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Deriving Harmonic Functions
in

Higher Dimensional Spaces

T. Qian and F. Sommen

Abstract. For a harmonic function, by replacing its variables with norms of vectors in some
multi-dimensional spaces we may induce a new function in a higher dimensional space. We
show that after applying to it a certain power of the Laplacian we obtain a new harmonic
function in the higher dimensional space. We show that Poisson and Cauchy kernels and
Newton potentials, as well as heat kernels are all deducible using this method based on their
forms in the lowest dimensional spaces. Fueter’s Theorem and its generalizations are deducible
as well from our results. The latter has been used to singular integral and Fourier multiplier
theory on the unit spheres and their Lipschitz perturbations of higher dimensional Euclidean
spaces.

Keywords: Harmonic functions, Cauchy-Riemann operator, Clifford monogenic functions,
singular integrals, Fourier multipliers
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1. Introduction

If f0 is a holomorphic function in an open set of the upper half complex plane and

f0(z) = u(s, t) + iv(s, t) (z = s + it),

then Fueter’s Theorem [3] asserts that in the corresponding region there holds

D∆
(
u(q0, |q|) +

q

|q|v(q0, |q|)
)

= 0

with
q = q1i+q2j+q3k, D = D0+D, D = D1i+D2j+D3k, and ∆ = D2

0+D2
1+D2

2+D2
3,

where i, j, k are the basic elements of the Hamilton quaternionic space and Di = ∂
∂qi

(i =
0, 1, 2, 3). The quaternionic space may be identified with Rn

1 for n = 3, where

Rn
1 =

{
x = x0 + x : x0 ∈ R and x ∈ Rn

}
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and

Rn =
{

x = x1e1 + . . . xnen : xi ∈ R (i = 1, . . . , n)
}

where e2
i = −1 and eiej = −ejei for i, j = 1, . . . , n with i < j [1].

Fueter’s Theorem was extended by Sce in 1957 to Rn
1 for n being odd positive

integers [8]. He proved that, under the same assumptions on f , there holds

D∆
n−1

2

(
u(x0, |x|) +

x

|x|v(x0, |x|)
)

= 0

where D = D0 + D with D = D1e1 + . . . + Dnen and ∆ = D2
0 + D2

1 + . . . + D2
n with

Di = ∂
∂xi

for i = 0, 1, . . . , n. Using Fourier transformation, Qian extended the results
to Rn

1 for n being arbitrary even positive integers [6].

In a recent paper Sommen proved the following result: If n is an odd positive integer,
then

D∆k+ n−1
2

((
u(x0, x) +

x

|x|v(x0, |x|)
)
Pk(x)

)
= 0

where Pk is any polynomial in x of homogeneity k, left-monogenic with respect to the
Dirac operator D, viz. DPk(x) = 0 [9]. When k = 0, this reduces to Sce’s result.

Extension of Fueter’s theorem starting from holomorphic functions of one complex
variable is made complete by including the non-integer powers (the space dimension
n + 1 is odd) of the Laplacian in [4].

The present paper deals with harmonic functions using elementary knowledge of
Clifford analysis. The writing plan is as follows. Section 2 contains statements of our
new results. The results are in terms of identities in relation to multiple powers of
the Laplacian on induced functions from lower dimensional harmonic functions. The
identities in a great extent simplify the computation. As consequence, they conclude the
hamonicity of the induced functions after being applied certain powers of the Laplacian.
Section 3 is devoted to proofs of the theorems. In Section 4 we deal with applications.
We show that almost all commonly used kernels and generalizations of Fueter’s Theorem
are deducible from our theorems.

In below, the letters c or cp denote general constants, the latter stressing the de-
pendence on the parameter p, which may be different from occurrence to occurrence.

The first author would like to express his sincere thanks to Richard Delanghe for
his support in obtaining a scholarship from Office of Research Policy, Ghent University,
Project 01VB6698. The work is partly supported by the 2001 Research Grant No.
RG024/00-01S/QT/FST of the University of Macau.
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2. Statement of the theorems

Denote

Rp =
{

x = x1e1 + . . . + xpep : xi ∈ R (i = 1, . . . , p)
}

Rq =
{

y = y1ep+1 + . . . + yqep+q : yi ∈ R (i = 1, . . . , q)
}

where p, q ∈ N (the set of all positive integers), e2
i = −1 and eiej = −ejei for i 6= j and

i, j = 1, . . . , m with p + q = m. Here we use the standard notation of [1].

We have the following

Theorem 1. Let h = h(s, t) be a harmonic function in the variables s and t. Then

∆k
(
h(|x|, |y|)) =

0∑

l=k

k!
l! (k − l)!

dp(l)dq(k − l)Ds(l)Dt(k − l)h(s, t) (1)

where the Laplacian ∆ for p + q variables is

∆ = (∂2
x1

+ . . . + ∂2
xp

) + (∂2
y1

+ . . . + ∂2
yq

),

s = |x| and t = |y|, dp(l) = (p− 1) · · · (p− 2l + 1) with dp(0) = 1, Ds(l) = ( 1
s∂s)l, and

dq(l) and Dt(l) are defined similarly for l = 0, 1, . . . , k.

More generally, denote

x(r) = x
(r)
1 e

(r)
1 + . . . + x(r)

pr
e(r)
pr
∈ Rpr

where r = 1, . . . , d,
∑d

r=1 pr = m and e
(r)
i e

(r′)
i′ = −e

(r′)
i′ e

(r)
i whenever (r, i) 6= (r′, i′) (i =

1, . . . , pr; i′ = 1, . . . , pr′).

Theorem 2. Let h = h(s1, . . . , sd) be a harmonic function in the d variables
s1, . . . , sd. Then

∆kh
(|x(1)|, . . . , |x(d)|) =

∑ k!
l1! · · · ld!

d∏
r=1

dpr (lr)
d∏

r=1

Dsr (lr) h(s1, . . . , sd) (2)

where the Laplacian ∆ is for all m variables and the summation is over all possible
l1, . . . , ld ∈ N0 such that

∑d
r=1 lr = k.

Theorem 2 is a generalization of Theorem 1. It has the following application.

Theorem 3. If, in addition to the assumptions in Theorem 2, we assume that
pr (r = 1, . . . , d) are odd and m =

∑d
r=1 pr is even, then

∆
m
2 h

(|x(1)|, . . . , |x(d)|) = 0.
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It would be worthwhile noting that the conclusion of Theorem 3 does not hold in
general if some pr’s are even. For instance, when h(s, t) = s + t and p = q = 2, we have
∆

p+q
2 h(|x|, |y|) = 1

s3 + 1
t3 6= 0.

Variations of Theorem 3 corresponding to the total dimension m being even are
suggested by the discussions in Section 4.

We say that a Clifford-valued function f in

Rd =
{
s = s1j1 + . . . + sdjd

}
,

where j2
r = −1 and jrjr′ = −jr′jr for 1 ≤ r, r′ ≤ d with r 6= r′, is left-monogenic with

respect to the Dirac operator ∂s = ∂s1j1 + . . .+∂djd, if ∂sf = 0 (see [1]). If a monogenic
function f is vector-valued, then locally one can always find a scalar-valued harmonic
function h such that f = ∂sh =

∑d
r=1 hrjr with hr = ∂rh (cf. conjugate harmonic

functions systems in [10]).
We have the following corollary of Theorem 3.

Corollary 1. Let f(s) be left-monogenic with respect to ∂s. Then, in accordance

with the expansion f(s) =
∑d

r=1 hrjr as cited above and under the assumptions in
Theorem 3, the function

∆
m
2 −1

( d∑
r=1

hr

(|x(1)|, . . . , |x(d)|) x(r)

|x(r)|
)

is left-monogenic with respect to ∂ =
∑d

r=1 +∂r and ∂r =
∑pr

i=1 ∂
x
(r)
i

e
(r)
i , that is

∂

(
∆

m
2 −1

( d∑
r=1

hr

(|x(1)|, . . . , |x(d)|) x(r)

|x(r)|
))

= 0.

It is easy to see that Fueter’s original result can be made (through the commonly
used correspondence between Rn+1 and Rn

1 , see the notation in [1]) to correspond to
the case d = 2, p1 = 1 and p2 = 3. And Sce’s result can be made to correspond to the
case d = 2, p1 = 1 and p2 any odd positive integer, in the Corollary. We will re-produce
these results from an alternative approach in Section 4.

3. Proofs of the theorems

The proofs of Theorems 1 and 2 rely on the following technical lemma.

Lemma 1. For any l ∈ N, let cj
l (j = 1, . . . , l) be l real numbers, where cl

l = 1.
Then the following conditions are equivalent for the numbers cj

l :

(i) Ds(l) =
(

1
s∂s

)l = c1
l

1
s2l−1 ∂s + c2

l
1

s2l−2 ∂2
s + . . . + cl

l
1
sl ∂

l
s.

(ii) c1
l = (−1)l−1(2l − 3)!!, cj

l + cj+1
l [−(2l − j − 1)] = cj+1

l+1 and cl+1
l = 0.

(iii) c1
l = (−1)l−1(2l − 3)!! and [(2l − j)]cj

l = jcj+1
l+1 .
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(iv) cj
l = (−1)l−j (2l−j−1)! (2l−2j−1)!!

(j−1)! (2l−2j)! .

Proof. Assuming (i) holds, by applying the operator 1
s∂s to the expansion of Ds(l)

in (i) and comparing the obtained coefficients with those in the expansion for Ds(l+1) =
[ 1s∂s]l+1, we obtain the recurrence relation in (ii). Mathematical induction based on (ii)
will deduce (i). Conditions (i) and (ii) therefore are equivalent. It is a direct computation
to verify that (iii) and (iv) are equivalent, too. Further, it is easy to verify that cj

l given
by (iv) is the only sequence satisfying (ii). The proof is complete.

Now we give the

Prove of Theorem 1. We will use the notation

∂ = ∂x + ∂y

where ∂x =
∑p

i=1 ∂xiei and ∂y =
∑q

i=1 ∂yiep+i. Therefore, ∆ = −∂2. We will use the
decompositions

∂x = ωx∂s + ωx

1
s
Γx and ∂y = ωy∂t + ωy

1
t
Γy

where s = |x| and t = |y|, x = sωx and y = tωy, and Γx and Γy are the spherical Dirac
operators in the spaces Rp and Rq, respectively (see [1]).

We first show that for any scalar-valued function h(s, t) with s = |x| and t = |y| we
have

∆h(x, y) =
[(

∂2
s +

p− 1
s

∂s

)
+

(
∂2

t +
q − 1

t
∂t

)]
h(s, t). (3)

Indeed, first we have

∂h(|x|, |y|) = (∂x + ∂y)h(|x|, |y|)

=
[(

ωx∂s + ωx

1
s
Γx

)
+

(
ωy∂t + ωy

1
t
Γy

)]
h(|x|, |y|)

=
(
ωx∂s + ωy∂t

)
h(|x|, |y|).

Further, since ∆ = −∂2 we have

∆h(|x|, |y|) = −
[(

ωx∂s + ωx

1
s
Γx

)
+

(
ωy∂t + ωy

1
t
Γy

)](
ωx∂s + ωy∂t

)
h(|x|, |y|).

On the right-hand-side of the above, Γx and Γy do not vanish only on ωx and ωy,
respectively. By taking into account the relations

Γxωx = (p− 1)ωx

Γyωy = (q − 1)ωy

and
ωxωy + ωyωx = 0

ω2
x = ω2

y = −1

we obtain (3).
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We use mathematical induction on k. When k = 1, since h is harmonic, owing to
relation (3) we have

∆h(|x|, |y|) =
[
(p− 1)

(1
s
∂s

)
+ (q − 1)

(1
t
∂t

)]
h(s, t)

=
[
dp(1)Ds(1) + dq(1)Dt(1)

]
h(s, t)

as desired. Now we proceed to show that in the case (1) holds for an integer k, then (1)
also holds for k + 1. We apply the operator ∆ to the l-th general term of (1), namely

T (k; l) =
k!

l! (k − l)!
dp(l)dq(k − l)Ds(l)Dt(k − l)h(s, t).

We write
∆T (k; l) = L(s)T (k; l) + L(t)T (k; l)

where
L(s) = ∂2

s +
p− 1

s
∂s and L(t) = ∂2

t +
q − 1

t
∂t.

We now compute L(s)T (k; l) (that of L(t)T (k; l) is similar). Indeed, temporarily putting
aside the coefficient and the differential operator Dt(k− l), using the expansion of Ds(l)
in Lemma 1, we have

∂sDs(l)h(s, t) = sDs(l + 1)h(s, t)

=
(
c1
l+1

1
s2l

∂s + c2
l+1

1
s2l−1

∂2
s + . . . + cl+1

l+1

1
sl

∂l+1
s

)
h(s, t).

Successively,

∂2
sDs(l)h(s, t) = ∂s

(
c1
l+1

1
s2l

∂s + c2
l+1

1
s2l−1

∂2
s + . . . + cl+1

l+1

1
sl

∂l+1
s

)
h(s, t)

=
(
c1
l+1[−(2l)]

1
s2l+1

∂s + c1
l+1

1
s2l

∂2
s

+ c2
l+1[−(2l − 1)]

1
s2l

∂2
s + c2

l+1

1
s2l−1

∂3
s

...

+ cl+1
l+1[−l]

1
s[l + 1]

∂l+1
s + cl+1

l+1

1
sl

∂l+2
s

)
h(s, t)

=
(
c1
l+1[−(2l)]

1
s2l+1

∂s +
(
c1
l+1 + c2

l+1[−(2l − 1)]
) 1
s2l

∂2
s

+
(
c2
l+1 + c3

l+1[−(2l − 2)]
) 1
s2l−1

∂3
s

...

+
(
cl
l+1 + cl+1

l+1[−l]
) 1
sl+1

∂l+1
s + cl+1

l+1

1
sl

∂l+2
s

)
h(s, t).
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Owing to the relation c2
l+1 = −c1

l+1 obtained from Lemma 1, we can verify that the
coefficient of the second term of the last obtained expression is

c1
l+1 + c2

l+1[−(2l − 1)] = (−2l)c2
l+1.

Relations (ii) and (iii) of Lemma 1, read as

cj−1
l + cj

l [−(2l − j)] = cj
l+1 and [(2l − j)]cj

l = jcj+1
l+1 (j = 2, . . . , l),

imply
cj
l+1 + jcj+1

l+1 = cj−1
l .

This decides that in the last obtained expression the coefficients of the terms after the
second are

cj
l+1 + cj+1

l+1 [−(2l − j)] = (−2l)cj+1
l+1 + (cj

l+1 + jcj+1
l+1 ) = (−2l)cj+1

l+1 + cj−1
l .

We hence arrive

∂2
sDs(l)Dt(k − l)h(s, t)

= (−2l)
(
c1
l+1

1
s2l+1

∂s + c2
l+1

1
s2l

∂2
s + c3

l+1

1
s2l−1

∂3
s

+ . . . + cl+1
l+1

1
s[l + 1]

∂l+1
s

)
Dt(k − l)h(s, t)

+
(
c1
l

1
s2l−1

∂s + c2
l

1
s2l−2

∂2
s + . . . + cl

l

1
sl

∂l
s

)
Dt(k − l)∂2

sh(s, t)

= (−2l)Ds(l + 1)Dt(k − l)h(s, t) + Ds(l)Dt(k − l)∂2
sh(s, t).

This gives that

L(s)T (k; l) =
(
∂2

s +
p− 1

s
∂s

)
T (k; l)

=
k!

l! (k − l)!
dp(l + 1)dq(k − l)Ds(l + 1)Dt(k − l)h(s, t)

+
k!

l! (k − l)!
dp(l)dq(k − l)Ds(l)Dt(k − l)∂2

sh(s, t)

(4)

where we have used the relation (p− 2l − 1)dp(l) = dp(l + 1). Similarly,

L(t)T (k; l) =
k!

l! (k − l)!
dp(l)dq(k − l + 1)Ds(l)Dt(k − l + 1)h(s, t)

+
k!

j! (k − l)!
dp(l)dq(k − l)Ds(l)Dt(k − l)∂2

t h(s, t).
(5)

Since h is harmonic, in the expansion of ∆T (k; l) the two second terms of (4) and (5)
are canceled out.
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Now we show that the first term in the expansion of L(s)T (k; l) can be combined
with the first term in the expansion of L(t)T (k; l + 1) for l < k. In formula (5), with l
being replaced by l + 1, its first term becomes

k!
(l + 1)! (k − l − 1)!

dp(l + 1)dq(k − l)Ds(l + 1)Dt(k − l)h(s, t).

Now add this term with the first term of (4). After combining their coefficients, sum-
mation gives

(k + 1)!
(l + 1)!

(
(k + 1)− (l + 1)

)
!
dp(l + 1)dq(k − l)Ds(l + 1)Dt(k − l)h(s, t)

= T (k + 1; l + 1).

There is no such combining for the first term in L(s)T (k; k), that is T (k + 1; k + 1).
In the above pattern, the first term of L(s)T (k; k − 1) is combined with the first term
of L(t)T (k; k) to form T (k + 1; k), the first term of L(s)T (k; k − 2) is combined with
the first term of L(t)T (k; k − 1) to form T (k + 1; k − 1), and so on. There is no such
combining for the first term of L(t)T (k; 0), that is T (k + 1; 0). The proof is complete.

Theorem 2 can be proved in the same spirit. With the preparations made in the
proof of Theorem 1, its proof will now be briefly cited as follows.

Proof of Theorem 2. First, relation (3) is extended to

∆h
(|x(1)|, . . . , |x(d)|) =

d∑
r=1

L(sr)h(s1, . . . , sd)

where L(sr) = ∂2
sr

+ pr−1
sr

∂sr (r = 1, . . . , d). To proceed the proof, we use mathematical
induction. Since h is harmonic, the desired relation holds for k = 1. Now denote

T (k; l1, . . . , ld) =
k!

l1! · · · ld!
d∏

r=1

dpr (lr)
d∏

r=1

Dsr (lr)h(s1, . . . , sd).

Under the mathematical induction hypothesis on k, we have

∆k+1 =
d∑

r′=1

L(sr′)
∑

l1,...,ld

T (k; l1, . . . , ld). (6)

A direct computation as in the proof of Theorem 1 gives

L(sr′)T (k; l1, . . . , ld)

=
k!

l1! · · · ld!
( r′−1∏

r=1

dpr (lr)
)

dpr′ (lr′ + 1)
( d∏

r=r′+1

dpr (lr)
)

×
( r′−1∏

r=1

Dsr (lr)
)

Dsr′ (lr′ + 1)
( d∏

r=r′+1

Dsr (lr)
)

h(s1, . . . , sd)

+
k!

l1! · · · ld!
d∏

r=1

dpr (lr)
d∏

r=1

Dsr (lr)∂
2
sr′

h(s1, . . . , sd).
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Now, for any fixed index (l1, . . . , ld), all the second terms of the expansions

L(sr′)T (k; l1, . . . , ld)

corresponding to r′ = 1, . . . , d are canceled out owing to the fact that h is harmonic in
the d variables. In this way in summation (6) all the second terms of the expansions
L(sr′)T (k; l1, . . . , ld) for r′ = 1, . . . , d and 0 ≤ l1, . . . , ld ≤ k with l1 + . . . + ld = k are
canceled out.

Now we show that in summation (6) the first terms, either by themselves or com-
bined together, will form all the terms in the desired expansion corresponding to the
index k+1. Indeed, if 1 ≤ l1, . . . , ld ≤ k−1, then in the expansions L(sr′)T (k; l1, . . . , ld)
with r′ = 1, . . . , d there are d different terms to add up to form the term

k!
l1! · · · ld!

( r1−1∏
r=1

dpr (lr)
)

dpr1
(lr1 + 1)

( d∏
r=r1+1

dpr (lr)
)

×
( r1−1∏

r=1

Dsr (lr)
)

Dsr1
(lr1 + 1)

( d∏
r=r1+1

Dsr (lr)
)

h(s1, . . . , sd).

Apart from one in the expansion L(sr1)T (k; l1, . . . , ld), for every r′ < r1 there is one
from the first term of

L(sr′)T
(
k; l1, . . . , lr′−1, lr′ − 1, lr′+1, . . . , lr1−1, lr1 + 1, lr1+1, . . . , ld

)

and for every r′ > r1 one from the first term of

L(sr′)T
(
k; l1, . . . , lr1−1, lr1 + 1, lr1+1, . . . , lr′−1, lr′ − 1, lr′+1, . . . , ld

)
.

Their coefficients add as

k!
l! · · · ld! +

∑

r′ 6=r1

k! lr′
(lr1 + 1)!

∏
r′ 6=r1

lr′ !
=

k! (lr1 + 1 +
∑

r′ 6=r1
lr′)

(lr1 + 1)!
∏

r′ 6=r1
lr′ !

=
(k + 1)!

(lr1 + 1)!
∏

r′ 6=r1
lr′ !

which is the coefficient in the term

T
(
k + 1; l1, . . . , lr1−1, lr1 + 1, lr1+1, . . . , ld

)

as desired. This procedure may be made valid for the cases where some lr are zero. In
this way we obtain in summation (6) all the terms in the desired expansion corresponding
to the index k + 1 from all the first terms of the expansions L(sr′)T (k; l1, . . . , ld) for
r′ = 1, . . . , d and 0 ≤ l1, . . . , ld ≤ k with l1 + . . . + ld = k. The proof is complete.

Theorem 3 is an easy application of Theorem 2 (Theorem 1 in the case d = 2).

Proof of Theorem 3. We show that, in that case, all T (k; l1, . . . , ld) = 0. In fact,
if there is a non-zero T (k; l1, . . . , ld), then we have pr − 2lr + 1 ≥ 2 for r = 1, . . . , d.
Since

∑d
r=1 pr = m and

∑d
r=1 lr = k = m

2 , adding up the above inequalities together
produces the false relation d ≥ 2d. This shows that the assumption T (k; l1, . . . , ld) 6= 0
is invalid. The proof is complete.
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4. Applications

Higher-dimensional Poisson kernels and Newton potentials are easily deducible from
their forms in the lowest-dimensional cases based on the above proved theorems. In
accordance with Theorem 3, the cases in which pr being odd with an even sum are
directly ready to be treated. Let h(s, t) be a harmonic function in two variables and
consider the replacement s → |x|, where x ∈ Rp with p an odd integer. Owing to
Theorem 3, we have

∆
p+1
2 h(|x|, t) = 0

and so
∆

p−1
2 h(|x|, t)

is a harmonic function. Now in Theorem 1 let k = p−1
2 . Since for q = 1 and k−l 6= 0 the

coefficients dq(k − l) are always zero, all non-zero terms in the sum should correspond
to k − l = 0, that is l = k = p−1

2 . Therefore,

∆
p−1
2 h(|x|, t) = dp

(p− 1
2

)(1
s
∂s

) p−1
2

h(s, t)|s=|x|

= (p− 1)!!
(1

s
∂s

) p−1
2

h(s, t)|s=|x|.

Now apply this to

h(s, t) =
t

s2 + t2
,

that is harmonic and, apart from a constant multiple, the Poisson kernel in dimension
1. Recursively, for any odd p, we have

(1
s
∂s

) p−1
2

h(s, t) = cp
t

(s2 + t2)
p+1
2

.

Replacing s by |x|, apart from a multiple constant it is the Poisson kernel in Rp. The
harmonicity follows from Theorem 3.

Next, we take
h(s, t) = log

√
s2 + t2,

that is harmonic and essentially the Newton potential in the plane. Then, for all odd p,

(1
s
∂s

) p−1
2

h(s, t) = cp
1

(s2 + t2)
p−1
2

= cp
1

(|x|2 + t2)n−2

that is the n-dimensional Newton potential with n = p + 1. The harmonicity is a
consequence of Theorem 3.

For p being even we proceed as follows. First we show that if h(s, t) is a two-
dimensional harmonic function in a certain domain, then

h1(s, t1, t2) = ∆
1
2 h

(
s,

√
t21 + t22

)
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(where the fractional power of the Laplacian for three variables is taken to be of the dis-
tribution sense) is a three-dimensional harmonic function in the corresponding domain.
In other words,

∆h1(s, t1, t2) = ∆
3
2 h

(
s,

√
t21 + t22

)
= 0.

To show this we first note that

g1(s, t) =
( ∂

∂s
− i

∂

∂t

)
h(s, t)

is holomorphic in a certain domain of the complex plane. Secondly, we notice the
relation (see [2])

∆
1
2

[( ∂

∂s
− i

∂

∂t

)
h(s, t)

∣∣∣∣
t=
√

t21+t22,i=
t1e1+t2e2√

t2
1
+t2

2

]

=
( ∂

∂s
− ∂

∂t1
e1 − ∂

∂t2
e2

)
h1(s, t1, t2).

(7)

This enables us to invoke the generalization of Fueter’s theorem to fractional powers of
the Laplacian [6]: The left-hand-side of (7) is a monogenic function in R2

1. The latter
amounts to say that h1 is harmonic in three variables.

Note that the conclusion still holds if h1 is obtained through a different substitution:

h1(s, t1, t2) = ∆
1
2 h

(√
s2 + t21, t2

)
.

The above argument shows that the result in Theorem 3 still holds for some cases in
which the total dimension m is odd.

Now use Theorem 2 to any (not necessarily obtained from the above procedure)
three-dimensional harmonic function h1(s, t1, t2) for d = 3, p1 = p with p being any odd
integer, p2 = p3 = 1 and k = p−1

2 , where we replace s by |x| with x ∈ Rp. Taking into
account that d1(i) = 0 unless i = 0, we have

∆
p−1
2 h1(|x|, t1, t2) = dp

(p− 1
2

)(1
s
∂s

) p−1
2

h1(s, t1, t2)|s=|x|

= (p− 1)!!
(1

s
∂s

) p−1
2

h1(s, t1, t2)|s=|x|.
(8)

Now for
h(s, t) =

t

s2 + t2
and h(s, t) = log

√
s2 + t2,

replacing s by
√

s2 + t21 and t by t2, we have, respectively,

h1(s, t1, t2) = ∆
1
2

( t2
s2 + t21 + t22

)
= c

t2

(s2 + t21 + t22)
3
2
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and
h1(s, t1, t2) = ∆

1
2 log

√
s2 + t21 + t22 = c

1
(s2 + t21 + t22)

1
2

being harmonic in three variables as generally asserted above. Those being harmonic
can also be verified directly. Then using formula (8), we obtain respectively

∆
p−1
2 h1(|x|, t1, t2) = cp

t2

(|x|2 + t21 + t22)
p+2
2

and
∆

p−1
2 h1(|x|, t1, t2) = cp

1
(|x|2 + t21 + t22)

p
2
.

In the first case, by combining x ∈ Rp with t1 to form a (p + 1)-dimensional vector, we
obtain the Poisson kernel

t2

(|y|2 + t22)
n+1

2

,

where n = p + 1, and in the second case, by combining x ∈ Rp with t1 and t2 to form a
(p + 2)-dimensional vector, we have the Newton potential

1
|y|n−2

where n = p + 2. Applying the Laplacian of Rp+2 to (8), since dp(p+1
2 ) = 0, in using

Theorem 2 all the coefficients are zero. Thus Poisson kernels and Newton potentials are
harmonic.

From these examples we also see that the theorems obtained may be used in a great
extent to simplify computations in relation to multiple powers of the Laplacian on radial
functions.

In the same spirit, as alternative proofs, the relation

( ∂

∂s
− i

∂

∂t

)
h(s, t)

∣∣∣∣
t=
√

t21+t22,i=
t1e1+t2e2√

t2
1
+t2

2

=
( ∂

∂s
− ∂

∂t1
e1 − ∂

∂t2
e2

)
h(s,

√
t21 + t22)

implies Sce’s generalization of Fueter’s Theorem to odd integers [8], and relation (7) with
the auxiliary harmonic function h1 in three real variables implies the generalization of
the Fueter’s Theorem to even integers ([6] or [7]). In below we briefly illustrate an
aspect of use of this device in harmonic analysis.

Let f0 be holomorphic in a domain in the upper-half plane, and f0(z) = u(s, t) +
iv(s, t) (z = s + it), where u and v are real-valued. Denote

~f0(x) =
(
u(x0, |x|) +

x

|x|v(x0, |x|)
)

where x = x0 + x ∈ Rn
1 . Further, denote by τ the mapping

τ(f0) = κn∆
n−1

2 ~f0
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where the Laplacian ∆ is for all n + 1 variables: for n being odd ∆
n−1

2 is a pointwise
differential operator and for n being even it is defined through the Fourier multiple
cn|ξ|n−1, and κn is the normalizing constant that makes τ((·)−1)(x) = x

|x|n+1 [7]. It is
stressed that τ maps the Cauchy kernel f0(z) = 1

z in the complex plane to the Cauchy
kernels E(x) = x

|x|n+1 in Rn
1 .

The basic monomial functions in Rn
1 are defined to be

P (−k) = τ(·)(−k), P (k−1) = I(P (−k)) (k ≥ 1)

where I is the Kelvin inversion: (If)(x) = E(x)f(x(−1)). Now let f be a function left-
monogenic in an annulus centered at the origin. Then f has a Laurent series expansion.
As a sum of projections onto multi-dimensional spaces a Laurent series expansions has
a complicated form. With help of the basic monomial functions the Laurent expansion
may be written

f(x) =
∞∑

k=−∞

1
Ωn

∫

Σ

P (k)(y(−1)x)E(y)n(y)f(y) ds(y)

where Ωn is the surface area of the unit sphere in Rn
1 , Σ is any Lipschitz surface laying in

the annulus, n(y) is the outward unit normal of Σ at y, and ds(y) is the surface Lebesgue
area measure. The expression is in exactly the same form as that in the complex plane.
By virtue of this in a great extent one may deal with Laurent series in the same way as to
those in the complex plane. It has been seen to be particularly convenient with studies
of partial sums of Fourier series, as well as Fourier multipliers on spheres. This approach
together with the related methods was crucial in producing the operator algebra theory
of singular integral operators with monogenic kernels and the corresponding Fourier
multiplier operators on the unit sphere and its Lipschitz perturbations, first in the
quaternionic space and then in general Euclidean spaces [5, 7]. The operator algebra
is equivalent to the Cauchy-Dunford bounded holomorphic functional calculus of the
spherical Cauchy-Riemann operator on the spaces. By means of this approach, some
technical problems on the sphere may be reduced to the corresponding ones on the unit
circle in the complex plane.

To the end, it would be interesting to note that if we apply the same operator
( 1

s
∂
∂s )

p−1
2 with p odd to the non-harmonic functions

h(s, t2) =
1
t2

e
s2

4t2
2 and h(s, t1, t2) =

1
t22

e

(s2+t21)

4t2
2

in replacing s by |x| in the result, we obtain

cn
1
tn2

e
|x|2
4t2

2

where x ∈ Rn for n = p or n = p + 1, respectively. Replacing t2 by t
1
2 we obtain, apart

from a constant multiple, the heat kernel

1
(4πt)n/2

e−
|x|2
4t
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in Rn.
We also note that the same recursive procedure has been used to produce the com-

monly used fundamental solutions of Helmholtz operators.
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