterized reproducing kernels, there exists 
b ∈ D such that |〈f, Eb〉| > 0. Denote |〈f, Eb〉| = δ. BVC proved in Lemma 3.5 amounts that there exists 
0 < r1 < 1 such that |a| > r1 implies |〈f, Ea〉| < δ/2. Therefore,

max{|〈f,Ea〉| : |a| ≤ r1} = sup{|〈f,Ea〉| : a ∈ D}. (4.28)

Note that |〈f, Ea〉| is a continuous function in a defined in the compact set {a ∈ C : |a| ≤ r1}. Thus the 
global maximum of |〈f, Ea〉| in D is attainable, and, in fact, in {a ∈ C : |a| ≤ r1}.

Next we turn to the general n ≥ 1 cases. For the n = 1 case, all the extra cumbersome such as those in 
the equality and inequality chain (4.31) vanish. We first note that (a1, · · · , an) ∈ Dn gives rise to equality 
(2.16) if and only if

n∑
l=1

|〈f,Ea1···al
〉|2 = sup{

n∑
l=1

|〈f,Eb1···bl〉|2, (b1, · · · , bn) ∈ Dn}. (4.29)

To begin with the proof we assume that f itself is not expressible by a linear combination of m1 reproducing 
kernels for any m1 < n. Based on definition of supreme, one can find a sequence of n-tuples (a(l)

1 , · · · , a(l)
n ), l =

1, 2, · · · , with mutually distinct and non-zero components, that corresponds to a sequence of n-tuples of 
reproducing kernels (K

a
(l)
1
, · · · , K

a
(l)
n

), such that the square norms of the projections P
a
(l)
1 ···a(l)

n
(f) tend to the 

supreme (4.29). The distinct and non-zero requirements can be met owing to continuity of the inner product. 
Since (a(l)

1 , · · · , a(l)
n ) ∈ Dn, through a Bolzano-Weierstrass compact argument, we may assume, without loss 

of generality, that the sequence of the n-tuples (a(l)
1 , · · · , a(l)

n ) itself converges to (a1, · · · , an) ∈ Dn. If we 
have a1, · · · , an all in D, then we are done due to continuity of the inner product, with multiple kernels 
when multiplicities occur. This gives rise to the case (1) of the Theorem 2.1 for m1 = n when df = 0; and 
the case (2) when df > 0.

Now we deduce that if not all the limiting points a1, · · · , an locate within D, then there will hold the 
case (1) for some m1 < n, being contrary with our assumption beneath (4.29). Assume that at least one 
of a1, · · · , an are on the boundary ∂D. Since the projections P

a
(l)
1 ···a(l)

n
(f) and Q

a
(l)
1 ···a(l)

n
(f) are irrelevant 

with the order, by re-ordering when necessary, we may assume without loss of generality that a1, · · · , am1

are in D, and am1+1, · · · , an are on ∂D, with m1 < n, and in particular, liml→∞ |a(l)
n | = 1. In the case we 

will show
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lim
l→∞

|〈f,E
a
(l)
1 a

(l)
2 ...a

(l)
n
〉| = 0, (4.30)

regardless the locations of a(l)
k , k = 1, · · · , n − 1 and l = 1, 2, · · · . If (4.30) can be proved, by repeating the 

same argument n −m1 times we result in that the latter n −m1 rows of the l-sequence of the n-tuples all 
have no contribution. We show, in the case, df > 0 cannot hold. For, if df > 0 held, then df had rooms to 
be further reduced involving more reproducing kernels: Like what we did in proving the case n = 1, am1+1
can now be selected, due to the density of the span of the parameterized reproducing kernels, such that 
a
(l)
m1+1 = am1+1, l = 1, · · · , and |〈f −Pa1···am1

f, Eam1+1〉| > 0, and so on. This is contrary with df being the 
infimum. But, df cannot be zero either, for in such case we got that f is a linear combination of m1 < n

multiple reproducing kernels, again contrary with our assumption. Thus, all that remain to be proved is 
(4.30). By using the same density argument as we prove BVC in Lemma 3.5 we may assume that f itself is 
an analytic function in a neighborhood of the closed unit disc D with a bound M .

Now we proceed with the main technical step of the proof. Denote by Z(l)
n−1 the l-level zero set 

(a(l)
1 , a(l)

2 , ..., a(l)
n−1). With the above preparations we have

〈f,E
a
(l)
1 a

(l)
2 ...a

(l)
n
〉H

= 〈f
a
(l)
1 a

(l)
2 ...a

(l)
n−1

, E
a
(l)
1 a

(l)
2 ...a

(l)
n
〉H

⎛
⎝E

a
(l)
1 a

(l)
2 ...a

(l)
n

=
Q

a
(l)
1 a

(l)
2 ...a

(l)
n−1

(K
a
(l)
n

)

‖Q
a
(l)
1 a

(l)
2 ...a

(l)
n−1

(K
a
(l)
n
‖ =

Q2
a
(l)
1 a

(l)
2 ...a

(l)
n−1

(K
a
(l)
n

)

‖Q
a
(l)
1 a

(l)
2 ...a

(l)
n−1

(K
a
(l)
n
‖

⎞
⎠

=
〈
f
a
(l)
1 a

(l)
2 ...a

(l)
n−1

,
K

Z
(l)
n−1

(·, a(l)
n )

‖K
Z

(l)
n−1

(·, a(l)
n )‖

〉
H

(
Q

a
(l)
1 a

(l)
2 ...a

(l)
n−1

(K
a
(l)
n

) = K
Z

(l)
n−1

(·, a(l)
n )

)

=
φ
Z

(l)
n−1

(a(l)
n )

|φ
Z

(l)
n−1

(a(l)
n )|

〈f
a
(l)
1 a

(l)
2 ...a

(l)
n−1

,Kφ
Z

(l)
n−1

(a(l)
n , a(l)

n )−1/2φ
Z

(l)
n−1

Kφ
Z

(l)
n−1

(·, a(l)
n )〉H (Lemma 3.6)

=
φ
Z

(l)
n−1

(a(l)
n )

|φ
Z

(l)
n−1

(a(l)
n )|

〈
f
a
(l)
1 a

(l)
2 ...a

(l)
n−1

φ
Z

(l)
n−1

, |φ
Z

(l)
n−1

|2Kφ
Z

(l)
n−1

(·, a(l)
n )

〉
H

1√
Kφ

Z
(l)
n−1

(a(l)
n , a

(l)
n )

(Lemma 3.6)

=
φ
Z

(l)
n−1

(a(l)
n )

|φ
Z

(l)
n−1

(a(l)
n )|

〈
f
a
(l)
1 a

(l)
2 ...a

(l)
n−1

φ
Z

(l)
n−1

,Kφ
Z

(l)
n−1

(·, a(l)
n )

〉
Hφ

Z
(l)
n−1

1√
Kφ

Z
(l)
n−1

(a(l)
n , a

(l)
n )

=
φ
Z

(l)
n−1

(a(l)
n )

|φ
Z

(l)
n−1

(a(l)
n )|

f
a
(l)
1 a

(l)
2 ...a

(l)
n−1

(a(l)
n )

φ
Z

(l)
n−1

(a(l)
n )

1√
Kφ

Z
(l)
n−1

(a(l)
n , a

(l)
n )

(Lemma 3.6 and reproducing kernel property) .

(4.31)

To conclude the theorem it is sufficient to show that the above quantity tends to zero along with D 
 a
(l)
n →

an ∈ ∂D uniformly in a(l)
1 , · · · , a(l)

n−1 ∈ D for l = 1, 2 · · · It then suffices to prove

1o.

f
a
(l)
1 a

(l)
2 ...a

(l)
n−1

(a(l)
n )

φ (l) (a(l)
n )
Zn−1
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is bounded uniformly in a(l)
1 , · · · , a(l)

n−1 and a(l)
n , l = 1, 2, · · · ; and

2o.

lim
l→∞

Kφ
Z

(l)
n−1

(a(l)
n , a(l)

n ) = ∞

uniformly in a(l)
1 , · · · , a(l)

n−1, l = 1, 2, · · ·
Now we show assertion 1o. First by Lemma 3.1 the function

g
Z

(l)
n−1

(z) =
f
a
(l)
1 ···a(l)

n−1
(z)

φ
Z

(l)
n−1

(z)

is analytic in a neighborhood of D. By invoking the maximum modulus principle for one complex variable 
in D, Lemma 3.4, as well as the fact that all finite Blaschke products are of modulus 1 on the boundary 
∂D, we have

max{|g
Z

(l)
n−1

(z)| : z ∈ D} = max{|g
Z

(l)
n−1

(ζ)| : ζ ∈ ∂D}

= max{
∣∣∣fa(l)

1 ···a(l)
n−1

(eit)
∣∣∣ : t ∈ ∂D}

≤ M(1 + CH)n−1,

concluding the uniform boundedness claimed of 1o. The assertion 2o is a consequence of the condition (1.8)
and Lemma 3.7.

5. Applications

5.1. The classical Hardy space

By taking H = H2(D), we are with the inner product (1.1), and the reproducing kernel K(z, w) =
kw(z) = 1

1−wz . Since

K(a, a) = 1
1 − |a|2 → ∞ as |a| → 1, and |Ka(z)|

K(a, a) = 1 − |a|2
|1 − az| ≤ 2,

the conditions (1.8) and (1.9) are satisfied. We hence have existence of the n-best approximation.

5.2. The Bergman spaces

Let H be the weighted Bergman spaces with the definition and notation

A2
α(D) = {f : D → C | f is holomorphic in D, and ‖f‖2

A2
α(D) =

∫
D

|f(z)|2dAα < ∞},

where α ∈ (−1, ∞), dAα = (1 + α)(1 − |z|2)αdA(z), and dA = dxdy
π , z = x + iy, is the normalized area 

measure of the unit disc. The inner product of A2
α(D) is defined as

〈f, g〉A2
α(D) =

∫
f(z)g(z)dAα.
D
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In the sequel we sometimes write ‖ · ‖A2
α(D) and 〈·, ·〉A2

α(D) briefly as ‖ · ‖ and 〈·, ·〉, and A2
α(D) as A2

α.
A2

α is a RKHS with reproducing kernel

kαa (z) = 1
(1 − az)2+α

.

By invoking the reproducing kernel property we have

‖kαa ‖2 = kαa (a) = 1
(1 − |a|2)2+α

. (5.32)

This shows that the condition (1.8) holds for all A2
α. A simple computation gives

kαa (z)
kαa (a) = (1 − |a|2)2+α

(1 − az)2+α
≤ 22+α.

Hence, the reproducing kernel satisfies the condition (1.9). Therefore, an n-best approximation exists in 
all the weighted Bergman spaces. This is a re-proof of the main result of [51].

5.3. The weighted Hardy spaces

Let W (k) be a sequence of non-negative numbers satisfying limk→∞ W (k) 1
k ≥ 1 ([33]). Denote by HW (D)

the W -weighted Hardy H2-space defined by

HW (D) = {f : D → C : f(z) =
∞∑
k=0

ckz
k, z ∈ D, ‖f‖HW

=
∞∑
k=0

W (k)|ck|2 < ∞}.

We will be considering an ordered sequence of W -weighted Hardy spaces defined by the weights Wβ(k) =
(1 + k)β , −∞ < β < ∞. This class of function spaces is a generalization of the Hardy and the weighted 
Bergman spaces. In fact, HW0(D) = H2(D), and HWβ

(D) = A2
α(D), α = −β−1, β < 0 (α > −1), HW−1(D)

is the standard Bergman, and HW1(D) is the Dirichlet space in D. The spaces HWβ
(D) are, as a matter 

of fact, equivalent with the Hardy-Sobolev spaces W β
2 ,2. From the last two subsections we know that the 

spaces HWβ
(D), β ≤ 0, have n-best approximation. We now extend the result to 0 < β ≤ 1.

The inner product of HWβ
(D), −∞ < β < ∞, is

〈f, g〉 =
∞∑
k=0

(k + 1)βckdk,

where ck and dk are, respectively, the coefficients of the Taylor expansions of f and g. From this it can be 
directly verified that the reproducing kernel of HWβ

(D) is

kβa (z) =
∞∑
k=0

(za)k

(k + 1)β .

The function

kβa (a) =
∞∑
k=0

|a|2k
(k + 1)β (5.33)

is an increasing function in |a|, and for any large N ,
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lim|a|→1−k
β
a (a) ≥ lim

|a|→1−

N∑
k=0

|a|2k
(k + 1)β =

N∑
k=0

1
(k + 1)β .

Therefore, for all β ≤ 1,

lim
|a|→1−

kβa (a) = ∞,

verifying (1.8). Next we show that the weighted Hardy spaces kernels kβa satisfy the condition (1.9). This 
requires to prove that the function |k

β
a (z)|

kβ
a (a)

is uniformly bounded in a, z ∈ D. The following estimation uses 
the well known technique for summing up series of positive decreasing entries: If f is a positive decreasing 
function integrable over (0, ∞), then

∞∫
1

f(t)dt ≤
∞∑
k=1

f(k) ≤
∞∫
0

f(t)dt.

The estimation amounts to numerically comparing some elementary integrals. Denote by |a| = r < 1. Then

|kβa (z)|
kβa (a)

=
|
∑∞

k=0
(az)k

(1+k)β |∑∞
k=0

|a|2k
(1+k)β

≤
∑∞

k=0
rk

(1+k)β∑∞
k=0

r2k

(1+k)β

≤
∫∞
0

rx

(1+x)β dx∫∞
1

r2x

(1+x)β dx

=

∫∞
0

rx

(1+x)β dx

2β−1
∫∞
2

rx

(2+x)β dx
(change of variable)

=

∫∞
0

rx

(1+x)β dx

2β−1
(∫∞

0
rx

(2+x)β dx−
∫ 2
0

rx

(2+x)β dx
) (∞∞ type when r → 1−)

≤
∫∞
0

rx

(1+x)β dx

2β−2
∫∞
0

rx

(1+x)β
(1+x)β
(2+x)β dx

(if r ≥ some r0 ∈ (0, 1))

≤ 4. (mean − value theorem of integration)

For r ≤ r0 the estimated quantity also has a uniform bound. Hence, for β ≤ 1, the spaces HWβ
(D) satisfy 

the three conditions (i), (ii), and (iii). By invoking Theorem 2.1 the n-best approximation problems have 
solutions in those spaces.

Remark 5.1. (For the spaces HWβ
(D), β > 1) The spaces HWβ

(D), β > 1, do not fall into the category 
governed by Theorem 2.1, as, owing to (5.33), the condition (1.8) is not satisfied. Recall the Sobolev 
Embedding theorem asserting that W k,p ⊂ Cr,α if m < pk, 1p − k

m = − r+α
m , m is the dimension. In our case 

m = 1, p = 2, k = β
2 , and, in particular, β = pk > 1. It hence concludes that the functions in the spaces 

HWβ
(D), β > 1, are all continuously extendable to the closed unit disc, and the norm square ‖kβa‖2 = kβa (a)

given by (5.33) does not have singularity for |a| = 1. Based on these, as well as continuity of the inner 
product, we conclude existence of n-best approximations of the spaces for β > 1.

The results of this section are summarized as
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Theorem 5.2. For all Hardy-Sobolev spaces HWβ
(D), −∞ < β < ∞, there exist solutions to the n-best kernel 

approximation problem.

6. Stochastic n-best approximation

Let (Ω, F , dP ) be a probability space, and, as in the previous sections, H be a RKHS of analytic functions 
in D with reproducing kernel Kw, w ∈ D. We will be studying stochastic signals f(z, ξ), where ξ ∈ Ω and 
z ∈ D : We assume that for a.s. ξ ∈ Ω, f(·, ξ) is a function in H; and, for a.e. z ∈ D, f(z, ·) is a random 
variable. We will use the notation fξ(z) = f(z, ξ). Associated with the probability space and the RKHS we 
define a Bochner type space ([21])

L2(H,Ω) = {f : D × Ω → C : ‖f‖2
L2(H,Ω) = Eξ‖fξ‖2

H < ∞}, (6.34)

where Eξ denotes the expectation, and precisely,

Eξ‖fξ‖2
H =

∫
Ω

‖fξ‖2
HdP (ξ).

We often use the simplified notation N = L2(H, Ω).
The following theorem generalizes the existence result for stochastic n-best approximation for the Hardy 

space (see [50]) to the RKHSs satisfying the conditions (i), (ii), and (iii) as assumed in Theorem 2.1.

Theorem 6.1. Let H be a RKHS of analytic functions in the unit disc satisfying the conditions (i), (ii), 
and (iii) in §1, and Ω a probability space. Let N = L2(H, Ω) be the associated Bochner type space as above 
defined. Let f be any non-zero random signal. Then for any positive integer n, either of the following two 
cases holds: (1) For some 1 ≤ m1 ≤ n, there exists an m1-tuple of constant parameters (a1, · · · , am1) ∈ Dm1

such that f is identical with the orthogonal expansion

f(z, ξ) =
m1∑
k=1

〈fξ, Ek〉HEk(z); (6.35)

or (2) There exists an n-tuple of constant parameters (a1, · · · , an) ∈ Dn such that

‖f −
n∑

k=1

〈fξ, Ek〉HEk‖N (6.36)

attains its positive infimum over all possible n-orthonormal systems {Ek}, where in both cases, {Ek}mk=1 is 
the orthonormal system generated by (K̃a1 , · · · , K̃am

), 1 ≤ m ≤ n.

The proof of Theorem 2.1 of [50] for the stochastic Hardy space case cannot be directly adopted, for, in 
the present case no density argument based on the boundary value of the given function on ∂D is available. 
In §3 we established, by using a new technical method, the pointwise convergence result (4.30) which is 
crucial to in proving Theorem 6.1.

Proof. In the proof of Theorem 2.1 we already show that, for each ξ outside an event in Ω of probability 
zero, there holds uniformly in a(l)

1 , a(l)
2 , ..., a(l)

n−1, l = 1, 2, · · · , that

lim |〈fξ, E (l) (l) (l)〉H|2 = 0.

l→∞ a1 a2 ...an
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By using the Cauchy-Schwarz inequality for the space H we have a dominating function of the function 
sequence on the left hand side:

|〈fξ, Ea
(l)
1 a

(l)
2 ...a

(l)
n
〉H|2 ≤ ‖fξ‖2 ∈ L1(Ω).

Then the Lebesgue dominated convergence theorem be invoked to conclude

lim
l→∞

Eξ|〈fξ, Ea
(l)
1 a

(l)
2 ...a

(l)
n
〉H|2 = 0 (6.37)

uniformly in a(l)
1 , a(l)

2 , ..., a(l)
n−1, l = 1, 2, · · · . Based on this the contradiction argument used in proving The-

orem 2.1 of [50] may be adopted to conclude the theorem. �
Remark 6.2. (Impact to Algorithm) This present paper only treats the existence aspect of the n-best prob-
lem. Based on the obtained estimates, however, a mathematical algorithm to actually get a solution is now 
on its way. We now cite the crucial step to reduce the problem to a global optimization one of a differential 
function defined in a compact set. Separate studies will be devoted to the computation aspect. To have an 
n-best approximation algorithm we are under the assumption that the given function f is not expressible 
by any m-linear combination of multiple kernels for m ≤ n − 1. This implies that df (n − 1) > 0, and there 
exists an n-tuple (b1, · · · , bn) ∈ Dn such that for some ε > 0

‖f − Pb1···bnf‖ = df (n− 1) − ε. (6.38)

By using (4.30) one can find δ > 0 such that if |an| > 1 − δ, then

‖f − Pa1···an−1an
f‖ > df (n− 1) − ε

for any a1, · · · , an−1 in D. Since Pa1···an−1an
f is symmetric in a1, · · · , an, we conclude

‖f − Pa1···an−1an
f‖ > df (n− 1) − ε

whenever |ak| > 1 −δ for some k = 1, · · · , n. Owing to the observation (6.38) we have df (n) ≤ df (n −1) − ε. 
When the infimum attains at (ã1, · · · , ̃an−1, ̃an), that is,

‖f − Pã1···ãn−1ãn
f‖ = df (n),

there holds |ãk| ≤ 1 − δ for all k = 1, · · · , n. This concludes that the global minimum value df (n) is only 
attainable in the compact set (1 − δ)D

n
. In view of the relation (6.37) the same conclusion holds for the 

stochastic case.
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