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Abstract
Rational orthogonal systems in approximating analytic functions have attracted con-
siderable interest. Amongwhich adaptive Fourier decomposition, abbreviated asAFD,
was recently established. An AFD is a sparse representation using a Takenaka–
Malmquist (TM) system whose parameters are optimally selected according to the
given signal. TM systems have been proved to be Schauder systems in the corre-
sponding Banach spacesH

p, 1 < p < ∞. In the present paper, from themethodology
point of view we give an alternative definition of the Hardy spaces by using the peri-
odic Lusin area function. We extend the Botchkariev–Meyer–Wojtaszcyk Theorem to
rational function systems. By usingMeyer’s bimodal wavelet and the Fefferman–Stein
vector valued maximum operator we prove that under certain conditions the rational
systems become unconditional bases in the Banach space H

p(D), 1 < p < ∞.
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1 Motivations andMain Theorem

As a notion of physics frequency possesses non-negativity. While in mathematics,
the characteristic that frequencies are positive corresponds to analytic functions. As
a consequence, study of analytic functions has considerable significance. Orthogonal
rational systems, or Takenaka–Malmquist (TM) system [19], contains the Laguerre
basis and the two-parameterKautz basis [1] as twoparticular cases. They are all rational
orthonormal systems and natural generalizations of the half-Fourier system. Further,
Pereverzyev [10] used reproducing kernel methods to deal with learning algorithms,
and systematically developed reproducing kernel Hilbert spaces (RKHS). Since we
often meet with Banach spaces in the learning algorithms, we need to consider repro-
ducing Banach space (RKBS) as well.

Schauder basis was introduced in 1927. Banach and Orlicz considered uncondi-
tional basis in Banach spaces. The differences between the above two types of bases
can be seen by the following definitions. See [6, 23].

Definition 1.1 (i) Let X be a Banach space. A sequence of vectors {ek}∞k=1 in X is
called a Schauder basis of X , if for any element f ∈ X , there exists correspond-
ingly a unique sequence of complex numbers {ak}∞k=1 such that

f =
∞∑

k=1

akek,

where the convergence is in the X -norm sense, that is

f = lim
N→∞ SN ( f ), SN ( f ) =

N∑

k=1

akek .

(ii) A sequence of vectors {ek}∞k=1 is called an unconditional basis in Banach space
X, if whenever series

∑+∞
k=1 akek converges, then the series

∑+∞
k=1 bkek also con-

verges for all {bk}∞k=1 satisfying |bk | ≤ |ak |.
Qian andWang developed Core AFD in 2011 [15]. Their group further generalized

the theory to include a number of variations [11–14, 17, 24]. The contexts that they
study range from the unit disk to lately the irreducible bounded symmetric domain.
They use matching pursuit methodology to the kernel functions and their derivatives.
Then Gram-Schmidt orthogonalization processes are used to construct orthogonal
systems. They worked on attainability of adaptively optimal parameters of Takenaka–
Malmquist (TM) systems. A general term of a TM system is the product of a Szegö
kernel and a finite Blaschke product in which the involved parameters can have multi-
plicity. TM system was introduced in 1925. Qian-Chen-Tan [14] and Wang-Qian [21]
proved that in H

p, 1 < p < ∞, TM systems are Schauder systems of the closures of
their spans.

To our best knowledge, for p �= 2, there have been no results connecting TM system
with unconditional basis in H

p(1 < p < ∞). In data processing, unconditional
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bases have remarkable convenience and advantages. In this paper, we show that under
suitable arrangement of locations of the parameters of a TM system and replacement of
the Blaschke products by differences of certain rational functions, unconditional bases
can be constructed in H

p(D)(1 < p < ∞). As an application, our rational systems
can extend Pereverzyev’s reproducing kernel Hilbert spaces (RKHS) to reproducing
kernel Banach spaces (RKBS).

Botchkariev [2] and Wojtaszcyk [22] applied Franklin system to analyze H
p(D).

Afterwards, Meyer [9] used bimodal wavelets to restudy H
p(D) where the basis

is unconditional. But Meyer’s bimodal wavelets have a very complicated structure.
Rational functions, which come from the Cauchy formula, have a simple and intuitive
expression. In this paper, we hope to find a compromisemethod combining TM system
and wavelets. Our main idea is to use the discrete form of Lusin’s periodized area
integral. We prove that there exists quasi-orthogonality between our basis andMeyer’s
wavelet basis. The constructed rational basis is eventually an unconditional basis for
H

p(D).
Adopting the idea used in [7, 16, 25], an index m ≥ 2 may be expressed by two

indices j and k satisfying m = 2 j−1 + 1 + k, where j ≥ 1, 0 ≤ k < 2 j−1. When
m, j, k satisfy the above relation we write m ∼ ( j, k). The index j represents the
approximate range of frequency and the index k represents the approximate location.
These two indices coincide with the characteristics of an unconditional basis.

Let χI (x) be the characteristic function of the set I . When I = [0, 1], we abbre-
viate χI (x) as χ(x). Hence χ(2 j x − k) is the characteristic function of the interval
[2− j k, 2− j (k + 1)] and χ(2 j x − x f

m) is the characteristic function of the interval
Im, f = [2− j x f

m, 2− j (1+ x f
m)]. In Sect. 4, we will construct {Hm}m≥0, which is com-

posed by certain analytic rational functions in the upper half disc. In Sect. 6.1, we
will construct {H̃m}m≥0 which is the dual basis of {Hm}m≥0. Our main theorem is as
follows:

Theorem 1.2 (i) For 1 < p < ∞, there exist two basis {Hm}m≥0 and {H̃m}m≥0 where
{Hm}m≥0 is composed by certain analytic rational functions in the upper half disc
and {H̃m}m≥0 is its dual basis, such that, for all analytic function f ∈ H

p(D) on
the disc D, the following equality holds in H

p(D):

f =
∑

m

〈 f , H̃m〉Hm .

Further, {Hm}m≥0 is an unconditional basis and the absolute value of the coeffi-
cients can reflect the norm property

‖ f ‖Hp ∼ | f0| + | f1| +

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

⎛

⎝
∑

2≤m∼( j,k)

|〈 f , H̃m〉|22 jχ[2− j k,2− j (k+1)]

⎞

⎠

1
2

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
L p

, (1.1)

where f0 = 〈 f , H̃0〉 and f1 = 〈 f , H̃1〉. For each m in equation (1.1), there holds

|〈 f , H̃m〉| ≤ Cm
1
p − 1

2 ‖ f ‖Hp . (1.2)
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(ii) The unconditional basis {Hm}m≥0 allows us to make a maximal selection for
1 + 2 j−1 ≤ m ≤ 2 j at each j ≥ 1. Given f ∈ H

p(D). In fact, for 0 ≤ m ≤ 2,
we take H f

m = Hm; and for m ≥ 3, take x f
m to be a maximal choice referred to

the analysis in Sect.6.1. We get a rearrangement {H f
m }m≥3 of {Hm}m≥3 located at

Im, f which provide a fast converging expansion in the sense of H
p(D)

f =
∑

m≥0

〈 f , H̃ f
m 〉H f

m . (1.3)

In order to highlight typicality of the method, this paper considers only the unit
disc D case with its Szegö kernels, and for the special Banach spaces H p(D). The
methods and results can, in fact, be generalized to more general function spaces (like
Besov spaces, Hausdorff spaces and Q spaces etc). The unit disk Dmay be generalized
to bounded symmetric fields [24], as well as to several real variables (under Clifford
algebra setting) and several complex variables and even matrix-valued functions.

Remark 1.3 For Banch spaces such as analytic H p(D) spaces, we establish the uncon-
ditional basis in (i). Skezypczak [18] used spline functions to construct unconditional
basis on real H

p(D). Calderon-Zygmund operators have relation to unconditional
basis. See also Garca-Cuerva and Kazarian [6] for Calderon-Zygmund operators. We
have established a partial greedy algorithm in (ii) for analytic H p(D) spaces which are
Banach spaces. For non-analytic Hilbert space,Mallat et al. [4, 8] used time-frequency
method to make adaptive greedy approximation to signals.

Remark 1.4 (i) In this paper, as a crucial technical method the unconditional basis
is constructed and proved via certain quasi-orthogonality. We do not know now
whether the systems generated by the Blaschke products in the work [11–13] of
Qian et al. have quasi-orthogonality with our basis. Hence we cannot prove so far
whether there is an unconditional basis for H p(D)(p �= 2) formed by Blaschke
products.

(ii) According to the maximum choice principle, |〈 f , H̃ f
m 〉| is bigger than |〈 f , H̃m〉|.

Therefore, the convergence rate of algorithm (1.3) is faster than which in the
equation (1.2).

The rest of this article is structured as follows:
In Sect. 2, we present some preliminaries on H

p(D) and the Cauchy formula. In
Sect. 3, we present preliminaries on discretization via wavelets. In Sect. 4, we establish
BMWTheorem for rational function system.We introduce first some rational function
system, and then establish the pseudo-orthogonality among those rational functions.
Then we establish also the pseudo-orthogonality between the rational system and
Meyer bimodal wavelets. Further, we apply Fefferman-Stein vector value maximum
operator theorem to establish the relation between Hardy spaces defined by rational
system and those defined bywavelets. In Sect. 5, we prove completeness of our rational
function system. In Sect. 6, firstly, we present an AFD analogue and then prove Main
Theorem 1.2.
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2 Preliminaries on H
p(D) and Cauchy Formula

In the half-plane case, H
p(R2+) is the space formed by the analytic function F(z) =

F(x + iy) satisfying the condition

sup
y>0

∫
|F(x + iy)|pdx < ∞.

In the half plane, the Cauchy formula is written as:

F(z) = 1

2π i

∫ +∞

−∞
f (y)

y − z
dy, Imz > 0.

The real and imaginary parts of the Cauchy kernel correspond to the following kernel
functions: Pt (x) = t

π(t2+x2)
and Qt (x) = x

π(x2+t2)
. Let I be the unit operator. Let H

be the Hilbert transform, it can be shown

Ĥ f (ξ) = −isgnξ f̂ (ξ).

Then

F(x) = 1

2
f (x) + i

1

2
H f (x)

is an analytic function. P = 1
2 (I + i H) is the orthogonal projection from L2(R) to

H
2(R). The derivative of the Cauchy kernel 1

y−z can be approximated by an analytical
function formed by a special sequence of points in the region. Since the derivative
reflects the vanishing moment property of the boundary function, the distance from
the point to the boundary reflects that the analytical function is concentrated near the
corresponding frequency. The H

p(R2+) norm can be described by using Lusin area
function by appropriately selecting the distances between sampling points and the
boundary and between sampling points themselves. See Meyer’s Wavelets and Oper-
ators in Volume 1, Chapter 1, Section 5. The reason why the analytic function space
can be characterized is that the matrix corresponding to the inner product between
the corresponding function and the wavelets satisfies the estimation of Eq. (3.1) of
Proposition 1 in Section 3, Chapter 8, Volume 2 of Meyer’s book [9].

Nowwe turn to analytic functions on the unit disk that have power series expansions
F(z) = ∑∞

0 Ckzk, |z| < 1. Their boundary values may be written f (t) = F(e2π i t ).

Definition 2.1 Wecall f (x) ∈ H
2[0, 1], if there exists {CK }k∈N such that

∑
k∈N |Ck |2 <

∞ and, in the L2 convergence sense,

f (x) =
∑

k∈N
Cke

2π ikx .
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The space of analytic functions H
p(D) is a Banach space composed of analytic

functions defined by

H
p(D) =

{
F(z) analytic , sup

0≤r<1

∫ 1

0
|F(re2π i t )|pdt < ∞

}
.

Proposition 2.2 For 1 < p < ∞, let 1
p + 1

p′ = 1. The dual space of Hardy space

H
p(D) is Hardy space H

p′
(D).

In the case of the unit disk, the analytic function is limited to the boundary and
can be treated as a function on the interval. We use the method of periodizing the
function on the real axis. For the unit disc, the above Cauchy formula corresponds to
the following:

F(z) = 1

2π i

∫

∂D

f (y)

y − z
dy.

Denote

P [0,1]
r (x) = 1 − r2

1 − 2r cos 2πx + r2
and Q[0,1]

r (x) = 2r sin 2πx

1 − 2r cos 2πx + r2
. (2.1)

We have

F(re2π i x ) = 1

2

∫ 1

0
[P [0,1]

r (x − y) + i Q[0,1]
r (x − y)] f (e2π iy)dy, ∀0 ≤ r < 1.

The Cauchy formula tells us that the characteristic of the analytic function on the
region can be obtained by the characteristic of the analytic function on the boundary.
In the case of the disk, although it should be similar to the case of the half-plane, there
is a periodization process that induces considerable complications.

3 Preliminaries on Discretization viaWavelets

Garca-Cuerva and Kazarian [6] considered Calderon-Zygmund operators and uncon-
ditional basis of weighted Hardy spaces. Skrzypczak [18] considered some remarks
on spline unconditional basis in real Hardy space H

1(D). In this section, we introduce
some preliminaries on Meyer wavelets and analytic H

p(D).

3.1 Non Analytic Cases

We introduce first the necessary knowledge of the usual Meyer wavelets. See mainly
Meyer [9], Qian-Yang [16], Yang [26, 27] and Yang–Cheng–Peng [28].
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3.1.1 Wavelets on the Real Line

Let �(ξ) be an even function belonging to C∞
0 [− 4

3π, 4
3π ] satisfying

⎧
⎨

⎩

0 ≤ �(ξ) ≤ 1, ∀ξ ∈ R;
�(ξ) = 1, ∀|ξ | ≤ 2

3π;
�2(ξ) + �2(2π − ξ) = 1, ∀0 ≤ ξ ≤ 2π.

Then ω(ξ) =
√

�2(
ξ
2 ) − �2(ξ) is an even function belonging to C∞

0 [− 8
3π, 8

3π ]
satisfying

⎧
⎨

⎩

0 ≤ ω(ξ) ≤ 1, ∀ξ ∈ R;
ω(ξ) = 0, ∀|ξ | ≤ 2

3π;
ω2(ξ) + ω2(2ξ) = ω2(ξ) + ω2(2π − ξ) = 1, ∀ 2

3π ≤ ξ ≤ 4
3π.

Let ψ̂0(ξ) = �(ξ), ψ̂(ξ) = e− iξ
2 ω(ξ) and ψ j,k(x) = 2

j
2 ψ(2 j x − k),∀ j, k ∈ Z.

We have

Lemma 3.1 (i)
∑

k∈Z ψ0(x − k) = 1.
(ii) ψ(x) is a real value function belonging to S(R).

(iii) Suppψ̂(ξ) ⊂ {ξ : 2π
3 ≤ |ξ | ≤ 8π

3 }.
(iv) ψ(1 − x) = ψ(x).
(v) {ψ0(x−k)}k∈Z ⋃{ψ j,k(x)} j∈N,k∈Z and {ψ j,k(x)} j,k∈Z are two orthogonal basis

of L2(R).

3.1.2 Wavelets on the Interval

For j ∈ N, define

g j (x) = (2π)−12− j
2

∑
l∈Z

ψ̂(2lπ2− j )e2lπ i x

= (2π)−12− j
2

∑
l∈Z

ω(2lπ2− j )e2lπ i(x−2− j−1).

Since ω has compact support, the above sum is a finite sum for 1
3 · 2 j ≤ |l| ≤ 4

3 · 2 j .

Define g0(x) = 1 and for j ∈ N, 0 ≤ k < 2 j , and

g j,k(x) = 2
j
2

+∞∑

l=−∞
ψ(2 j x + 2 j l − k) = g j (x − k2− j ).

The function g j,k(x) is real-valued and symmetric about x = 2− j k + 2− j−1. Let
	 = {0} ⋃{( j, k), j ∈ N, 0 ≤ k < 2 j }.
Lemma 3.2 (i) gλ(x)(λ ∈ 	) are functions of period 1.
(ii) gλ(x)(λ ∈ 	) is an orthonormal basis in L2[0, 1].
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3.2 AnalyticWavelets

We present then the necessary knowledge of the Meyer bimodal wavelets. See mainly
Meyer [9] and Qian-Yang [16].

3.2.1 Holomorphic Wavelets on the Real Line

We introduce first Meyer’s holomorphic wavelets {S j,k} j∈Z,k∈N. Denote

sgn(ξ) =
{−1, if ξ < 0;
1, if ξ ≥ 0.

χ+(ξ) =
{
0, if ξ < 0;
1, if ξ ≥ 0.

Let

H
2(R) = { f ∈ L2(R), f̂ (ξ) = 0,∀ξ < 0}.

Let I be the unit operator. Let H be the Hilbert transformation. It can be written as:

Ĥ f (ξ) = −i sgn(ξ) f̂ (ξ).

Then P = 1
2 (I + i H) is the orthogonal projection operator from L2(R) to H2(R).

Let

τ̂ (ξ ) = e− i
2 ξω(ξ)χ+(ξ), τ (x) = (2π)−1

∫ ∞

0
ei(x−

1
2 )ξω(ξ)dξ.

For j, k ∈ Z, denote τ j,k(x) = 2
j
2 τ(2 j x − k). For j ∈ Z, k ∈ N, it is easy to see

that S j,k(x) = τ j,k(x) + τ j,−k−1(x) are boundary limits of holomorphic functions.
Recalling Paley-Wiener Theorem for bandlimited functions we know that S j,k are
restrictions of entire functions of the Paley-Wiener type. We will call S j,k as holomor-
phic functions without ambiguity.

Lemma 3.3 The set of holomorphic functions {S j,k} j∈Z,k∈N forms an orthonormal
basis of H

2(R).

3.2.2 Holomorphic Wavelets on Interval

We will study h j (x) and their integrals, and then present a Lemma. ω(0) = 0. For
j ≥ 1, denote

h j (x) = 2
j
2

+∞∑
l=−∞

{τ(2 j x − 2 j l) + τ(2 j x + 2 j l + 1)}

= (2π)−12− j
2

∞∑
l=1

ω(2lπ2− j )e2lπ i(x−2− j−1),

h̃ j (x) = 1
iπ 2

− 3 j
2

∞∑
l=1

w(2lπ2− j )

2lπ2− j e2lπ i(x−2− j−1).
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By the construction of h j (x) and h̃ j (x), we have

(h̃ j (x))
′ = h j (x). (3.1)

From Meyer [9] and Qian-Yang [16], by wavelet property, we have

Lemma 3.4 ∀N > 4, |x | ≤ 1
2 and j ≥ 1, we have

|h j (x)| ≤ CN2
j
2 (1 + |2 j x |)−N ,

|h̃ j (x)| ≤ CN2− j
2 (1 + |2 j x |)−N .

(3.2)

Further, we note that in the case

F(z) =
∑

k∈N
Ckz

k,

F(z) is an analytic function in the unit disc. For z = re2π i x , we may write f (x) =
F(e2π i x ). For j ≥ 1, let

h j (x) = (2π)−12− j
2

∞∑
l=1

ω(2lπ2− j )e2lπ i(x−2− j−1).

Let G0(x) = 1,G1(x) = G0,0(x) = e2π i x . ∀ j ≥ 1, 0 ≤ k < 2 j−1, and m =
2 j−1 + k + 1, k∗ = −k − 1, define

Gm(x) = G j,k(x) = P(g j,k + g j,k∗)(x) = h j (x − k2− j )

= 1
π
2− j

2

∞∑
1

w(2lπ2− j ) cos(2lπ(k + 1
2 )2

− j )e2lπ i x .

Let 	a denote the set {0} ⋃{( j, k), j ∈ N, 0 ≤ k < 2 j−1}. We note that 	a is
different from the index set 	 in Sect. 3.1.2 and 	a � 	. The holomorphic wavelets
{Gm(x)}m≥0 on the interval is different from the traditional wavelets on the interval
in the real analysis. The following result is well-known. See [9].

Lemma 3.5 {Gm(x)}m∈N is an orthonormal basis of H
2([0, 1]).

3.3 BimodalWavelets forH
p(D)

For H
p(D)(p �= 2), [14] shows that TM systems are Schauder systems. To better

understand the structure of the functions, we are to get some unconditional bases.
Botchkariev [2] and Wojtaszcyk [22] applied Franklin system to analyze H

p(D).
Afterwards, Meyer [9] used bimodal wavelets to restudy H

p(D). Bimodal wavelets
are constructed using complex wavelet techniques, periodization of wavelets on lines
and orthogonal projection. See Meyer [9] and Qian-Yang [16]. Let G0(z) = 1 and
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G1(z) = z. By the Cauchy formula, for m ≥ 2,m ∼ ( j, k),

Gm(z) = 1
π
2− j

2

∞∑
l=0

w(2lπ2− j ) cos(2lπ(k + 1
2 )2

− j )zl .

{Gm(z)}m≥0 is an orthonormal basis of H
2(D). Let f0 = 〈F,G0〉 and f1 = 〈F,G1〉.

For m ≥ 2, let fm = f j,k = 〈F,G j,k〉 = 〈F,Gm〉. In combination with [2, 9, 22],
the following result is known in [16]:

Lemma 3.6 Botchkariev-Meyer-Wojtaszcyk Theorem. For 1 < p < ∞,

F = ∑
m≥0

fmGm(z) ∈ H
p(D)

⇔ | f0| + | f1| + ∫ 1
2
0 [ ∑

j≥1,0≤k<2 j−1
2 j | f j,k |2χ(2 j x − k)] p

2 dx < ∞.

Our idea is to generalize this result to the case of rational approximation in the disc.
Later we will analyze the effect of our algorithm by comparison between the rational
system and the Meyer wavelets.

4 Rational System

Liu-Yang-Yang and Yang-Chen have considered the boundary values of harmonic
functions in [7, 25] which have some differences from analytic functions. Botchkariev
[2] and Wojtaszcyk [22] applied Franklin system to analyze H

p(D). Meyer [9] used
bimodal wavelets to restudy H

p(D). But rational functions are simple and intuitive,
we extend their results to rational system.

4.1 Rational Functions {Hm}m≥0 and Pseudo-orthogonality

4.1.1 Rational Functions

Let us first study the properties of rational functions. For a = re2π ih , denote the

a-parameterized Szegö kernel by ea(z) =
√

1−|a|2
1−āz . The boundary value of ea(z) is

√
1 − r2

1 − re2π i(x−h)
= (1 − r cos 2π(x − h))

√
1 − r2

1 − 2r cos 2π(x − h) + r2
+ i

r sin 2π(x − h)
√
1 − r2

1 − 2r cos 2π(x − h) + r2

The rational function is of unit L2-norm on the circle which has no vanishing moment:

Lemma 4.1 (i)
∫ 1
0 eadx = √

1 − r2.
(ii) 〈ea, ea〉 = 1.

The conclusion (i) is essentially by the Cauchy formula; and (ii) by reducing to the
integral of the Poisson kernel. We provide some useful computation.
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Proof We prove (i) firstly.

∫ 1
0 eadx = √

1 − r2
∫ 1
0 { (1−r cos 2π(x−h))

1−2r cos 2π(x−h)+r2
+ i r sin 2π(x−h))

1−2r cos 2π(x−h)+r2
}dx

= √
1 − r2

∫ 1
0

(1−r cos 2π(x−h))

1−2r cos 2π(x−h)+r2
dx .

By substitution y = 2π(x − h),

∫ 1
0 eadx =

√
1−r2
2π

∫ 2π−h
h

(1−r cos y)
1−2r cos y+r2

dy

=
√
1−r2
2π

∫ 2π
0

(1−r cos y)
1−2r cos y+r2

dy

=
√
1−r2
4π

∫ 2π
0 [1 + (1−r2)

1−2r cos y+r2
]dy

=
√
1−r2
4π [∫ 2π

0 dy + ∫ 2π
0

1−r2

1−2r cos y+r2
dy]

=
√
1−r2
4π [2π + 2π ] = √

1 − r2.

As for (ii), we have

〈ea, ea〉 = ∫ 1
0

1
1−āz

1
1−az̄ dx

= (1 − r2)
∫ 1
0

1
1−re2π i(x−h)

1
1−re−2π i(x−h) dx

= ∫ 1
0

1−r2

1−2r cos 2π(x−h)+r2
dx .

By substitution y = 2π(x − h),

〈ea, ea〉 = ∫ 1
0

1−r2

1−2r cos 2π(x−h)+r2
dx

= 1
2π

∫ 2π
0

1−r2

1−2r cos y+r2
dy = 1.

��
Denote z = e2π i x , then dz = 2π i zdx . For the analytic Hardy space functions, by

the Cauchy formula (or see page 18 of Qian’s book [11]),

Lemma 4.2

〈 f , ea〉 =
√
1 − |a|2
2π

∫ 2π

0

f (eix )

1 − ae−i x
dx =

√
1 − |a|2

∫ 1

0

f (e2π i x )

1 − ae−2π i x dx

=
√
1 − |a|2
2π i

∫

∂D

f (z)

z − a
dz =

√
1 − |a|2 f (a). (4.1)

Through taking differences between elements of the Szegö dictionary we create a
system with zero moment. For x ∈ R, let [x] denote the maximum integer part. For
j ≥ 1, 0 ≤ k < 2 j , denote

r j =
√
1 − 2− j , h j,k = 2− j k and a j,k = r j e

2π ih j,k .
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Hence 1 − r2j = 2− j . We introduce to a minimum dictionary. The integral of the
rational function is not zero, so we use the difference of the rational functions. Denote
H0(z) = 1, H1(z) = H0,0(z) = z. For j ≥ 1, 0 ≤ k < 2 j−1 and m = 2 j−1 + 1 + k,

denote H2(z) = H1,0(z) = 2− 1
2 − ea1,0 , H3(z) = H2,0(z) = 2− 1

2 ea1,0 − ea2,0 ,

H4(z) = H2,1(z) = 2− 1
2 ea1,0 − ea2,1 , · · · . Generally, for j ≥ 2, 0 ≤ k < 2 j−1,

denote H2 j−1+1+k(z) = Hj,k(z) = 2− 1
2 ea j−1,[ k2 ] − ea j,k . That is

Hm(z) = Hj,k(z) = 2− 1
2 ea j−1,[ k2 ] − ea j,k =

√
1 − r2j {

1

1 − a j−1,[ k2 ]z
− 1

1 − a j,k z
}

=
√
1 − r2j {

(a j−1,[ k2 ] − a j,k)z

(1 − a j−1,[ k2 ]z)(1 − a j,k z)
}. (4.2)

It is easy to see

Proposition 4.3 ∀1 < p < ∞,m ≥ 0, Hm(z) ∈ H
p(D).

4.1.2 Pseudo-orthogonality of Rational System

The above set of rational functions {Hm}m≥0 have quasi-orthogonality. We know
{Hm}m≥1 all have zero vanishing moment. So we need only to consider {Hm}m≥1 =
{Hj,k} j≥0,0≤k<2 j−1 . Let τ̃ j,k, j ′,k′ = 〈Hj,k, Hj ′,k′ 〉. Similar to the Eq. (3.1) of Propo-
sition 1 in Chapter 8, Section 3, Volume 2 of Meyer’s book [9], we have the following
estimation:

Proposition 4.4 For j, j ′ ≥ 0, 0 ≤ k < 2 j−1, 0 ≤ k′ < 2 j ′−1, we have

|τ̃ j,k, j ′,k′ | ≤ C2− 3
2 | j− j ′|

(
2− j + 2− j ′

2− j + 2− j ′ + |k2− j − k′2− j ′ |

)2

. (4.3)

Proof We consider only j, j ′ ≥ 2, 0 ≤ k < 2 j−1, 0 ≤ k′ < 2 j ′−1. By the inner
product relation in equation (4.1), we have

τ̃ j,k, j ′,k′ = 2− 1
2
√
1 − |a

j ′−1,[ k′2 ]|2Hj,k(a j ′−1,[ k′2 ]) −
√
1 − |a j ′,k′ |2Hj,k(a j ′,k′)

=
√
1 − r2j ′ {Hj,k(a j ′−1,[ k′2 ]) − Hj,k(a j ′,k′)}.

If j = j ′, then, by similarity, we may restrict to the case j ≥ 2 and k = 0 and
k′ = 2l. We have

|τ̃ j,0, j,2l | =
√
1 − r2j ′ |Hj,0(a j ′−1,l) − Hj,0(a j ′,2l)|.
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We estimate then |Hj,0(a j−1,l)| and |Hj,0(a j,2 l)|. The absolute value of e2π i2− j2l is
1, r j−1 ∼ 1 and r j ∼ 1, we have

|Hj,0(a j−1,l)| =
√
1 − r2j | (r j−1−r j )r j−1e2π i2

− j 2l

(1−r2j−1e
2π i2− j 2l )(1−r j−1r j e2π i2

− j 2l )
|

≤
√
1 − r2j (r j−1 − r j )

1
|1−r2j−1e

2π i2− j 2l |·|1−r j−1r j e2π i2
− j 2l | ,

|Hj,0(a j,2l)| ≤
√
1 − r2j (r j−1 − r j )

1
|1−r j−1r j e2π i2

− j 2l |·|1−r2j e
2π i2− j 2l | .

We first estimate the term r j−1 − r j :

r j−1 − r j = r2j−1 − r2j
r j−1 + r j

∼ 1

2
2− j .

We now compute the fractional terms in |Hj,0(a j−1,l)| and |Hj,0(a j,2l)| that have
absolute values. Bcause 1 − cos(2π2− j2l) ∼ 8π22−2 j l2, we have

1
|1−r2j−1e

2π i2− j 2l | ≤ 1√
(1−r2j−1 cos(2π2

− j2l))2+(r2j−1 sin(2π2
− j2l))2

= 1√
(1−r2j−1)

2+2r2j−1(1−cos(2π2− j2l))

≤ 1√
(2·2− j )2+16π22−2 j l2

= 1
2·2− j

√
1+4π2l2

.

Similarly,

1
|1−r2j e

2π i2− j 2l | ≤ 1√
2−2 j+16π22−2 j l2

= 1

2·2− j
√

1
4+4π2l2

.

Since (1 − r j−1r j )2 = (
1−r2j−1r

2
j

1+r j−1r j
)2 ∼ ( 322

− j − 2−2 j )2 ∼ 9
42

−2 j , we have

1
|1−r j−1r j e2π i2

− j 2l | ≤ 1√
9
4 2

−2 j+16π22−2 j l2
= 1

2·2− j
√

9
16+4π2l2

.

Applying the above estimations to |τ̃ j,0, j,2l |, we get

|τ̃ j,0, j,2l | ≤
√
1 − r2j (|Hj,0(a j−1,l)| + |Hj,0(a j,2l)|)

≤ (1−r2j )(r j−1−r j )

4·2−2 j
1√

9
16+4π2l2

( 1√
1+4π2l2

+ 1√
1
4+4π2l2

)

≤ C
1+16π2l2

.



   84 Page 14 of 27 C. Hon et al.

If j > j ′, by similarity, we may restrict to the case k = 0, k′ = 2 l. In this case,

|τ̃ j,0, j ′,2l | =
√
1 − r2j ′ |Hj,0(a j ′−1,l) − Hj,0(a j ′,2l)|.

Then we consider the estimations of |Hj,0(a j ′−1,l)| and |Hj,0(a j ′,2l)|. We note that

the absolute value of e2π i2
− j ′2l is 1, r j−1 ∼ 1 and r j ′ ∼ 1. Hence,

|Hj,0(a j ′−1,l)| =
√
1 − r2j | (r j−1−r j )r j−1e2π i2

− j ′ 2l

(1−r2j−1e
2π i2− j ′ 2l )(1−r j−1r j e2π i2

− j ′ 2l )
|

≤
√
1 − r2j (r j−1 − r j )

1

|1−r j−1r j ′−1e
2π i2− j ′ 2l |·|1−r j ′−1r j e

2π i2− j ′ 2l |
,

|Hj,0(a j ′,2l)| ≤
√
1 − r2j (r j−1 − r j )

1

|1−r j−1r j ′e2π i2
− j ′ 2l |·|1−r j r j ′e2π i2

− j ′ 2l |
.

We estimate first the fractional parts in the above inequalities.

1

|1−r j−1r j ′−1e
2π i2− j ′ 2l |

≤ 1√
(1−r j−1r j ′−1)

2+2r j−1r j ′−1(1−cos(2π2− j ′2l))

≤ 2 j ′ 1√
16π2l2+(1+2 j ′− j )2

.

Similarly,

1

|1 − r jr j ′−1e2π i2
− j ′2l | ≤ 2 j ′ 1√

16π2l2 + (1 + 2 j ′− j−1)2
,

1

|1 − r j−1r j ′e2π i2
− j ′2l | ≤ 2 j ′ 1√

16π2l2 + ( 12 + 2 j ′− j )2
,

and

1

|1 − r j r j ′e2π i2
− j ′2l | ≤ 2 j ′ 1√

16π2l2 + ( 12 + 2 j ′− j−1)2
.

Applying then the above estimations to |τ̃ j,0, j ′,2l |, we have

|τ̃ j,0, j ′,2l | ≤
√
1 − r2j ′ (|Hj,0(a j ′−1,l )| + |Hj,0(a j ′,2l)|)

≤ 1
2 2

− 3
2 ( j− j ′) 1√

16π2l2+(1+2 j ′− j−1)2

{
1√

16π2l2+(1+2 j ′− j )2
+ 1√

16π2l2+( 12 +2 j ′− j )2

}

≤ 2− 3
2 ( j− j ′) C

1+16π2l2
.

��
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4.1.3 Pseudo-orthogonality Between {Hm} andMeyer Wavelets {Gm}

Let Hj,k be the functions defined in Sect. 4.1which is based onTMsystem. LetG j,k be
the orthogonal bimodal wavelets induced by Meyer’s algorithm. Functions {Hm}m≥0
are comparable to bimodal wavelets {Gm}m≥0. Let τ j,k, j ′,k′ = 〈G j,k, Hj ′,k′ 〉. Similar
to the Eq. (3.1) of Proposition 1 in Section 3, Chapter 8, Volume 2 of Meyer’s book
[9], we have the following estimation:

Proposition 4.5 For j, j ′ ≥ 0, 0 ≤ k < 2 j−1, 0 ≤ k′ < 2 j ′−1, we have

|τ j,k, j ′,k′ | ≤ C2− 3
2 | j− j ′|

(
2− j + 2− j ′

2− j + 2− j ′ + |k2− j − k′2− j ′ |

)2

. (4.4)

Proof Let’s first rewrite the expression for τ j,k, j ′,k′ . We use substitution to turn x −
2− j k into x and get

τ j,k, j ′,k′ = 〈G j,k, Hj ′,k′ 〉 = 〈h j (x), Hj ′,k′(x + 2− j k)〉. (4.5)

Denote Dj ′,k′(x) = (Hj ′,k′(x))′ and by using integration by parts, we have

|τ j,k, j ′,k′ | = |〈h̃ j (x), Dj ′,k′(x + 2− j k)〉|. (4.6)

Next, we estimate Hj ′,k′(x) and Dj ′,k′(x). By similarity, we consider only k′ =
2α, α ∈ N. We have

Hj ′,2α(x) = 2− 1
2 ea j ′−1,α

− ea j ′,2α = 2− j ′
2

{
1

1−r j ′−1e
2π i(x−h j ′,2α) − 1

1−r j ′e
2π i(x−h j ′,2α)

}
.

Hence

|Hj ′,2α(x)| ≤ 2− j ′
2 | 1

1 − r j ′−1e
2π i(x−h j ′,2α)

− 1

1 − r j ′e
2π i(x−h j ′,2α)

|

≤ C2− 3 j ′
2 (2− j ′ + |x − 21− j ′α|)−2 ≤ C2

j ′
2 (1 + |2 j ′x − 2α|)−2,

|Dj ′,2α(x)| ≤ C2
3 j ′
2 (1 + |2 j ′x − 2α|)−2. (4.7)

Below, we estimate |τ j,k, j ′,k′ | in two cases. (I) For j ≤ j ′, by similarity, we may
restrict to the case j, j ′ ≥ 2 and k′ = 2α. By Lemma 3.4, equations (4.5) and (4.7),
we have

|τ j,k, j ′,2α| ≤ ∫ 1
0 |h j (x)||Hj ′,2α(x + 2− j k)|dx

≤ C2
j+ j ′
2

∫ 1
0 (1 + |2 j x |)−N (1 + |2 j ′x + 2 j ′− j k − 2α|)−2dx .



   84 Page 16 of 27 C. Hon et al.

Wedistinguish two cases: (i) |2 j ′x | < 1
2 |2 j ′− j k−2α| and (ii) |2 j ′x | ≥ 1

2 |2 j ′− j k−2α|.
We get

|τ j,k, j ′,2α| ≤ C2
3( j− j ′)

2 (1 + |k − 2α2 j− j ′ |)−2.

(II) For j > j ′, by similarity, we may restrict to the case j, j ′ ≥ 2 and k′ = 2α.
Similarly, by Lemma 3.4, equations (4.6) and (4.7), we have

|τ j,k, j ′,2α| ≤ ∫ 1
0 |h̃ j (x)||Dj ′,k′(x + 2− j k)|dx

≤ C2
− j+3 j ′

2
∫ 1
0 (1 + |2 j x |)−N (1 + |2 j ′x + 2 j ′− j k − 2α|)−2dx .

Wedistinguish two cases: (i) |2 j ′x | < 1
2 |2 j ′− j k−2α| and (ii) |2 j ′x | ≥ 1

2 |2 j ′− j k−2α|.
We get

|τ j,k, j ′,2α| ≤ 2− 3
2 | j− j ′| C

(1 + |k2 j ′− j − 2α|)2 .

��

4.2 MaximumOperator and Hardy Spaces

By the above rational system, we can define H̃
p(D) by the following Lusin area

integral. In this subsection, we prove that H̃
p(D) ⊂ H

p(D). In the next section, we
prove the completeness of our rational system {Hm}m≥0 inHardy spaceH

p(D). Hence
H̃

p(D) is just Hardy space H
p(D).

Definition 4.6 Denote formally by F ∼ f0 + f1 + ∑
j≥1,0≤k<2 j−1 f j,k Hj,k . We say

that the form F ∈ H̃
p(D), if

| f0| + | f1| + ∫ 1
2
0

[
∑

j≥1,0≤k<2 j−1
2 j | f j,k |2χ(2 j x − k)

] p
2

dx < ∞.

For j ≥ 1, denote

f j (x) =
∑

0≤k<2 j−1

2
j
2 | f j,k |χ(2 j x − k). (4.8)

We use Hardy-Littlewood maximum operator to consider Hardy spaces H
p(D). See

[3, 20, 26]. Hardy-Littlewood maximum operator in R is defined as follows:

MR f (x) = sup
x∈Q

1

|Q|
∫

Q
| f (x)|dx .
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Hardy Littlewood maximum operator on the interval is denoted

M f (x) = sup
x∈Q,|Q|≤1

1

|Q|
∫

Q
| f (x)|dx .

The H
p type space is the space of type L p(l2), see [3, 20]. Further, the norm

comparison between them is realized by the following Fefferman-Stein vector value
maximum operator theorem. See [5].

Lemma 4.7 For 1 < p, q < ∞, then

‖{M fk}‖L p(lq ) ≤ C‖{ fk}‖L p(lq ),∀ f = { fk}.

Now we conclude that the relative H̃
p induced in [21] in is a subspace of the H

p

induced by Meyer’s algorithm. According to Fefferman-Stein vector value maximum
operator theorem and the results in section 2 and section 11 in chapetr 6 of Meyer [9],
we have the following Botchkariev-Meyer-Wojtaszcyk Theorem for rational system:

Proposition 4.8 If F ∼ ∑
m≥0 fm Hm ∈ H̃

p(D), then F ∈ H
p(D).

Proof Since {Gm}m≥0 is an unconditional basis in H
p(D) (see [9, 16]), hence

F =
∑

m′

∑

m≥0

fm〈Hm,Gm′ 〉Gm′ =
∑

m′

∑

m≥0

fmτm,m′Gm′

is true in the sense of distribution. We write them with double indices,

F = f0G0 +
∑

j ′≥0,0≤k′<2 j ′−1

∑

j≥0,0≤k<2 j−1

f j,kτ j,k, j ′,k′G j ′,k′ .

By Lemma 3.6, we get

‖F‖Hp ≤ | f0| + C‖[ ∑

j ′≥0,0≤k′<2 j ′−1

2 j ′ (
∑

j≥0,0≤k<2 j−1
f j,kτ j,k, j ′,k′ )2χ(2 j ′ x − k′)] 1

2 ‖L p .

For f j defined in the equation (4.8), by the definition of Hardy Littlewood maximum
operator on the interval, we have

M f j (x) = sup
|Q|≤1

1
|Q|

∫
Q | f j (x)|dx

= sup
x,|r |≤1

1
|r |

∑

−r−2− j≤2− j k−x≤r

2− j
2 | f j,k |.
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For j ≥ j ′ ≥ 0 and τ = 1, denote g1, jj ′,k′ = 2
j ′
2

∑
|k2 j ′− j−k′|<2 f j,kτ j,k, j ′,k′ .

For τ ≥ 2, gτ, j
j ′,k′ = 2

j ′
2

∑
2τ−1≤|k2 j ′− j−k′|<2τ f j,kτ j,k, j ′,k′ . Hence we can write

∑
0≤k<2 j−1 f j,kτ j,k, j ′,k′ = ∑

τ≥1 g
τ, j
j ′,k′ . Denote g j, j ′ = ∑

τ≥1 g
τ, j
j ′,k′ and

T = [
∑

j ′≥0,0≤k′<2 j ′−1

2 j ′ (
∑

j≥0,0≤k<2 j−1

f j,kτ j,k, j ′,k′ )2χ(2 j ′ x − k′)] 1
2 = {

∑

j ′≥0

|
∑

j≥0

g j, j ′ |2} 1
2 .

We first consider the estimate of |gτ, j
j ′,k′ |.

|gτ, j
j ′,k′ | ≤ C2

j ′
2 2− 3

2 | j− j ′|2−2τ−2 ∑

|2− j k−2− j ′k′|≤2τ− j

| f j,k |

≤ C2−| j− j ′|2−τ−2|M f j (x)|.
Then, we have

∑
j≥0

|g j, j ′ | = ∑
j≥0

∑
τ≥1

|gτ, j
j ′,k′ | ≤ ∑

j≥0

C
4 2

| j− j ′||M f j (x)|.

Thus,

T =
{

∑
j ′≥0

| ∑
j≥0

C
4 2

| j− j ′||M f j (x)||2
} 1

2

≤
{

∑
j ′≥0

|(∑
j≥0

C2

16 2
| j− j ′|)(

∑
j≥0

2| j− j ′||M f j (x)|2)|
} 1

2

= C
4

{
∑
j ′≥0

∑
j≥0

2| j− j ′||M f j (x)|2
} 1

2

.

For 0 ≤ j < j ′ and τ = 1, denote g1, jj ′,k′ = 2
j ′
2

∑
|k−k′2 j− j ′ |<2 f j,kτ j,k, j ′,k′ .

For τ ≥ 2, gτ, j
j ′,k′ = 2

j ′
2

∑
2τ−1≤|k−k′2 j− j ′ |<2τ f j,kτ j,k, j ′,k′ . Hence we can write

∑
0≤k<2 j−1 f j,kτ j,k, j ′,k′ = ∑

τ≥1 g
τ, j
j ′,k′ . We first consider the estimate of |gτ, j

j ′,k′ |.

|gτ, j
j ′,k′ | ≤ C2

j ′
2 2− 3

2 | j− j ′|2−2τ ∑

|2− j k−2− j ′k′|≤2τ− j

| f j,k |

≤ C2
j ′− j
2 2− 3

2 | j− j ′|2−τ
∑

|2− j k−2− j ′k′|≤2τ− j

2− j
2 2 j−τ | f j,k |

≤ C2−| j− j ′|2−τ |M f j (x)|.
Then, we have

∑
j≥0

|g j, j ′ | = ∑
j≥0

∑
τ≥1

|gτ, j
j ′,k′ | ≤ ∑

j≥0
C2| j− j ′||M f j (x)|.
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Thus,

T =
{

∑
j ′≥0

| ∑
j≥0

g j, j ′ |2
} 1

2

=
{

∑
j ′≥0

| ∑
j≥0

C2| j− j ′||M f j (x)||2
} 1

2

≤
{

∑
j ′≥0

|(∑
j≥0

C22| j− j ′|)(
∑
j≥0

2| j− j ′||M f j (x)|2)|
} 1

2

= C

{
∑
j ′≥0

∑
j≥0

2| j− j ′||M f j (x)|2
} 1

2

.

By psedo-orthogonality or by the estimation of the decay of τ j,k, j ′,k′ ,

‖F‖Hp ≤ | f0| + ‖
(

∑
j ′≥0

∑
j
2−| j− j ′||M f j |2

) 1
2

‖L p ≤ | f0| + ‖
(

∑
j≥0

|M f j |2
) 1

2

‖L p .

By applying Fefferman-Stein vector value maximum operator Lemma 4.7, we get
the desired conclusion. ��

The above Proposition implies the independence of linearity of {Hm}m≥0:

Corollary 4.9

〈
zm,

∑

m′≥0

hm′ Hm′

〉
= 0,∀m ≥ 0 ⇒ ∀m′ ≥ 0, hm′ = 0.

5 Completeness of Basis

It is well known that a sufficient and necessary condition for TM system to become a
basis is that the TM system satisfies the hyperbolic non-separability condition:

+∞∑

k=1

(1 − |ak |) = ∞.

See [11–15, 17, 24]. In Proposition 5.2, we use properties of the matrices to prove that
our rational system is a basis and get the completeness of our rational system. The
completeness of the basis {Hm}m≥0 has relation to the following matrix

M =

⎛

⎜⎜⎜⎜⎝

1 r1 r21 r31 · · ·
1 r2 r22 r32 · · ·
1 r3 r23 r33 · · ·
1 r4 r24 r34 · · ·

· · · · · · · · · · · · · · ·

⎞

⎟⎟⎟⎟⎠
. (5.1)
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The above matrix is related to the following Vandermonde determinant Dn :

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣

1 r1 r21 r31 · · · rn−1
1

1 r2 r22 r32 · · · rn−1
2

1 r3 r23 r33 · · · rn−1
3

1 r4 r24 r34 · · · rn−1
4· · · · · · · · · · · · · · · · · ·

1, rn r2n r3n · · · rn−1
n

∣∣∣∣∣∣∣∣∣∣∣∣

. (5.2)

The following Lemma is well-known:

Lemma 5.1 Dn = ∏
1≤m<m′≤n

(rm − rm′).

Now we consider the completeness of the basis {Hm}m≥0.

Proposition 5.2
〈

∑

m′≥0

hm′ zm
′
, Hm

〉
= 0,∀m ≥ 0 ⇒ ∀m′ ≥ 0, hm′ = 0.

Proof Form = 2 j−1+1+k ≥ 3, by the definition Hm = Hj,k = 2− 1
2 ea j−1,[ k2 ] −ea j,k

in equation (4.2), we have

〈
∑

m′≥2

hm′ zm
′
, Hj,k

〉
=

∑

m′≥2

hm′ 〈zm′
, Hj,k〉.

For j ≥ 1, we first consider the expression for the inner product 〈zm′
, Hj,k〉 by the

odd-even property of k.
If k = 2l, by definition, the above quantity is

〈zm′
, Hm〉 = 2− 1

2

√
1 − r2j−1r

m′
j−1e

m′2π ih
j−1,[ k2 ] −

√
1 − r2j r

m′
j em

′2π ih j,k

=
√
1 − r2j (r

m′
j−1e

m′2π ih
j−1,[ k2 ] − rm

′
j em

′2π ih j,k ).

If k = 2l + 1, by definition, the above quantity is

〈zm′
, Hm〉 = 2− 1

2

√
1 − r2j−1r

m′
j−1e

m′2π ih
j−1,[ k2 ] −

√
1 − r2j r

m′
j em

′2π ih j,k

=
√
1 − r2j (r

m′
j−1e

m′2π ih
j−1,[ k2 ] − rm

′
j em

′2π ih j,k ).

(i) For Hm = Hj,k = 2− 1
2 ea j−1,[ k2 ] − ea j,k in equation (4.2), we prove then

〈
∑

m′≥0

hm′ zm
′
, Hj,k

〉
= 0,∀ j ≥ 1, 0 ≤ k < 2 j−1
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is equivalent to the following equation:

〈
∑

m′≥0

hm′ zm
′
, a j,k

〉
= 0,∀ j ≥ 1, 0 ≤ k < 2 j−1.

It is easy to see that h0 = 0 and h1 = 0. Hence, we consider the case of m′ ≥ 2
and we proved it by mathematical induction. For j = 1 and k = 0, we have

〈 ∑
m′≥2

hm′ zm
′
, Hm〉 = ∑

m′≥2
hm′

√
1 − r21 (rm

′
0 em

′2π ih0,0 − rm
′

1 em
′2π ih1,0)

= ∑
m′≥2

hm′
√
1 − r21 (rm

′
0 − rm

′
1 )

= − ∑
m′≥2

hm′
√
1 − r21r

m′
1 .

Because 〈∑m′≥2 hm′ zm
′
, H1,0〉 = 0, we get

∑
m′≥2

hm′
√
1 − r21 r

m′
1 = 0.

For j = 2 and k = 0, we have

〈
∑
m′≥2

hm′ zm
′
, H2,0

〉
= ∑

m′≥2
hm′

√
1 − r22 (rm

′
1 em

′2π ih1,0 − rm
′

2 em
′2π ih2,0)

= ∑
m′≥2

hm′
√
1 − r22 (rm

′
1 − rm

′
2 ).

Since 〈 ∑
m′≥2

hm′ zm
′
, H2,0〉 = 0 and

∑
m′≥2

hm′
√
1 − r21 r

m′
1 = 0, we get

∑

m′≥2

hm′
√
1 − r22 r

m′
2 = 0.

By induction and similarity, we get the following equation

∑

m′≥2

hm′
√
1 − r2j r

m′
j em

′2π ih j,k = 0,∀ j ≥ 1, 0 ≤ k < 2 j−1.

That is to say, ∀ j ≥ 1, 0 ≤ k < 2 j−1, we have

〈
∑
m′≥2

hm′ zm
′
, a j,k

〉
= ∑

m′≥2
hm′

√
1 − r2j r

m′
j em

′2π ih j,k = 0.
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The above equality implies

∑

m′≥2

hm′rm
′

j em
′2π ih j,k = 0,∀ j ≥ 1, 0 ≤ k < 2 j−1. (5.3)

(ii) Then we can write the above equation (5.3) as a system of equations:

j = 1,
∑
m′≥2

hm′rm
′

1 = 0;
j = 2,

∑
m′≥2

hm′rm
′

2 = 0;
∑
m′≥2

hm′rm
′

2 e
π
2 im

′ = 0;
j = 3,

∑
m′≥2

hm′rm
′

3 = 0;
∑
m′≥2

hm′rm
′

3 e
π
4 im

′ = 0;
∑
m′≥2

hm′rm
′

3 e
π
2 im

′ = 0;
∑
m′≥2

hm′rm
′

3 e
3π
4 im′ = 0;

j = 4,
∑
m′≥2

hm′rm
′

4 = 0;
· · ·

(5.4)

In the above equations (5.4), we consider the first equation for each j ≥ 1, we get

∑
m′≥2

hm′rm
′

1 = 0;
∑
m′≥2

hm′rm
′

2 = 0;
∑
m′≥2

hm′rm
′

3 = 0;
∑
m′≥2

hm′rm
′

4 = 0;
· · ·

(5.5)

Denote the transpose vector of (h2, h3, h4, · · · ) be (h2, h3, h4, · · · )T . We divide by
r2j in the above (5.5), we get the matrix M in the equation (5.1) and

M · (h2, h3, h4, · · · )T = 0.

Combine Vandermonde determinant (5.2) with above equation, we get

∀m′ ≥ 2, hm′ = 0. ��
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6 Rearrangement of Partial SumOrder and Adaptive Expansion

There is an ample amount of literature studyingmatching pursuit algorithms including
the type based on dictionary and basis in which the branch in relation to TM systems is
called adaptive Fourier decomposition (AFD). See [11–15, 17, 24]. The present study
is also based onTMsystem and can be viewed as a variation of theAFDmethods.What
we do is we replace the orthogonal basis with the bi-orthogonal basis, and we replace
the optimal matching pursuit with the partial maximum choice principle. Finally, we
prove our main Theorem in the second subsection.

6.1 Maximal Partial Sum Re-ordering

First, we construct a dual basis to replace the orthogonal basis in the traditional AFD
algorithm. For m,m′ ≥ 0, let δm,m′ = 1, if m = m′ and δm,m′ = 0, if m �= m′.

Definition 6.1 Given 1 < p < ∞ and p′ = p
p−1 . For m ≥ 0, we assume that

Hm ∈ H p(D) and H̃m ∈ H p′
(D). Let {Hm}m≥0 be a basis of H p(D). We say that

{H̃m}m≥0 is a dual basis of {Hm}m≥0, if

〈Hm, H̃m′ 〉 = δm,m′ ,∀m,m′ ≥ 0.

For a given {Hm}m≥0 in H
p(D), we can look for a dual basis {H̃m}m≥0 in the sense

of functional way where H̃m ∈ H
p′
(D). That is,

(1) Take H̃0 = 1 = H0, H̃1 = H̃0,0 = e2π i x = H0,0 = H1.
(2) Take H̃2 ∈ H p′

(D) such that

〈H̃2, Hm〉 = δm,2.

(3) Take H̃3 ∈ H p′
(D) such that

〈H̃3, Hm〉 = δm,3.

(4) Analogously, for m′ ≥ 4, we construct H̃m′ ∈ H
p′
(D) such that

〈H̃m′ , Hm〉 = δm,m′ .

For 1 < p < ∞, the fact that {Hm}m≥0 is a basis in H
p(D) implies that, for

m′ ≥ 0, H̃m′ ∈ H
p′
(D) defines a linear continuous functional on H

p(D). By
construction and Proposition 2.2, we have

Proposition 6.2 For 1 < p < ∞ and f ∈ H
p(D),

f =
∑

m≥0

〈 f , H̃m〉Hm .
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Then we can form maximal partial sum re-ordering algorithm, being a variation of
AFD algorithm as follows. Our greedy AFD here is:

(1) Take f0 and f1 as the 〈 f , H0〉 and 〈 f , H1〉 = 〈 f , H̃0,0〉. x f
0 = 0 and x f

1 = 0.
(2) For m = 2, we can write m = 2 j−1 + 1 + k where j = 1, k = 0 < 2 j−1. There

exists only one k satisfying that 0 ≤ k < 2 j−1 for j = 1.We take f2 = 〈 f , H̃2〉 =
〈 f , H̃1,0〉 and x f

2 = 0.
(3) For 3 ≤ m ≤ 4, for j = 2, we have 2 j−1 + 1 ≤ m ≤ 2 j . We can write

m = 2 j−1 + 1 + k where j ≥ 2, 0 ≤ k < 2 j−1. There are two possibilities
for k, we adopt greedy algorithm for j = 2. That is to say, we choose f3 to be
one of the quantities 〈 f , H̃3〉 = 〈 f , H̃2,0〉 and 〈 f , H̃4〉) = 〈 f , H̃2,1〉 such that
| f3| = max(|〈 f , H̃3〉|, |〈 f , H̃4〉|). Then there exists k0 = 0 or k0 = 1 such that
H̃ f
2,0 = H̃2,k0 We denote f3 = 〈 f , H̃ f

3 〉 = 〈 f , H̃ f
2,0〉 and x f

3 = k0. We take

f4 = 〈 f , H̃ f
2,1〉 to be the rest of the quantities 〈 f , H̃3〉 and 〈 f , H̃4〉 where H̃ f

2,1 is

one of H̃2,0 and H̃2,1 such that H̃ f
2,1 is different to H̃ f

3 . We take x f
4 = {0, 1}\k0.

(4) For m ≥ 5, there exists j ≥ 3 such that 2 j−1 + 1 ≤ m ≤ 2 j . We can write
m = 2 j−1 + 1 + k where j ≥ 2, 0 ≤ k < 2 j−1. For each j ≥ 3, there exist at
least 2 j−1 possible of k satisfying that 0 ≤ k < 2 j−1. For each j fixed, we adopt
greedy algorithm for 0 ≤ k < 2 j−1.

(5) That is to say, there exists 0 ≤ k0 < 2 j−1 such that

|〈 f , H̃ j,k0〉| = sup
0≤k<2 j−1

|〈 f , H̃ j,k〉|.

We take f2 j−1+1 = f j,0 = 〈 f , H̃ j,k0〉, H̃ f
j,0 = H̃ j,k0 , H

f
j,0 = Hj,k0 and x

f
2 j−1+1

=
k0.

(6) Then there exists 0 ≤ k1 < 2 j−1 and k1 �= k0 such that

|〈 f , H̃ j,k0〉| = sup0≤k<2 j−1,k �=k0 |〈 f , H̃ j,k〉|.

We take f2 j−1+2 = f j,1 = 〈 f , H̃ j,k1〉, H̃ f
j,1 = H̃ j,k1 , H

f
j,1 = Hj,k1 and x

f
2 j−1+2

=
k1.

(7) In turn, we find fm = f j,m−1−2 j−1 such that H̃ f
j,m−1−2 j−1 = H̃ j,km−1−2 j−1 and

H f
j,m−1−2 j−1 = Hj,km−1−2 j−1 . We denote x f

m = km−1−2 j−1 .

Remark 6.3 (i) Note that the above optimal term ordering arrangement does not
require unconditional basis property proved in Theorem 1.2. By invoking 1.2,
however, we can also take the global maximum choice, but label x f

m with both j f

and k f . Such global approach is indeed faster for sparse data (wide sense), but a
data sparsity condition must be added to analyze quantitatively.

(ii) Since our algorithm yields an unconditional basis (see Theorem 1.2), we can
also approximate the function with a maximum H

p norm. In fact, assum-
ing the first m functions {H f

m′ }0≤m′≤m−1 are selected and we get Fm =
∑

0≤m′≤m−1〈 f , H̃ f
m′ 〉H f

m′ , we can always find another H
f
m such that the following
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quantity is biggest possible

| f0| + | f1| + ‖
⎛

⎝
∑

2≤m′≤m

2 j |〈 f , H̃ f
m′ 〉|2χ(2 j x − x f

m′)

⎞

⎠

1
2

‖L p ,

unless the decomposition of f has only a finite sum less than m term.

6.2 Proof of Main Theorem 1.2

We first prove (i). Let {Hm}m≥0 be the rational functions defined in the Sect. 4.1.1.
According to Proposition 4.8, the coefficients are combined according to Lusin’s law
of area integration, and the analytic space formed by {Hm}m≥0 is contained in Hardy
spaceH

p(D). According to Proposition 5.2, all functions inH
p(D) can be represented

to be the linear combination of {Hm}m≥0. Hence {Hm}m≥0 is an unconditional basis
of H

p(D).
We next prove (ii). Let {H̃m}m≥0 be the dual functions defined in the Sect. 4.1.1.

Since {Hm}m≥0 is an unconditional basis of H
p(D), the new algorithm through rear-

ranging term order defined in Sect. 6.1 satisfies all the conditions in (ii) of Main
Theorem 1.2.
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