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a b s t r a c t

Generating large-scale samples of stationary random fields is of great importance in the fields such as
geomaterial modeling and uncertainty quantification. Traditional methodologies based on covariance
matrix decomposition have the difficulty of being computationally expensive, which is even more
serious when the dimension of the random field is large. This paper proposes an efficient stochastic
realization approach for sampling Gaussian stationary random fields from a systems and control
point of view. Specifically, we take the exponential and squared exponential covariance functions as
examples and make a decoupling assumption when there are multiple dimensions. Then a rational
spectral density is constructed in each dimension using techniques from covariance extension, and the
corresponding autoregressive moving-average (ARMA) model is obtained via spectral factorization. As a
result, samples of the random field with a specific covariance function can be generated very efficiently
in the space domain by implementing the ARMA recursion using a Gaussian white noise input. Such
a procedure is computationally cheap due to the fact that the constructed ARMA model has a low
order. Furthermore, the same method is integrated to multiscale simulations where interpolations
of the generated samples are achieved when one zooms into finer scales. Both theoretical analysis
and simulation results show that our approach performs favorably compared with covariance matrix
decomposition methods.

© 2023 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

There is a vast number of applications of Gaussian random
ields across several engineering and scientific disciplines includ-
ng systems and control [1,2], signal processing [3,4], geotechnical
ngineering [5–9], image processing [10], biology, and meteo-
ology [11,12]. In these applications, we often face the standard
roblem of sampling a random field which could be used e.g., for
he numerical solution of a stochastic partial differential equation
PDE). In particular in geotechnical engineering, certain geoma-
erial properties are modeled as zero-mean stationary random
ields indexed by spatial or temporal variables. Then the corre-
ations between random variables in the field are described by
he covariance function [13]. In order to carry out simulations
n geomaterial modeling, a first step is to generate (possibly
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large-scale) samples of a stationary random field such that its
covariances coincide with the values of a prescribed covariance
function. A traditional method for this problem is called Covari-
ance Matrix Decomposition (CMD) [14] which employs e.g., the
Cholesky factorization (see also [15] for a modified version).
Such a method in general costs O(N3) flops given an N × N
matrix, which is computationally prohibitive when the covariance
matrix has a large size. The latter case is typical for multidi-
mensional random fields. For example, a 3-d random field with
a (moderate) size 100 × 100 × 100 results in a 106

× 106

covariance matrix after vectorization. Thus applications of CMD
are seriously limited to small-scale and unidimensional cases
(time series). However, many practical problems involve multi-
dimensional random fields [16,17] and the ability to efficiently
generate large-scale samples is also important.

In the literature, there are a number of methods to han-
dle such a problem. Recent developments include [17] which
aims to embed a finite multilevel Toeplitz covariance matrix
into a larger positive definite multilevel circulant matrix, fol-
lowing earlier works on the embedding problem for (one-level)
Toeplitz covariance matrices [18,19]. Then the fast Fourier trans-
form (FFT) can be used to compute the spectral decomposition
y random fields: A stochastic realization approach. ISA Transactions (2023),
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f the (multilevel) circulant matrix at a reduced cost. Another
irection is to use the Karhunen–Loève expansion for the contin-
ous covariance kernel and to truncate the expansion for practical
omputations [4,7,20]. A different strategy for the approximation
f the covariance matrix involves the notion of H matrices [21]
f which the square root can be computed at an almost linear
ost. More recently, hierarchical sampling approaches based on
he solution of stochastic PDEs have also been proposed in [11,12,
2,23] with applications to multilevel Markov Chain Monte Carlo
imulations.
Although the above works are mathematically interesting and

eal with general covariance functions, difficulties can still arise
hen one wants to generate very large-scale samples with a

imited hardware configuration (say, a PC), especially when the
imension is greater than or equal to three. In order to handle
he latter issue, the paper [24] made a decoupling assumption on
the multivariable covariance function and proposed a Stepwise
CMD method which essentially computes the matrix square root
along each dimension and thus reduces the computational cost
compared to a full CMD. However, the space domain computation
in that paper can be once again greatly reduced if one is able to
recognize the frequency-domain structure of the covariance func-
tion, namely the spectral density of the random field. This is the
main idea behind the current paper. More specifically, we draw
inspiration from the systems and control literature on stochastic
realization [25] and rational covariance extension in which one
aims to describe an underlying random process with a linear
dynamical system driven by white noise. The latter topic has
undergone decades of development from scalar random processes
to vector random fields, see [26–38] and the references therein.
In particular, we have shown that the exponential covariance
function corresponds exactly to an autoregressive (AR) model (a
rational filter) of order one, which is easy to implement recur-
sively and permits the sample generation at a linear cost. The
decoupling assumption makes straightforward the generalization
to multidimensional random fields, and the resulting multidi-
mensional filter is simply a product of individual filters in each
dimension. In this way, the filtering procedure is also decoupled
as expected.

In addition, our approach is extremely suitable for multiscale
simulations, see e.g., [5], where the generated samples of a ran-
dom field are interpolated and fed into a numerical PDE solver in
order to obtain a refined solution. The usual interpolation method
samples the probability density of the fine-scale random variables
whose values are to be determined, conditioned on the coarse-
scale samples that have already been generated. The advantage
of our approach is that, once a suitable refined noise input has
been determined, only ‘‘boundary’’ samples that are necessary
to initiate the fine-scale ARMA recursions need to be computed
from the conditional probability density, and the rest fine-scale
samples are generated in the same fashion as the coarse-scale
sampling.

The outline of the paper is as follows. In Section 2 we state
the problem of sampling a stationary random field with a given
covariance function that can be decoupled in each dimension. In
Section 3 we propose a stochastic realization approach to the
sampling problem based on a set of moment equations, and in
Section 4 we focus on the solution to the moment equations given
an exponential or a squared exponential covariance function. In
Section 5 we integrate our method to multiscale simulations and
provide an explicit solution procedure for the bivariate expo-
nential covariance function. A number of numerical simulations,
including a comparison with the Stepwise CMD, are presented in
Section 6, and in Section 7 we draw the conclusions.
2

2. Background on sampling random fields

Let y(t, ω) be a d-dimensional real random field over a prob-
ability space (Ω,F, P) where t = (t1, . . . , td) ∈ Rd can be
interpreted as a space (or spatio-temporal) coordinate vector. For
each fixed t ∈ Rd, assume that y(t, ·) is a zero-mean real-valued
random variable with a finite variance, that is,

Ey(t, ·) = 0 and E [y(t, ·)]2 < ∞

where E indicates mathematical expectation. It is customary to
suppress the dependence on ω and write simply y(t). Assume
further that the random field under consideration is stationary,
which means that the covariance function

ρ(t, s) := E[y(t)y(s)]

depends only on the difference τ := t−s between the arguments,
so we can write ρ(τ) instead.1 Notice the symmetry ρ(−τ) =

ρ(τ).
In applications of geotechnical engineering, see e.g., [39,40],

it is often assumed that the covariance function has a decoupled
form, namely

ρ(τ) = ρ1(τ1)ρ2(τ2) · · · ρd(τd), (1)

where each ρj is a covariance function in one variable, and τj ∈ R
is the jth component of τ. In the following, since we shall be
concerned with the sampling problem of the random field y(t), let
us now define the sampled version of the random field as well as
the covariance function. Take τj = xjTj where Tj > 0 is sampling
istance and xj ∈ Z. Define a random field on the integer grid Zd

ia

s(x) = y(x1T1, . . . , xdTd) (2)

here the subscript s means ‘‘sampled’’. Then it is easy to deduce
hat the covariance function of the discrete random field ys is

s(k) = ρ(k1T1, . . . , kdTd) = ρ1(k1T1) · · · ρd(kdTd), (3)

here k = (k1, . . . , kd) ∈ Zd denotes the difference between two
iscrete grid points. The sampling problem can then be phrased
s follows.

roblem 1. Given a covariance function ρ(τ) of the form (1),
vector T = (T1, . . . , Td) of sampling distances, and a vector
= (N1, . . . ,Nd) of positive integers, generate samples of the

andom field ys(x) in (2) for x in the index set (a regular cuboid)
d
N := {(x1, . . . , xd) : 0 ≤ xj ≤ Nj − 1, j = 1, . . . , d} (4)

uch that its covariance function coincides with the sampled
ersion ρs(k) in (3).

The most straightforward approach for this problem is co-
ariance matrix decomposition mentioned in the Introduction.
ore precisely, since the index set (4) has a finite cardinality,
ll the samples can be stacked into a long vector y of dimension
N| :=

∏d
j=1 Nj. Then the covariance matrix Σ := E(yy⊤) could in

rinciple be evaluated elementwise according to (3). Problem 1
ould then be solved via simple linear algebra

= Lw, (5)

here w ∼ N (0, I) is an i.i.d. standard normal random vector of
imension |N|, and L is any matrix square root of Σ which can
n particular, be taken as the Cholesky factor such that LL⊤

= Σ .

1 This is also called second-order stationary or weak-sense stationary. In
ddition, if the covariance function ρ(τ) depends only on the length ∥τ∥ but

not on the specific direction τ, the random field is said to be ‘‘isotropic’’. See
Remark 1 at the end of this section.
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Fig. 1. A d-dimensional linear stochastic system with a white noise input.

owever, it is well known that the matrix factorization, which
s the major computational burden here, involves O(|N|

3) flops.
herefore, such a naive approach works only for random fields
ith a dimension d = 1 or 2 when the size of the samples |N| is
ot too large. For the generation of large-scale samples, one needs
o exploit the inherent structure of the covariance function in
rder to facilitate fast computation. The latter point is indeed the
heme of the next two sections where we will propose an efficient
tochastic realization approach to Problem 1. More specifically,
e consider two types of 1-d covariance functions of practical

nterest:

1. the exponential type

ρ(x) = σ 2e−α|x|, (6)

2. the squared exponential type

ρ(x) = σ 2e−α|x|2 , (7)

here σ 2 is the variance of the random field and α > 0 is a
parameter. The multidimensional covariance function is formed
through the product in (1). Notice that our method works also
for other types of covariance functions ρ(x) provided that the
decoupling assumption (1) holds. In this case, the spectral density
of the random field can be well approximated in each dimension
by a low-order rational model.

Remark 1. The exponential and the squared exponential covari-
ance functions are special cases of the Matérn family of covari-
ance functions, defined as

ρ(τ) = κ(∥τ∥/λ) where κ(r) = σ 2 2
1−ν

Γ (ν)
(
√
2ν r)νKν(

√
2ν r).

(8)

In the formulas above, τ ∈ Rd, ∥ · ∥ is the Euclidean norm, λ

the correlation length, σ 2 the variance, ν > 0 a smoothness
parameter, Γ the gamma function, and Kν the modified Bessel
unction of the second kind. Notice that the case ν = 1/2
corresponds to the exponential covariances, while ν = ∞ cor-
responds to the Gaussian function of the form κ(r) = σ 2e−r2/2,
see e.g., [17, Example 2.7]. Notice that a random field with a
covariance function ρ(τ) in (8) is called isotropic because the
covariance function depends on ∥τ∥ but not a specific direction.
This represents a much stronger condition than stationarity [41].
Indeed, the covariance function of a stationary random field can
take different values along different directions.

3. A stochastic realization approach

Let z = (z1, . . . , zd) be a vector of indeterminates. Con-
sider a d-dimensional discrete-‘‘time’’ linear stochastic system as
depicted in Fig. 1, where

W (z) =

∑
k∈Zd

γ (k) z−k (9)

is the transfer function, also called a shaping filter in the signal
processing literature. Here the function γ : Zd

→ R is called the
impulse response of the system and zk is a shorthand notation for
 o

3

zk11 · · · zkdd . Moreover, the symbol z−k can be interpreted as a k-
step delay operator. The system is excited by a normalized white
noise w(x) such that for any x ∈ Zd,

E[w(x)] = 0 and E[w(x + k)w(x)] = δk,0 =

{
1 if k = 0,
0 otherwise.

(10)

The output y(x) is a zero-mean stationary random field. Symbol-
ically, we write

y(x) = W (z)w(x) :=

∑
k∈Zd

γkw(x − k). (11)

Notice that this is a standard model for stationary processes
which goes back to the prediction theory of Wiener in the 1940s.

Let σ (k) := E[y(x + k)y(x)] be the covariance function of y(x)
and let T := [−π, π ) denote the frequency interval. Then the
spectral density of y(x) is by definition [3,25] the multidimen-
sional discrete-time Fourier transform (DTFT) of the covariance
function:

Φ(eiθ) =

∑
k∈Zd

σ (k) e−i⟨k, θ⟩, (12)

where the frequency vector θ = (θ1, . . . , θd) ∈ Td, eiθ :=

(eiθ1 , . . . , eiθd ) is a point on the d-torus (which is isomorphic to
Td), and ⟨k, θ⟩ := k1θ1+· · ·+kdθd is the standard inner product in
Rd. It then follows from the spectral theory of stationary random
fields [41] that

Φ(eiθ) = |W (eiθ)|2 (13)

where W (eiθ) =
∑

k∈Zd γ (k) e−i⟨k, θ⟩, so Φ(eiθ) takes nonnegative
values. On the other hand, if the spectral density Φ satisfies
certain analytic properties, then it admits a spectral factor W ,
see [25].

We are mostly interested in the case where W (z) is a rational
function, that is, it can be expressed as a ratio of two polynomials:

W (z) =
b(z)
a(z)

=

∑
k∈Λ+,2

bkz−k∑
k∈Λ+,1

akz−k , (14)

here

+,1 := {(k1, . . . , kd) ∈ Zd
: 0 ≤ kj ≤ mj, j = 1, . . . , d},

Λ+,2 := {(k1, . . . , kd) ∈ Zd
: 0 ≤ kj ≤ nj, j = 1, . . . , d}

are two index sets with positive integers mj, nj given for j =

1, . . . , d. Then the system (11) can equivalently be described in
the time domain as an autoregressive moving-average (ARMA)
model∑
k∈Λ+,1

ak y(x − k) =

∑
k∈Λ+,2

bk w(x − k). (15)

uch a model is extremely useful in practice because rational
unctions (in fact, polynomials) can approximate any continuous
unction if the model order is sufficiently large. If the moving-
verage part of the model is trivial, i.e., b(z) ≡ b0 is a constant,
hen (15) reduces to a simpler AR model.

In the above context, Problem 1 can be posed more concretely
s follows:

roblem 2. Given a sampled covariance function ρs(k) in (3),
ind a rational filter W (z) of the form (14) such that when it is
ed with a normalized white noise, the covariance function of the
utput y(x) coincides with ρ (k). Equivalently, we seek a rational
s
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pectral density satisfying the trigonometric moment equations∫
Td

ei⟨k, θ⟩Φ(eiθ)dµ(θ) = ρs(k) ∀k ∈ Zd (16)

where dµ(θ) =
1

(2π )d
∏d

j=1 dθj is the normalized Lebesgue on Td.

Notice that the equivalence above is understood modulo the
pectral factorization (13). Once the above problem is solved,
amples of the random field ys(x) for x indexed in (4) can be
enerated efficiently via the ARMA recursion (15) with a white
oise input.
Next, in view of the decoupling assumption (3), it follows

asily from the multidimensional DTFT that the corresponding
pectral density Φ(eiθ) also has a decoupled form

(eiθ) = Φ1(eiθ1 ) . . . Φd(eiθd ), (17)

where the factor Φj(eiθj ) can be interpreted as the spectral density
in the jth dimension for j = 1, . . . , d, i.e., it is the 1-d DTFT of
the sampled covariance function ρs,j(kj) := ρj(kjTj). Therefore,
the d-dimensional moment Eqs. (16) decouple into d sets of
unidimensional moment equations∫

T
eikjθjΦj(eiθj )

dθj
2π

= ρs,j(kj) ∀kj ∈ Z, j = 1, . . . , d, (18)

hose solutions have been extensively studied in the literature.
fter each Φj has been constructed from the covariance func-
ion ρs,j, we can perform the spectral factorization Φj(zj) =

j(zj)Wj(z−1
j ) to obtain the transfer function Wj(zj). Notice that

ince Φj is constrained to be rational, the spectral factoriza-
ion reduces to that for positive trigonometric polynomials, for
hich there are a number of algorithms [42]. Hence, the above
rocedure leads to a d-dimensional ARMA model

(x) = W1(z1) . . . Wd(zd)  
=:W (z)

w(x) (19)

gain in a decoupled form. The main steps of our approach for
ampling stationary random fields are summarized as follows.

(1) Given a sampled covariance function (3), solve the decou-
pled moment Eqs. (18) for a rational spectral density of the
form (17).

(2) Do spectral factorization to obtain the linear filter in (19).
(3) Feed the filter with a Gaussian i.i.d. white noise and collect

the output random field.

At the end of this section, let us discuss the stationarity and
aussianity of the output random field y(x) in (19). Since the
nput noise is white, it is well known in the theory of linear
tochastic systems [25] that the output process/field is stationary,
nd this property does not require Gaussianity of the input. The
aussianity of the output does follow from that of the input
ince the input–output relation can be viewed as an infinite-
imensional linear mapping where the convergence is under-
tood in the mean square sense. It is then a textbook result that
ean square convergence implies convergence in distribution (to
multivariate normal distribution), see e.g., [43].

. Solution to the decoupled moment equations

In this section, we focus on the nontrivial Step 1 above, i.e., so-
ution to the decoupled moment Eqs. (18), with two types of
ovariance functions mentioned before, i.e., the exponential and
quared exponential covariance functions. It is worth remarking
hat the case of the exponential covariance function admits an
xact rational spectrum and hence a shaping filter in a closed form.
lthough the squared exponential covariance function does not
4

lead to an analytic solution, it can be well approximated in the
requency domain by a rational spectral density in the sense that
nly low-order covariances with significant values are matched
n (18).

.1. Solution for the exponential covariance function: an ar(1) model

Under the decoupling assumption for the d-dimensional co-
variance function, we only need to solve Problem 2 for each
sampled covariance function ρs,j(kj) = ρj(kjTj) of one variable,
s discussed previously. Hence, we suppress the subscript j. Con-
ider first the exponential covariance function in (6), i.e., ρ(x) =

σ 2e−α|x| with x ∈ R. We can for simplicity take σ 2
= 1 since

it is only a multiplicative constant. Let T > 0 be the sampling
distance, and we have

ρs(k) := ρ(kT ) = e−αT |k|, k ∈ Z. (20)

et r = e−αT . Using the DTFT pair

x(k) = rku(k)
F
↦−→ X(eiθ ) =

1
1 − re−iθ (21)

with 0 < |r| < 1 and u(k) the discrete-time unit step function,
the spectral density corresponding to ρs(k) is

Φ(eiθ ) = Z(eiθ ) + Z(eiθ )∗ = 2Re{Z(eiθ )}, (22)

here ∗ denotes complex conjugate and

(eiθ ) =
1

1 − e−αT e−iθ −
1
2

(23)

is the so-called positive real part of Φ(eiθ ). Notice that Z(eiθ )
admits an analytic extension as a rational function

Z(z) =
1

1 − e−αT z−1 −
1
2
, z ∈ C, (24)

so that Φ(z) in (22) is rational as well. Then after some straight-
forward calculations, we obtain a transfer function

W (z) =
(1 − e−2αT )

1
2

1 − e−αT z−1 (25)

which is a stable and minimum-phase spectral factor of Φ(z),
namely

Φ(z) = W (z)W (z−1) (26)

where the identity is valid in a neighborhood of the unit circle.
We see that W (z) corresponds to an AR model of order one that
depends on the parameter αs := αT . In consequence, samples
of the discrete random field ys(x) can be generated by filtering
a white noise through d cascaded AR(1) models, one for each
dimension. Obviously, the algorithm achieves a very low com-
putational cost because each AR component has only order one.
Compared with [24], our approach has a more concise frequency-
domain interpretation and a neater time-domain implementation
that avoids factorization of large matrices. Moreover, the model
can be reused for computing multiple realizations of the random
field because the filter W (z) remains unchanged with a given co-
variance function when the sampling distance is fixed. Although
the Cholesky factor in the Stepwise CMD method [24] can also
be reused, our method requires much less storage since only the
filter coefficients need to be stored. In addition, our model can be
used to compute samples of an arbitrary size. On the contrary, the
CMD has to be redone from the start if the sample size changes.
A comparison of the computational complexity between different
algorithms will be given at the end of this section.
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Table 1
The computational complexity of different methods in the 3-d case. In the particular
example, we have N = (100, 100, 100), C = (512, 512, 512), M = 1.1N, and an exponential
covariance function.
Methods Major computational complexity Example (flops)

CMD O(N3
1N

3
2N

3
3 ) 1.00 × 1018

Stepwise CMD [24] O(N1N2N3(N1 + N2 + N3)) 3.00 × 108

Circulant Embedding [17] O(C1C2C3 log2(C1C2C3)) 3.62 × 109

Stochastic Realization O(N1N2N3) 1.06 × 107
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4.2. Solution for the squared exponential covariance function: An
ARMA model

Unlike the case with an exponential covariance function, the
roblem with a general covariance function may not have an
xact analytic solution. In this subsection, we discuss the case
ith an squared exponential covariance function in (7). The cor-
esponding sampled version is

s(k) := ρ(kT ) = σ 2e−αT2|k|2 , k ∈ Z. (27)

It is well known that the (continuous-time) Fourier transform
of a Gaussian function is another Gaussian function which is
certainly nonrational. We speculate that the same happens for the
discrete samples of a Gaussian function, i.e., the corresponding
spectral density is not a rational function. Therefore, an ARMA
representation for such a covariance function must by nature be
approximate.

The Gaussian function (7) decays fast as |x| increases. So a
natural idea is to construct a rational spectral density

Φ(eiθ ) =
P(eiθ )
Q (eiθ )

(28)

hat matches a finite number of low-order (dominant) covari-
nces, where P and Q are positive symmetric trigonometric
olynomials. There are a number of solution techniques for this
ational covariance extension problem, see e.g., [27,44–49]. In
he paper, we adopt the following generalized maximum entropy
ormulation [1,27]:

ax
Φ>0

∫
T
P(eiθ ) logΦ(eiθ )

dθ
2π

s.t. σk =

∫
T
eikθΦ(eiθ )

dθ
2π

∀k ∈ Λ,

(29)

here,

• P is a known positive symmetric polynomial which is con-
structed from a given factor b(z) :=

∑n
k=0 bkz

−k, i.e., P(z) =

b(z)b(z−1);
• the index set is defined as Λ := {−m, . . . ,−1, 0, 1, . . . ,m}

such that m is a user-specified positive integer,
• σk’s are the covariance data evaluated from the covariance

function, namely σk = ρs(k).

More precisely, we choose m to be the smallest positive integer
such that ρs(k) is practically zero for all k > m. In other words, the
pproximation procedure takes into account the covariances with
ignificant values and discards the rest. The optimization problem
29) is convex and has a unique solution Φ = P/Q̂ , where Q̂ is
the optimal solution of the dual problem

min
Q>0

⟨σ, q⟩ −

∫
T
P(eiθ ) logQ (eiθ )

dθ
2π

, (30)

here q := {qk}k∈Λ are Lagrange multipliers, ⟨σ, q⟩ :=
∑

k∈Λ σkqk
enotes the inner product, and Q (eiθ ) :=

∑m
k=−m qke−ikθ is a

ymmetric trigonometric polynomial. For technical details we
efer readers to [1,27]. The reason for choosing this formulation
s that we want to obtain a rational Φ(eiθ ) of the form (28)
 i

5

hich is directly connected to the ARMA model via spectral
actorization. More precisely, the polynomial a(z) =

∑m
k=0 akz

−k

corresponding to the AR coefficients can be determined via the
Bauer method [42] for factoring Q̂ (z) =

∑m
k=−m q̂kz−k where q̂k’s

are the optimal Lagrange multipliers.
In this way, once the rational spectral density Φ(z) and the

filter

W (z) =
b(z)
a(z)

=

∑n
k=0 bkz

−k∑m
k=0 akz−k

(31)

are constructed in each dimension, samples of the random field
ys(x) can be generated in the same fashion as described in the
previous subsection, now via the cascaded ARMA recursions. Each
ARMA recursion has a fixed computational cost (though larger
than that of the AR(1) model) related to the model order (m, n)
which is chosen small.

4.3. Computational complexity analysis

In this subsection, we give the computational complexity of
our approach to Problem 2. For practical applications, we are
primarily interested in the 3-d case. Assume that we are asked to
generate samples of a random field with a size N = (N1,N2,N3) ∈
3, see (4), and each ARMAmodel in the cascade has order (mj, nj)
or j = 1, 2, 3. It is then common practice to generate samples of
slightly larger size M = (M1,M2,M3) which can be taken as

1 + β)N, say with β = 0.1, in order to reduce the ‘‘transient’’
ffect of filtering caused by an artificial boundary condition. For
he exponential covariance function, the computational cost of
he algorithm is proportional,2 to the product M1M2M3, so the
omplexity is O(N1N2N3) in which we have absorbed the constant
+ β into the capital O notation. For the squared exponen-

ial covariance function which corresponds to an ARMA model,
he algorithm still mainly runs in O(N1N2N3) flops because the
omputational cost of solving a small-size convex optimization
roblem (30) is far lower than that of implementing the ARMA
ecursion.

In Table 1 we state the computational costs of different meth-
ds: traditional CMD by Cholesky decomposition, Stepwise CMD,
irculant Embedding, and our stochastic realization approach,
here an instance with specific numbers is also shown for clarity.

t can be seen that our method has the lowest computational
omplexity which is linear in the number of samples.

emark 2 (Comparison with PDE-based sampling approaches). We
ave not compared with PDE-based sampling approaches as re-
orted in [11,12,22,23] because they aim to generate samples of

2 In order to generate one sample in the one-dimensional case using the
ational filter (25) one simply rewrites the filtering equation as y(t) = ay(t −

) + bw(t) where a and b are the filter coefficients, and computes y(t) using
(t −1) (either previously generated or known as an initial/boundary condition)
nd the input w(t) (i.i.d. Gaussian noise). Hence the cost for one sample is 2
loating-point multiplications. The case for the ARMA filter (31) is similar, and
o is the multidimensional version as long as the decoupling condition is met so
hat the filtering operation can be carried out along each dimension as illustrated
n (19).
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andom fields with general Matérn-type covariance functions in
8), while we work under the decoupling assumption (1). The
eneral sampling problem via the solution of stochastic PDEs is
ophisticated and substantial computational power (e.g., a super-
omputer) is needed for the numerical procedure. In contrast, in
he special case where the covariance function can be decou-
led in each dimension, our stochastic realization approach is
asy to implement on a PC and offers the state-of-the-art time
omplexity.

. Application to multiscale simulations

In some applications, e.g., the analysis of certain geomate-
ial properties [5,50], we often face a challenging problem that
efinements of the generated samples of the random field are
eeded across several scales, where the spatial variability, i.e., the
ovariance function is expected to be maintained. Here by ‘‘a fine-
cale simulation’’, we mean obtaining samples of the random field
n a denser grid by interpolating the already generated coarse-
cale realization, instead of generating fine-scale samples from
cratch. Our approach is particularly suitable for such a purpose
s we shall describe shortly.
For simplicity, we assume that the sampling distance T (which

is the scale parameter) in (20) and (27) is halved in each fine-scale
simulation, i.e., T1 =

1
2T , T2 =

1
2T1 =

1
4T , where the subscript

enotes the number of fine-scale simulations that we perform.
e want to point out that the model parameters in (25) and (31)

n general change across different simulation scales since they
epend on T , although the model order one is maintained in the
ase of an exponential covariance function. The change of the AR
oefficients in (31) is more implicit and comes from the fact that
he covariance data σk’s are changed in a fine-scale simulation. In
ny case, once the fine-scale model (25) or (31) is constructed, the
nterpolation of the samples of the random field can be carried
ut by the same filtering technique as in the generation of the
oarse-scale samples, when suitable boundary conditions and the
ine-scale noise input (which is not i.i.d. any more) are provided.

.1. The boundary conditions

The determination of such boundary conditions is rather stan-
ard. Suppose that the coarse-scale samples of the random field
re collected into a column vector y1 and the boundary random
ariables that are needed to initiate the fine-scale filtering are
ollected in y2. Here we want to remark on the special 1-d case
with the exponential covariance function, where the coarse-scale
samples are themselves boundary conditions for the fine-scale
simulation due to the AR(1) model structure. Hence, all one needs
to do is to generate the white noise samples on the new grid
points and to implement the filtering. In general however, some
boundary values of the fine-scale samples in y2 are needed in
rder to start the multidimensional filtering, as shown in Fig. 2
or the 2-d case where the two cascaded filters are both AR(1).

Let y be the joint vector such that

=

[
y1
y2

]
∼ N (

[
0
0

]
,

[
Σ 11 Σ 12
Σ 21 Σ 22

]
), (32)

here we have introduced explicitly the Gaussianity assumption
or the random field, and the matrix on the right side is the
ovariance matrix Σ of y which is evaluated using the given
ovariance function3 ρ(τ) in (1) and partitioned in accordance
ith y1 and y2. Then the unknown random vector y2 conditioned

3 Recall that the locations of samples in y are known.
6

Fig. 2. A schematic figure for the boundary conditions in a multiscale simulation,
where the number of values in boundary locations represents only a small
fraction of the total number of unknown variables.

Fig. 3. The two cascaded linear stochastic system with given white noise input.

on y1 = a still has a multivariate normal distribution (y2|y1 =

) ∼ N (µ̄, Σ̄ ) where

¯ = Σ 21Σ
−1
11 a, (33)

nd

¯ = Σ 22 − Σ 21Σ
−1
11 Σ 12. (34)

he matrix Σ̄ is known as the Schur complement of Σ 11 in Σ . It
s positive definite because so is Σ . Thus, the unknown boundary
values y2 in a fine-scale simulation can be computed via:

y2 = Re + µ̄, (35)

where the matrix R constitutes a rank factorization of Σ̄ , namely
Σ̄ = RR⊤ which can be computed from the spectral decomposi-
tion plus truncation, and e is an i.i.d. standard normal vector.

5.2. The noise input

Obviously, samples on the fine-scale depend upon the white
noise input which cannot be randomly generated any more be-
cause of the existence of the coarse-scale samples as interpolation
conditions. Thus it is reasonable to determine the white noise
before implementing ARMA recursion, and we report a particu-
lar solution for the case with exponential covariance functions,
namely,

ρs(k1, k2) = σ 2e−α1T1|k1|−α2T2|k2|, (k1, k2) ∈ Z2.

Here we focus on 2-d random fields which are of engineering
interest in e.g., [5,50], also for the simplicity of presentation. In
principle, a similar procedure should work for higher dimensional
cases but the calculations will necessarily be more complicated.

Assume that we have computed the fine-scale samples in
boundary locations, and we know the coarse-scale white noise
and samples which have a size (N1,N2). We aim to interpolate
the fine-scale input w(s, t) and then samples y(s, t) for 0 ≤ s ≤

2(N1 − 1), 0 ≤ t ≤ 2(N2 − 1). In particular, the indices s and
t of the coarse-scale samples are even numbers in the fine-scale
realization. Referring to Fig. 3, the two cascaded AR(1) filters of
the fine-scale random field are written as

W1(z1) =
b

−1 , W2(z2) =
d

−1 .

1 − az1 1 − cz2
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he input w, the intermediate output y1, and the output y are
elated via

1(s, t) = W1(z1)w(s, t), y(s, t) = W2(z2)y1(s, t).

pply twice the AR recursion, and we have

(s − 1, t) =
1
ab

y1(s, t) −
a
b
y1(s − 2, t) −

1
a
w(s, t). (36)

If we take s = 2k and t = 2ℓ with k = 1, . . . ,N1 − 1 and
ℓ = 1, . . . ,N2 − 1, w(2k, 2ℓ) is known as the coarse-scale noise
input. Then w(2k − 1, 2ℓ) can be computed directly via (36) in
hich

1(2k, 2ℓ) =
1
d′
y(2k, 2ℓ) −

c ′

d′
y(2k − 2, 2ℓ),

here c ′ and d′ correspond to the filter W ′

2(z2) of the coarse-scale
andom field, and the involved samples of y are from the coarse-
cale realization. For odd t = 2ℓ − 1, w(2k, 2ℓ − 1) is unknown
nd (36) can be rewritten as a linear equation

w = b (37)

ith

=

⎡⎢⎢⎣
a 1 0 0 · · · 0 0
0 0 a 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · a 1

⎤⎥⎥⎦ , w =

⎡⎢⎢⎣
w(1, t)
w(2, t)

...

w(2N1 − 2, t)

⎤⎥⎥⎦ ,

=
1
b

⎡⎢⎢⎣
y1(2, t)
y1(4, t)

...

y1(2N1 − 2, t)

⎤⎥⎥⎦ −
a2

b

⎡⎢⎢⎣
y1(0, t)
y1(2, t)

...

y1(2N1 − 4, t)

⎤⎥⎥⎦ ,

here the coefficient matrix A has a size (N1 −1)× (2N1 −2), and
1(2k, 2ℓ − 1) is computed via

1(2k, 2ℓ − 1) =
1
cd

y(2k, 2ℓ) −
c
d
y(2k, 2ℓ − 2) −

1
c
y1(2k, 2ℓ),

where again the right-hand side requires only the coarse-scale
samples. Eq. (37) has infinitely many solutions since A is of full
row rank. In order to make the problem well-posed, we notice
a dual linear equation by swapping W1(z1) and W2(z2) in the
filtering which obviously does not change the final output y. The
intermediate output is, however, different and we write it as

y2(2k, 2ℓ) =
1
b′
y(2k, 2ℓ) −

a′

b′
y(2k, 2ℓ − 2)

here a′ and b′ correspond to the filter W ′

1(z1) of coarse-scale
andom field. We can now compute the components w(2k, 2ℓ−1)
in the vector w as

w(2k, 2ℓ − 1) =
1
cd

y2(2k, 2ℓ) −
c
d
y2(2k, 2ℓ − 2) −

1
c
w(2k, 2ℓ)

n the same fashion as computing w(2k − 1, 2ℓ) from (36). Sub-
titute the result back into (37), and we get the rest components.
After the boundary values of the fine-scale random field are

omputed and the white noise input is obtained, the interpolation
f the coarse-scale samples can be accomplished again at a linear
ost via the AR recursion. We would like to point out that unlike
raditional methods which generate all the fine-scale samples
which could be a lot) using the conditional distribution (32), see
.g., [50, Sec. 2.4], we only need y2 in boundary locations (whose
umber is much smaller, see Fig. 2). Therefore, our procedure
nvolves multiplications and inversions of matrices of smaller
izes, which significantly improves computational efficiency.
7

Fig. 4. A 3-d random field realization with an exponential covariance function.
The size of the realization is 8.33 m ×10.00 m ×12.50 m in space with a total
umber of samples equal to 1003

= 106 .

. Numerical examples

In this section, we perform two sets of numerical simulations
f our stochastic realization approach: one for sampling 3-d ran-
om fields and the other includes multiscale simulations in the
-d case. All simulations are performed on a desktop computer
ith an Intel Core i7-10700K CPU and 16.0 GB of RAM.

.1. Sampling 3-d Gaussian random fields

First, we apply the stochastic realization approach to
roblem 2 with an exponential covariance function in three
ariables

s(x, y, z) = σ 2e−α1T1|x|−α2T2|y|−α3T3|z|, (x, y, z) ∈ Z3. (38)

In the following example, the size of the samples to be generated
is N = (100, 100, 100) for the random field ys(x, y, z), the vari-
ance is σ 2

= 1, the parameter vector is (α1, α2, α3) = (1, 1, 1),
and the vector of sampling distances along x-, y-, and z-directions
is (T1, T2, T3) = (1/12, 1/10, 1/8).

It has been discussed in Section 4.1 that the exponential co-
variance function corresponds to an exact rational spectral den-
sity, and the filter in each dimension can be directly computed
via (25). Thus the required samples of the random field can be
generated by implementing three cascaded AR recursions (19).
The digital filtering can be carried out easily in Matlab via the
filter command. For the 3-dimensional sampling, we just exe-
cute filter three times sequentially along all the dimensions.
A realization of the random field is shown in Fig. 4 using the
Matlab command slice, where the spatial distances are defined
as τx = T1|x|, τy = T2|y|, and τz = T3|z| along three directions.
Next, in order to verify the performance of our method, we also
plot the sample covariances of the realization ys(x, y, z) versus
spatial distances along x-, y-, z-, and the diagonal directions in
Fig. 5 with 100 repeated trials (a Monte Carlo simulation). The
diagonal direction is along the line x = y = z with 0 ≤ x ≤ N1−1.

In particular, the sample covariances of ys(x, y, z) are com-
puted via the spatial average [35, Section 5]:

σ̂k :=
1

|N|

∑
x

ys(x + k)ys(x) (39)

here x = (x, y, z) and |N| = N1N2N3. Since we have explicitly
nforced covariance matching in Problem 2, it follows from the
eneral covariance estimation theory [51] that the sample co-
ariances of the output of the filter W (z) must be close to the
alues of the given covariance function when the sample size is
ufficiently large, and this point is well illustrated in Fig. 5. We
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Fig. 5. The covariances versus distances along four directions of the 3-d random field realization which contains 100 repeated trials. The red line denotes the
given exponential covariance function and the blue lines are the corresponding sample covariance lags. By x-direction, we mean the section [k1, 0, 0] of the sample
ovariance array with k1 = 0, . . . ,N1 −1. The other directions are understood similarly. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)
(

Fig. 6. A 3-d random field realization with a squared exponential covariance
function. The size of the realization is 10 m × 12.50 m × 16.67 m in space
ith a total number of samples equal to 503

= 1.25 × 105 .

emark that our result is visually much better than that reported
n [24, Sec. 5.1].

Furthermore, another simulation is performed for a squared
xponential covariance function that has the form

(x, y, z) = σ 2e−α1T21 |x|2−α2T22 |y|2−α3T23 |z|2 , (x, y, z) ∈ Z3. (40)
s

8

The parameters are reported as follows: σ 2
= 1, (α1, α2, α3) =

1, 1, 1), and (T1, T2, T3) = (1/5, 1/4, 1/3). In this case, we set up
an ARMA model to approximate the underlying spectral density.
The numerator polynomial b(z) in (14) is specified by the user.
Here for simplicity, we take b(z1, z2, z3) =

∏3
j=1 bj(zj) with a

quite arbitrary bj(zj) = 1 − 0.2z−1
j of order one and identical

for j = 1, 2, 3. The orders of the denominator polynomials aj(zj)
are chosen to be (m1,m2,m3) = (8, 7, 7) which is a threshold
for ‘‘dominant’’ covariances, i.e., large values of the covariance
function. Then the approximate spectrum in each dimension is
constructed via solving the optimization problem (29), where
Newton’s method is implemented, and the polynomial aj(zj) is
obtained from spectral factorization. The results are shown in
Figs. 6 and 7 similar to the previous two figures. Since the above
squared exponential covariance function decays fast as the spatial
distance increases, we set the sample size N = (50, 50, 50) in
order to show more details in the figures. It can be seen that
the sample covariances are very close to the given squared expo-
nential covariance function when the lag is small. The mismatch
for large lags can be explained by the fact that we are using a
relatively low-order ARMA spectrum to approximate the nonra-
tional Gaussian function. In fact, we can also use a higher-order
ARMA model for a better approximation with e.g., (m1,m2,m3) =

(16, 14, 14) and the result is displayed in Fig. 8. However, there
is a price to pay as more computational effort is needed when
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Fig. 7. The covariances versus distances along four directions of the 3-d random field realization which contains 100 repeated trials. The red line denotes the given
squared exponential covariance function and the blue lines are the corresponding sample covariance lags. By x-direction, we mean the section [k1, 0, 0] of the sample
ovariance array with k1 = 0, . . . ,N1−1. The other directions are understood similarly. The order of the approximate ARMA model is m = (8, 7, 7). (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)
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enerating the samples, that is, the constant hidden in the capital
notation for the operation count has (almost) doubled.

emark 3. One can compare the generated samples (Figs. 4
nd 6) from the exponential and squared exponential covariance
unctions, and find that the former realization is rough (seem-
ngly discontinuous) while the latter is much smoother. This
henomenon can be understood via the mean square differentia-
ility [13] of the underlying random fields on Rd with respective
ovariance functions. In particular, neither realization is inferior
han the other as the smoothness is simply a property brought
y the covariance function. Which one is favored depends on the
pecific application.

.2. Comparison with the stepwise CMD

In this subsection, we perform several Monte Carlo simu-
ations to compare the computational time between Stepwise
MD and our stochastic realization approach. The reason for such
omparison with one single method is that according to [24],
he Stepwise CMD outperforms other commonly used sampling
ethods including CMD, Circulant Embedding, and Karhunen–
oève. More specifically, we perform numerical simulations in 1-d
nd 3-d cases. The average computational time of 100 repeated
rials versus the total number of nodes of the sampled random
ield is shown in Fig. 9 using the Matlab command loglog. In the
 m

9

-d case,4 we have the exponential covariance function ρs(x) =
−|x|/10 with x ∈ Z, and the results are shown in the left panel
f Fig. 9. The right panel corresponds to the 3-d case with the
ovariance function (38) and the same parameters described after
he formula. In either case, the number of nodes (grid size) in
he random field realization doubles for each point on the curve
rom left to right. More precisely for the 3-d case, we fix the grid
ize in two of the three dimensions equal to 100, and double
he grid size in the third dimension every time. One can see
hat our stochastic realization approach requires significantly less
omputational time compared with the Stepwise CMD.

emark 4. It is interesting to notice from Fig. 9 that in the 1-d
ase, the advantage of our stochastic realization approach against
he Stepwise CMD is more appreciable, while in the 3-d case, such
dvantage is not so apparent until the grid size becomes very
arge. In view of Table 1, however, we expect our method to be
etter than the Stepwise CMD in terms of the computational time
y at least one order of magnitude when the grid size |N| = 106.
learly we have not achieved it. The reason is that the CMD
mploys standard Linear Algebra packages which are specialized
or matrix computation and are automatically multithreaded in
atlab.5 In contrast, the filtering operation in our approach is by

4 In the 1-d case, the Stepwise CMD is just CMD.
5 See the online documentation https://www.mathworks.com/discovery/
atlab-multicore.html.

https://www.mathworks.com/discovery/matlab-multicore.html
https://www.mathworks.com/discovery/matlab-multicore.html
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Fig. 8. The covariances versus distances along four directions of the 3-d random field realization which contains 100 repeated trials. The red line denotes the given
squared exponential covariance function and the blue lines are the corresponding sample covariance lags. By x-direction, we mean the section [k1, 0, 0] of the sample
ovariance array with k1 = 0, . . . ,N1 − 1. The other directions are understood similarly. The order of the approximate ARMA model is now m = (16, 14, 14). (For

nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Stochastic Realization versus Stepwise CMD: the average computational time for one realization of the random field with an exponential covariance function
versus the total number of nodes |N| in 1-d and 3-d cases. In both cases, the total number of nodes doubles for each point on the curve from left to right.
ature serial that is, samples of the random field are generated
one after another. In consequence, the superiority of the stochas-
tic realization approach displayed by Table 1 is mitigated by
the algorithmic implementation when the grid size is relatively
small.
10
6.3. Multiscale simulations in the 2-d case

In this subsection, we perform simulations to produce fine-
scale samples of the random field given the coarse-scale real-
ization using our stochastic realization approach. Following the
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Fig. 10. Multiscale simulations with an exponential covariance function. Subfig. (a) shows the coarse-scale samples (colored squares) which are already known, while
Subfigs. (b), (c), and (d) are the fine-scale realizations, where the numbers in parentheses give the number of sampling points in each direction.
derivation in Section 5, we report an example with the following
exponential covariance function

ρs(x, y) = exp(−
|x|
5

−
|y|
4

), (x, y) ∈ Z2.

Suppose that the coarse-scale samples of the random field
ave a size vector (N1,N2) = (20, 20) which corresponds to 400
oints. We take the sampling distances to be 1/5 and 1/4 along
- and y-directions, respectively, i.e., T = (T1, T2) = (1/5, 1/4),
nd the parameter vector (α1, α2) = (1, 1). Then three fine-scale
ealizations of the random field are computed, where the sam-
ling distances are reduced to 1/2, 1/4, and 1/8 of the original
alues, respectively. The simulations are carried out sequentially.
ore precisely, after the samples with the parameter T are gener-
ted, they are then treated as the coarse-scale realization, and the
nterpolation procedure is executed to produce fine-scale samples
ith the parameter T′

=
1
2T. Notice that we need to reconstruct

he AR(1) filter under each scale, due to the fact that the filter
arameters in (25) depend upon the product αjTj. Then after the
ample values in boundary locations are computed utilizing the
onditional normal distribution and the white noise in unknown
ocations is obtained, the rest fine-scale samples can be generated
y implementing the AR recursion. These operations are repeated
or each finer scale. The result of such a multiscale simulation is
hown in Fig. 10. It is evident that more details of the random
ield can be seen from the fine-scale samples than the coarse-
cale realization. We also plot the sample covariances under each
cale versus distances along x- and y-directions in Fig. 11. One
11
can see that the sample covariances are again close to the given
covariance function, which indicates that the spatial variability of
the random field is well maintained across multiple scales in our
simulations.

7. Conclusions

This paper proposes an efficient stochastic realization ap-
proach for sampling large-scale multidimensional Gaussian
stationary random fields. The basic idea is to exploit the decou-
pling assumption on the covariance function, and to construct a
rational model which approximates the spectrum of the under-
lying random field in terms of covariance matching. Moreover,
our sampling approach features easy implementation and low
computational complexity due to the simple structure of the
approximate model. The work in the paper can be concluded as
follows:

(1) Solutions to the sampling problem with the exponential
and squared exponential covariance functions are given,
respectively. The former corresponds to a rational spectral
density that leads to an AR(1) filter, and the latter has a
nonrational spectral density which can be approximated by
an ARMA spectrum.

(2) The stochastic realization approach has been applied to
multiscale simulations. Compared with traditional meth-
ods, only a few number of values in boundary locations
are computed prior to the interpolation via the ARMA
recursion, which achieves high efficiency.
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Fig. 11. Covariance lags of the random field versus distances. The red line denotes the given exponential covariance function, and the other four lines correspond to
he sample covariances of under different scales. By x-direction, we mean the column of the sample covariance matrix indexed by [k1, 0] with k1 = 0, . . . ,N1 − 1.
he y-direction is understood similarly. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
(3) Several numerical simulations are performed and they
show that our method exhibits good performances not only
in sampling large-size random fields, but also in refining
generated samples across multiple scales.

inally, it is expected that our approach can be extended to the
ultivariate case (i.e., vector processes), which will be a future
tudy.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgment

This work was supported in part by the National Natural
cience Foundation of China under the grant number 62103453
nd the ‘‘Hundred-Talent Program’’ of Sun Yat-sen University.

eferences

[1] Ringh A, Karlsson J, Lindquist A. Multidimensional rational covariance
extension with applications to spectral estimation and image compression.
SIAM J Control Optim 2016;54(4):1950–82.

[2] Zhu B, Zorzi M. A well-posed multidimensional rational covariance
and generalized cepstral extension problem. SIAM J Control Optim
2023;61(3):1532–56.

[3] Stoica P, Moses R. Spectral analysis of signals. Upper Saddle River, NJ:
Pearson Prentice Hall; 2005.

[4] Qian T, Zhang Y, Liu W, Qu W. Adaptive Fourier decomposition-type sparse
representations versus the Karhunen–Loève expansion for decomposing
stochastic processes. Math Methods Appl Sci 2023;46(13):14007–25.

[5] Chen Q, Wang C, Hsein Juang C. CPT-based evaluation of liquefaction
potential accounting for soil spatial variability at multiple scales. J Geotech
Geoenviron Eng 2016;142(2):04015077.

[6] Liu Y, Zhang W, Zhang L, Zhu Z, Hu J, Wei H. Probabilistic stability analyses
of undrained slopes by 3D random fields and finite element methods.
Geosci Front 2018;9(6):1657–64.

[7] Latz J, Eisenberger M, Ullmann E. Fast sampling of parameterised Gaussian
random fields. Comput Methods Appl Mech Engrg 2019;348:978–1012.

[8] Yi JT, Huang LY, Li DQ, Liu Y. A large-deformation random finite-element
study: failure mechanism and bearing capacity of spudcan in a spatially
varying clayey seabed. Géotechnique 2020;70(5):392–405.

[9] Cheng P, Guo J, Yao K, Liu C, Liu X, Liu F. Uplift behavior of pipelines
buried at various depths in spatially varying clayey seabed. Sustainability
2022;14(13):8139.

[10] Winkler G. Image analysis, random fields and Markov chain Monte Carlo
methods: A mathematical introduction. Stochastic modelling and applied
probability, second ed.. vol. 27, Springer Science & Business Media; 2003.
12
[11] Croci M, Giles MB, Rognes ME, Farrell PE. Efficient white noise sampling
and coupling for multilevel Monte Carlo with nonnested meshes. SIAM/ASA
J Uncertain Quantif 2018;6(4):1630–55.

[12] Khristenko U, Scarabosio L, Swierczynski P, Ullmann E, Wohlmuth B.
Analysis of boundary effects on PDE-based sampling of Whittle–Matérn
random fields. SIAM/ASA J Uncertain Quantif 2019;7(3):948–74.

[13] Williams CK, Rasmussen CE. Gaussian processes for machine learning.
Adaptive computation and machine learning, vol. 2, Cambridge, MA: MIT
Press; 2006.

[14] Fenton GA, Griffiths DV. Risk assessment in geotechnical engineering. John
Wiley & Sons, New York; 2008.

[15] Liu Y, Lee F-H, Quek S-T, Beer M. Modified linear estimation method
for generating multi-dimensional multi-variate Gaussian field in modelling
material properties. Probab Eng Mech 2014;38:42–53.

[16] Vanmarcke E. Random fields: Analysis and synthesis. World Scientific;
2010.

[17] Graham IG, Kuo FY, Nuyens D, Scheichl R, Sloan IH. Analysis of circulant
embedding methods for sampling stationary random fields. SIAM J Numer
Anal 2018;56(3):1871–95.

[18] Dembo A, Mallows CL, Shepp LA. Embedding nonnegative definite Toeplitz
matrices in nonnegative definite circulant matrices, with application to
covariance estimation. IEEE Trans Inform Theory 1989;35(6):1206–12.

[19] Dietrich CR, Newsam GN. Fast and exact simulation of stationary Gaussian
processes through circulant embedding of the covariance matrix. SIAM J
Sci Comput 1997;18(4):1088–107.

[20] Zheng Z, Dai H. Simulation of multi-dimensional random fields
by Karhunen–Loève expansion. Comput Methods Appl Mech Engrg
2017;324:221–47.

[21] Feischl M, Kuo FY, Sloan IH. Fast random field generation with H-matrices.
Numer Math 2018;140(3):639–76.

[22] Osborn S, Vassilevski PS, Villa U. A multilevel, hierarchical sampling
technique for spatially correlated random fields. SIAM J Sci Comput
2017;39(5):S543–62.

[23] Fairbanks HR, Villa U, Vassilevski PS. Multilevel hierarchical decomposition
of finite element white noise with application to multilevel Markov chain
Monte Carlo. SIAM J Sci Comput 2021;43(5):S293–316.

[24] Li D-Q, Xiao T, Zhang L-M, Cao Z-J. Stepwise covariance matrix decompo-
sition for efficient simulation of multivariate large-scale three-dimensional
random fields. Appl Math Model 2019;68:169–81.

[25] Lindquist A, Picci G. Linear stochastic systems: A geometric approach
to modeling, estimation and identification. Series in contemporary
mathematics, vol. 1, Springer-Verlag Berlin Heidelberg; 2015.

[26] Byrnes CI, Gusev SV, Lindquist A. A convex optimization approach
to the rational covariance extension problem. SIAM J Control Optim
1998;37(1):211–29.

[27] Byrnes CI, Gusev SV, Lindquist A. From finite covariance windows
to modeling filters: A convex optimization approach. SIAM Rev
2001;43(4):645–75.

[28] Enqvist P. A convex optimization approach to ARMA(n,m) model
design from covariance and cepstral data. SIAM J Control Optim
2004;43(3):1011–36.

[29] Georgiou TT. Relative entropy and the multivariable multidimensional
moment problem. IEEE Trans Inform Theory 2006;52(3):1052–66.

[30] Georgiou TT, Lindquist A. A convex optimization approach to ARMA
modeling. IEEE Trans Automat Control 2008;53(5):1108–19.

http://refhub.elsevier.com/S0019-0578(23)00358-0/sb1
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb1
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb1
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb1
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb1
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb2
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb2
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb2
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb2
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb2
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb3
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb3
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb3
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb4
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb4
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb4
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb4
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb4
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb5
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb5
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb5
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb5
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb5
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb6
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb6
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb6
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb6
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb6
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb7
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb7
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb7
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb8
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb8
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb8
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb8
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb8
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb9
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb9
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb9
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb9
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb9
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb10
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb10
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb10
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb10
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb10
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb11
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb11
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb11
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb11
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb11
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb12
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb12
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb12
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb12
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb12
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb13
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb13
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb13
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb13
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb13
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb14
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb14
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb14
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb15
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb15
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb15
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb15
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb15
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb16
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb16
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb16
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb17
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb17
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb17
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb17
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb17
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb18
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb18
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb18
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb18
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb18
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb19
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb19
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb19
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb19
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb19
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb20
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb20
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb20
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb20
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb20
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb21
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb21
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb21
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb22
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb22
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb22
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb22
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb22
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb23
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb23
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb23
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb23
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb23
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb24
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb24
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb24
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb24
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb24
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb25
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb25
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb25
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb25
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb25
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb26
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb26
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb26
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb26
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb26
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb27
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb27
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb27
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb27
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb27
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb28
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb28
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb28
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb28
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb28
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb29
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb29
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb29
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb30
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb30
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb30


B. Zhu, J. Liu, Z. Lai et al. ISA Transactions xxx (xxxx) xxx
[31] Ferrante A, Pavon M, Ramponi F. Hellinger versus Kullback–Leibler
multivariable spectrum approximation. IEEE Trans Automat Control
2008;53(4):954–67.

[32] Lindquist A, Picci G. The circulant rational covariance extension problem:
The complete solution. IEEE Trans Automat Control 2013;58(11):2848–61.

[33] Zhu B, Baggio G. On the existence of a solution to a spectral estimation
problem à la Byrnes-Georgiou-Lindquist. IEEE Trans Automat Control
2019;64(2):820–5.

[34] Zhu B. On the well-posedness of a parametric spectral estimation
problem and its numerical solution. IEEE Trans Automat Control
2020;65(3):1089–99.

[35] Zhu B, Ferrante A, Karlsson J, Zorzi M. M2-spectral estimation: A relative
entropy approach. Automatica 2021;125.

[36] Zhu B, Liu J. A fast robust numerical continuation solver to a two-
dimensional spectral estimation problem. IET Control Theory Appl
2022;16(9):902–15.

[37] Liu J, Zhu B. An efficient stochastic realization approach for sampling Gaus-
sian random fields with exponential covariance functions. In: Proceedings
of the 23rd Chinese conference on system simulation technology and its
application. 2022, p. 43–7.

[38] Zhu B, Zorzi M. On a weaker regularity condition for a multidimensional
spectral estimation problem. IEEE Control Syst Lett 2023;7:1795–800.

[39] Firouzianbandpey S, Ibsen LB, Griffiths D, Vahdatirad M, Andersen LV,
Sørensen JD. Effect of spatial correlation length on the interpretation of
normalized CPT data using a Kriging approach. J Geotech Geoenviron Eng
2015;141(12):04015052.

[40] Ching J, Phoon K-K, Pan Y-K. On characterizing spatially variable soil
Young’s modulus using spatial average. Struct Saf 2017;66:106–17.
13
[41] Yaglom AM. Some classes of random fields in n-dimensional space, related
to stationary random processes. Theory Probab Appl 1957;2(3):273–320.

[42] Sayed AH, Kailath T. A survey of spectral factorization methods. Numer
Linear Algebra Appl 2001;8(6–7):467–96.

[43] Van der Vaart AW. Asymptotic statistics. Cambridge series in statistical
and probabilistic mathematics, vol. 3, Cambridge University Press; 2000.

[44] Georgiou TT, Lindquist A. Kullback–Leibler approximation of spectral
density functions. IEEE Trans Inform Theory 2003;49(11):2910–7.

[45] Ramponi F, Ferrante A, Pavon M. A globally convergent matricial algo-
rithm for multivariate spectral estimation. IEEE Trans Automat Control
2009;54(10):2376–88.

[46] Ferrante A, Masiero C, Pavon M. Time and spectral domain relative
entropy: A new approach to multivariate spectral estimation. IEEE Trans
Automat Control 2012;57(10):2561–75.

[47] Zorzi M. A new family of high-resolution multivariate spectral estimators.
IEEE Trans Automat Control 2014;59(4):892–904.

[48] Zorzi M. Rational approximations of spectral densities based on the Alpha
divergence. Math Control Signals Systems 2014;26(2):259–78.

[49] Zhu B, Ferrante A, Karlsson J, Zorzi M. M2-spectral estimation: A
flexible approach ensuring rational solutions. SIAM J Control Optim
2021;59(4):2977–96.

[50] Chen Q, Seifried A, Andrade JE, Baker JW. Characterization of random fields
and their impact on the mechanics of geosystems at multiple scales. Int J
Numer Anal Methods Geomech 2012;36(2):140–65.

[51] Priestley MB. Spectral analysis and time series (two-volume set). Probabil-
ity and mathematical statistics, Elsevier Academic Press; 1981, Reprinted
in 2004.

http://refhub.elsevier.com/S0019-0578(23)00358-0/sb31
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb31
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb31
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb31
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb31
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb32
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb32
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb32
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb33
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb33
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb33
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb33
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb33
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb34
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb34
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb34
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb34
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb34
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb35
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb35
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb35
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb36
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb36
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb36
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb36
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb36
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb37
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb37
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb37
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb37
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb37
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb37
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb37
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb38
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb38
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb38
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb39
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb39
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb39
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb39
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb39
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb39
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb39
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb40
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb40
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb40
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb41
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb41
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb41
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb42
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb42
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb42
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb43
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb43
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb43
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb44
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb44
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb44
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb45
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb45
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb45
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb45
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb45
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb46
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb46
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb46
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb46
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb46
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb47
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb47
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb47
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb48
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb48
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb48
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb49
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb49
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb49
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb49
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb49
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb50
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb50
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb50
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb50
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb50
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb51
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb51
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb51
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb51
http://refhub.elsevier.com/S0019-0578(23)00358-0/sb51

	Sampling Gaussian stationary random fields: A stochastic realization approach
	Introduction
	Background on sampling random fields
	A stochastic realization approach
	Solution to the decoupled moment equations
	Solution for the exponential covariance function: an AR(1) model
	Solution for the squared exponential covariance function: An ARMA model
	Computational complexity analysis

	Application to multiscale simulations
	The boundary conditions
	The noise input

	Numerical examples
	Sampling 3-d Gaussian random fields
	Comparison with the Stepwise CMD
	Multiscale simulations in the 2-d case

	Conclusions
	Declaration of competing interest
	Acknowledgment
	References


