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Abstract. The paper concerns the generalization of the one-dimensional sinc function
to (n + 1)-real variables within the Clifford analysis setting. The exact interpolation
with Shannon sampling is proved.
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1. Introduction

The sinc function on the real line R is

sinc(x) =
1

2π

∫ π

−π

eixtdt =
sin(πx)

πx
.

It has a holomorphic extension to the complex plane C:

sinc(z) =
1

2π

∫ π

−π

eiztdt =
sin(πz)

πz
.

Systematic studies on sinc function in one complex variable and applications to
numerical solutions for problems in partial differential equations and geometry
may be found in the work of Stenger [11] and Lund et al. [5].

For a set A, let XA denote the characteristic function of A. Sinc function
in Rn is defined by

sinc(x) =
1

(2π)n

∫

Rn

ei〈x,ξ〉X[−π,π]n(ξ) dξ.
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The sinc function in Rn may be further extended into two larger underlying
spaces. The extension to several complex variables involves complexification of
each of its real variable. In that case it is a tensor product of the one-dimensional
sinc functions, and it has explicit expressions in terms of elementary functions.
This case is studied in [3]. The goal of the present paper is to extend it to Rn

1

in the Clifford analysis setting. The latter extension has no explicit expressions
in elementary functions. The definition and the analysis of the extended sinc
function are based on the generalized exponential function e(x, ξ) in Rn

1 × Rn

(see the following section) extending the classical exponential function ei〈x,ξ〉 in
Rn × Rn, and the corresponding Paley–Wiener Theorem studied in [4].

2. Preliminaries

Let e1, . . . , en be basic elements satisfying eiej + ejei = −2δij, i, j = 1, . . . , n,
where δij is the Kronecker δ-function that equals to 1 if i = j and 0 otherwise.
Let Rn = {x = x1e1 + · · · + xnen : xj ∈ R, j = 1, . . . , n} be identified with the
usual Euclidean space Rn, and Rn

1 = {x0 + x : x0 ∈ R, x ∈ Rn}. Elements in
Rn

1 and Rn are called vectors. The real (or complex) Clifford algebra generated
by e1, . . . , en, denoted by R(n), or respectively C(n), is the associative algebra
generated by e1, . . . , en, over the real field R, or respectively the complex field
C. A general element in R(n), for example, is of the form x =

∑
S xSeS, where

eS = ei1ei2 · · · eil , and S runs over all the ordered subsets of {1, . . . , n}, namely
S = {1 ≤ i1 < i2 < · · · < il ≤ n}, 0 ≤ l ≤ n, where e∅ = e0 = 1.

The natural inner product between x and y in C(n), denoted by 〈x, y〉, is the
complex number

∑
S xSyS, where x =

∑
S xSeS and y =

∑
S ySeS. The norm

associated with this inner product is given by |x| = 〈x, x〉 1
2 =

( ∑
S |xS|2

) 1
2 .

The conjugate of a vector x = x0 + x is defined to be x = x0 − x. It is easy
to verify that for 0 6= x ∈ Rn

1 with x−1 = x
|x|2 , we have x−1x = xx−1 = 1. The

n-dimensional unit sphere {x ∈ Rn
1 : |x| = 1} is denoted by Sn. We denote by

B(x, r) the open ball in Rn
1 centered at x with radius r.

Below, we will study functions defined in Rn or Rn
1 taking values in C(n),

which have the form f(x) =
∑

S fS(x)eS, where fS are complex-valued func-
tions. We will use the Cauchy-Riemann operator D = D0 + D, where D0 = ∂

∂x0

and D = ∂
∂x1

e1 + · · · + ∂
∂xn

en. We also write D0 = ∂
∂x0

= ∂
∂x0

e0. We define the
“left” and “right” actions of the operators D by

Df =
n∑

i=0

∑
S

∂fS

∂xi

eieS, fD =
n∑

i=0

∑
S

∂fS

∂xi

eSei,

respectively.
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If in a domain (open and connected) Ω it holds Df = 0 , then we say that
f is left-monogenic; and if fD = 0, then right-monogenic in Ω. If f is both
left- and right-monogenic, then it is monogenic. There hold the correspond-
ing Cauchy’s theorem and Cauchy’s formula in terms of one-sided monogenic
functions for which we refer to [1].

The Fourier transform of functions in L1(Rn) is defined to be

F(f)(ξ) =

∫

Rn

e−i〈x,ξ〉f(x)dx,

where ξ = ξ1e1 + · · ·+ ξnen, and the inverse Fourier transform, if applicable, is

F−1(g)(x) =
1

(2π)n

∫

Rn

ei〈x,ξ〉g(ξ)dξ.

For a function defined in Rn
1 we denote f(x) = (f |Rn)(x) and F(f) = F(f |Rn).

Crucial to this study is an extension of the exponential function ei〈x,ξ〉.
Denote, for x = x0 + x,

e(x, ξ) = e+(x, ξ) + e−(x, ξ) (1)

with

e±(x, ξ) = ei〈x,ξ〉e∓x0|ξ|χ±(ξ), (2)

where χ±(ξ) = 1
2

(
1± i

ξ

|ξ|
)
. It is easy to verity that χ± enjoy the projection-like

properties:
χ−χ+ = χ+χ− = 0, χ2

± = χ±, χ+ + χ− = 1.

It is easy to verity that e(x, ξ) is monogenic in x ∈ Rn
1 for any fixed ξ. Gen-

eralizations of the exponential function of this kind can be first found in [8]
and then in [6] in which ξ is further extended to Cn. Generalizations of the
exponential function of similar types can also be found in [1, 9], and [10].

For f ∈ L2(Rn), we will concern the Hardy-space decomposition f = f+ +
f−, where f+ is the boundary value of a function in the Hardy H2-space in
the upper half space Rn+1

+ = {x = x0 + x : x0 > 0, x ∈ Rn}, and f− is the
boundary value of a function in the Hardy H2-space in the lower half space
Rn+1
− = {x = x0 + x : x0 < 0, x ∈ Rn} (see [6], also [7]). The corresponding

Hardy space functions in the upper and lower half spaces, still denoted by f+

and f−, are given by

f±(x) =
1

(2π)n

∫

Rn

F(f)(ξ)e±(x, ξ) dξ, ±x0 > 0,

respectively.
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In the sequel, in mathematical equalities or inequalities C and C ′ etc. de-
note positive constants that depend only on the space dimension n, and the
function-like notation C(u), C(

√
u) denote polynomials in u and

√
u, respec-

tively, with positive coefficients depending only on n, and they may vary from
one occurrence to another.

3. Exact interpolation with shannon sampling

Based on the extension of the exponential function given by (1) and (2) the sinc
function in Rn

1 is defined by

sinc(x) =
1

(2π)n

∫

Rn

e(x, ξ)X[−π,π]n(ξ) dξ. (3)

Due to the decomposition of e(x, ξ) into e+(x, ξ) and e−(x, ξ), the sinc function
can be decomposed into a sum of two functions,

sinc(x) = sinc+(x) + sinc−(x), (4)

where

sinc±(x) =
1

(2π)n

∫

Rn

e±(x, ξ)X[−π,π]n(ξ) dξ,

and e±(x, ξ) is defined as in (2). We further have sinc±(x) = I±0 (x) + iI±1 (x)
with

I±0 (x) =
1

2(2π)n

∫

[−π,π]n
ei〈x,ξ〉e∓x0|ξ| dξ

I±1 (x) =
±1

2(2π)n

∫

[−π,π]n

ξ

|ξ|e
i〈x,ξ〉e∓x0|ξ| dξ.

For n = 1, z = x + iy ∈ C, the sinc function sinc(z) satisfies the estimate

|sinc(z)| ≤ Ceπ|y|

|z| ,

which is consistent with the estimate in the Classical Paley–Wiener theorem.
In the above pattern sinc(z) may be decomposed into sinc+(z) and sinc−(z),
where sinc±(z) may be split into the sum of I±0 and iI±1 . Indeed, with e1 replaced
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by −i, we have

sinc±(z) =
1

2π

∫ π

−π

eixte∓y|t|1
2

(
1± i

te1

|t|
)

dt

= I±0 (z) + iI±1 (z)

=

{∓y + e∓πy[x sin(πx)∓ y cos(πx)]

2π(x2 + y2)

}

+ i

{±x∓ e∓πy[x cos(πx)± y sin(πx)]

2π(x2 + y2)

}
.

It follows that

|sinc+(z)| ≤ C(1 + e−πy)

|z| , −∞ < y < ∞

|sinc−(z)| ≤ C(1 + eπy)

|z| , −∞ < y < ∞.

In the sequel these estimates will guide us to prove the estimates of sinc±(x).

For h > 0 fixed, define the cardinal function of f to be

C(f, h)(x) ≡
∑

k∈ZZn

f(hk)sinc

(
x− hk

h

)
,

where from (3),

sinc

(
x− hk

h

)
=

hn

(2π)n

∫

Rn

e(x− hk, ξ)X[−π
h

, π
h
]n(ξ) dξ. (5)

We will concern the interpolation via the cardinal function. The one dimensional
cardinal function was discussed in [13]. The context of several complex variables
is discussed in [3]. These, together with Theorem 3.4 to be proved below, suggest
that the functions whose cardinal function converge to the function itself are
characterized by the Paley–Wiener Theorems in the corresponding underlying
space.

In [4] we obtain the Paley–Wiener Theorem in the Clifford algebra setting
stated as follows.

Theorem 3.1 (Paley–Wiener Theorem). Let f ∈ L2(Rn), and R a positive
number. Then the following two conditions are equivalent:

(i) f may be right-monogenically extended to the whole Rn
1 , and there exists

a constant C such that |f(x)| ≤ CeR|x| for all x ∈ Rn
1 .

(ii) suppF(f) ⊂ B(0, R).
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Moreover, if these conditions hold, then

f(x) =
1

(2π)n

∫

B(0,R)

F(f)(ξ)e(x, ξ) dξ, x ∈ Rn
1 .

A function f in Rn
1 is said to be of exponential type R if there holds

|f(x)| ≤ CeR|x|, x ∈ Rn
1 ,

where C is a positive constant. For any h > 0, denote by PW (π
h
) the totality

of the functions f , right-monogenic in Rn
1 , f |Rn ∈ L2(Rn), and of exponential

type π
h
.

The Paley–Wiener Theorem 3.1 is a natural generalization of the classical
theorem in C. For generalizations to Cn, see [12] and [2]. The following theorems
characterize the functions in the Paley–Wiener class PW (π

h
).

Theorem 3.2. If f ∈ PW (π
h
), then for all x ∈ Rn

1 ,

f(x) =
1

hn

∫

Rn

f(t)sinc

(
x− t

h

)
dt.

Proof. Since f ∈ PW (π
h
), the Paley–Wiener Theorem 3.1 shows that

f(x) =
1

(2π)n

∫

B(0, π
h
)

F(f)(ξ)e(x, ξ) dξ

=
1

(2π)n

∫

[−π
h

, π
h
]n
F(f)(ξ)e(x, ξ) dξ

=
1

(2π)n

∫

Rn

F(f)(ξ)X[−π
h

, π
h

]n(ξ)e(x, ξ) dξ.

Using Parseval’s Theorem and (5), the above is equal to

1

(2π)n

∫

Rn

f(t)F(X[−π
h

, π
h
]n(·)e(x, ·))(t) dt =

1

hn

∫

Rn

f(t)sinc

(
x− t

h

)
dt.

It is a consequence of (3) and Theorem 3.1 that sinc(x
h
) belongs to PW (

√
nπ

h
).

Further examples of functions may be constructed using the following theorem.

Theorem 3.3. If g ∈ L2(Rn), then p ∈ PW (
√

nπ
h
), where

p(x) = hn

∫

Rn

g(t)sinc

(
x− t

h

)
dt. (6)
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Proof. Applying Parseval’s Theorem to the right-hand side of (6), owing to (5),
we have

p(x) =
hn

(2π)n

∫

Rn

F(g)(y)F
(

sinc
(x− ·

h

))
(−y) dy

=
hn

(2π)n

∫

Rn

F(g)(y)
[
h−ne(x, y)X[−π

h
, π
h
]n(y)

]
dy

=
1

(2π)n

∫

Rn

F(g)(y)e(x, y)X[−π
h

, π
h
]n(y) dy.

This shows that suppF(p) ⊂ [−π
h
, π

h
]n ⊂ B(0,

√
nπ

h
). From Paley–Wiener The-

orem 3.1, we have p ∈ PW (
√

nπ
h
).

As main result, the exact sinc interpolation of functions in PW (π
h
) is given

by the following

Theorem 3.4. If f ∈ PW (π
h
), then for all x ∈ Rn

1 ,

f(x) = C(f, h)(x) =
∑

k∈ZZn

f(hk)sinc

(
x− hk

h

)
, (7)

where the series on the right-hand side is absolutely and uniformly convergent.
Moreover,

f(hk) =
1

hn

∫

Rn

f(t) sinc

(
t− hk

h

)
dt.

Proof. The relation f(hk) = 1
hn

∫
Rn f(t) sinc

(
t−hk

h

)
dt follows from Theo-

rem 3.2.

To show (7), we need to use the fact that
∑

k∈ZZn |f(hk)|2 is finite. We show
this by proving,

∑

k∈ZZn

|f(hk)|2 =

∫

Rn

|f(t)|2 dt. (8)

In fact, from Paley–Wiener Theorem 3.1,

f(t) =
1

(2π)n

∫

B(0, π
h
)

F(f)(x)ei〈x,t〉dx =
1

(2π)n

∫

[−π
h

, π
h
]n
F(f)(x)ei〈x,t〉 dx.

The Fourier coefficients of F(f) in the cube [−π
h
, π

h
]n are

ck = hnf(hk) =
1

(2R)n

∫

[−R,R]n
F(f)(x)eiπ

〈x,k〉
R dx,
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where R = π
h
. The Plancherel Theorem gives

∫

[−R,R]n
|F(f)(x)|2dx = (2R)n

∑

k∈ZZn

|ck|2 = (2π)n
∑

k∈ZZn

|f(hk)|2.

Taking into account that supp(F(f))⊂ [−R,R]n, Parseval’s Theorem on L2-
functions in Rn gives

∫

[−R,R]n
|F(f)(x)|2dx =

∫

Rn

|F(f)(x)|2 dx = (2π)n

∫

Rn

|f(t)|2dt.

Putting these equalities together, we obtain (8).

We next show that in the uniform convergence sense,

f(x) = C(f, h)(x) =
∑

k∈ZZn

f(hk) sinc

(
x− hk

h

)
∀x ∈ Rn. (9)

Let φε(x) be an infinitely differentiable function such that supp(φε) ⊂ [−π
h
, π

h
]n,

|φε| ≤ 1 and φε → χ[−π
h

, π
h
]n a.e. as ε → 0. Define

Iεf(x) =
1

(2π)n

∫

[−π
h

, π
h

]n
F(f)(t)φε(t)e

i〈t,x〉dt. (10)

For any fixed ε > 0 and x ∈ Rn, expanding φε(t)e
i〈t,x〉 on the cube [−π

h
, π

h
]n into

its multiple Fourier series in n-variables, we have

φε(t)e
i〈t,x〉 =

∑

k∈ZZn

eih〈k,t〉Sε(k, x), (11)

where

Sε(k, x) =
1

(2R)n

∫

[−R,R]n
e−iπ

〈t,k〉
R

[
φε(t)e

i〈t,x〉] dt

are the Fourier coefficients of φε(t)e
i〈t,x〉. Since the function φε(t)e

i〈t,x〉 has con-
tinuous first and second derivatives and vanishes on the boundary of the cube
[−π

h
, π

h
]n, a routine argument based on integration by parts shows that

|Sε(k, x)| ≤ C(ε, x)

k2 ∀x ∈ Rn.

So the series (11) is absolutely convergent, uniformly in t for any fixed ε and x.

Inserting the series (11) into (10) and exchanging the order of integration
and summation, justified by the uniform convergence, we have

Iεf(x) =
∑

k∈ZZn

[
1

(2π)n

∫

[−π
h

, π
h

]n
F(f)(t)eih〈k,t〉dt

]
Sε(k, x). (12)
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Inserting the expression

f(hk) =
1

(2π)n

∫

B(0, π
h
)

F(f)(t)eih〈k,t〉dt =
1

(2π)n

∫

[−π
h

, π
h
]n
F(f)(t)eih〈k,t〉dt,

(12) becomes

Iεf(x) =
∑

k∈ZZn

f(hk)Sε(k, x). (13)

On taking the limit ε → 0 to (13), first consider its left-hand side. Since
F(f) ∈ L2(B(0, π

h
)) ⊂ L1(B(0, π

h
)), we have

∣∣F(f)(t)φε(t)e
i〈t,x〉∣∣ ≤

∣∣F(f)(t)ei〈t,x〉∣∣ ∈ L1([−π
h
, π

h
]n).

Moreover, by the definition of φε, we have

lim
ε→0

F(f)(t)φε(x)ei〈t,x〉 = F(f)(t)ei〈t,x〉.

Using Legesgue’s Dominated Convergence Theorem, the left hand side of (13),
by recalling (10), tends to

1

(2π)n

∫

[−π
h

, π
h
]n
F(f)(t)ei〈t,x〉dt = f(x),

where the last equality is a consequence of the Paley–Wiener Theorem 3.1.

Next, consider the series on the right-hand side of (13). For any positive
number M , using the Cauchy-Schwarz inequality, we have

∣∣∣∣∣
∑

|k|>M

f(hk)Sε(k, x)

∣∣∣∣∣ ≤
( ∑

|k|>M

|f(hk)|2
) 1

2
( ∑

|k|>M

|Sε(k, x)|2
) 1

2

.

Note that the function φε(t)e
i〈t,x〉 ∈ L2([−π

h
, π

h
]n). The Bessel inequality gives


 ∑

|k|>M

|Sε(k, x)|2



1
2

≤
(

h

2π

)n
2 ∥∥φε(t)e

i〈t,x〉∥∥
L2([−π

h
, π
h
]n)

≤
(

h

2π

)n
2 ∥∥ei〈t,x〉∥∥

L2([−π
h

, π
h
]n)

≤ C < ∞.

Owing to this estimate and (8), the series in (13) is convergent uniformly in ε
and x. Now take limit ε → 0 on the right-hand-side of (13). Since we can
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exchange the limit procedure with the summation, that is based on the just
proved uniform convergence in ε, the limit procedure can be passed onto each
term Sε(k, x). By invoking the relation

lim
ε→0

Sε(k, x) = sinc

(
x− hk

h

)
,

we obtain (9).

The relation (9) shows that, when restricted to Rn, the left-hand-side and
the right-hand side of (7), viz. f(x) and C(f, h)(x), respectively, coincide with
each other. Now f is right-monogenic in Rn

1 , if we can show that C(f, h) is also
right-monogenic in Rn

1 , then the corresponding uniqueness theorem in Clifford
analysis (see [1]) will allow us to conclude (7), and thus complete the proof.
Below, we will devote ourselves to proving the uniform convergence of the series
C(f, h)(x), and thus the monogenicity of the sum C(f, h)(x).

The rest of the proof depends on the following technical lemmas.

Lemma 3.5. It holds:

|sinc(x)| ≤ C(|x0|)e
√

nπ|x0|
∏n

j=1(1 + |xj|) ∀x ∈ Rn
1 , (14)

where C(|x0|) is a polynomial of |x0|.
Proof. Using the decomposition of sinc into sinc+ and sinc− as cited in (4), it
suffices to show the estimate

|sinc±(x)| ≤ C(|x0|)e
√

nπ|x0|
∏n

j=1(1 + |xj|) ∀x ∈ Rn
1 .

We only need to prove the last inequality for sinc+ as the proof for sinc− is
similar. By definition

sinc+(x) =
1

(2π)n

∫

[−π,π]n
ei〈x,ξ〉e−x0|ξ|1

2

(
1 + i

ξ

|ξ|
)

dξ = I+
0 (x) + iI+

1 (x),

where

I+
0 (x) =

1

2(2π)n

∫

[−π,π]n
ei〈x,ξ〉e−x0|ξ| dξ

I+
1 (x) =

1

2(2π)n

∫

[−π,π]n
ei〈x,ξ〉e−x0|ξ| ξ

|ξ| dξ.

We first show that

|I+
0 (x)| ≤ C(|x0|)e

√
nπ|x0|

∏n
j=1(1 + |xj|) ∀x ∈ Rn

1 . (15)
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Consider

(1 + |x1|) · · · (1 + |xn|)|I+
0 (x)| =

∑

0≤k≤n

|xi1 · · · xikI
+
0 (x)|,

where for 1 ≤ k ≤ n, 1 ≤ i1 < . . . < ik ≤ n, and for k = 0 the corresponding
term is |I+

0 (x)|. Note that

|xi1 · · · xikI
+
0 (x)| = C

∣∣∣∣
∫

[−π,π]n

∂k

∂ξi1 . . . ∂ξik

(
ei〈x,ξ〉) e−x0|ξ| dξ

∣∣∣∣ .

Applying integration by parts k times with respect to dξi1 , . . . , dξik , respectively,
the above is dominated by

C(|x0|)e
√

nπ|x0|
∫

[−π,π]n

k∑

l=1

1

|ξ|l−1
dξ ≤ C(|x0|)e

√
nπ|x0|, 0 ≤ k ≤ n.

So, (15) follows.

Now we show that

|I+
1 (x)| ≤ C(|x0|)e

√
nπ|x0|

∏n
i=1(1 + |xi|) , ∀x ∈ Rn

1 . (16)

The strategy is to find appropriate estimates for

J(x) =
∂

∂x0

I+
1 (x) = −C

∫

[−π,π]n
ei〈x,ξ〉e−x0|ξ|ξ dξ

and then, using the relation I+
1 (x) = − ∫∞

x0
J(t+x) dt get the estimate for I+

1 (x).
Using the same method as in deducing the inequality (15) we have

|J(x)| ≤ C(|x0|)e
√

nπ|x0|
∏n

i=1(1 + |xi|) ∀x ∈ Rn
1 . (17)

This estimate is for general x ∈ Rn
1 , and in particular more exact for x0 < 0,

which will play a role latter. For positive x0, however, we need an estimate that
guarantees the integrability of J(t + x) at the infinity.

Now we show that for x0 > 1,

|J(x)| ≤ C

x0

∏n
i=1(x0 + |xi|) , ∀x ∈ Rn, (18)

where C is a constant depending only on the space dimension n. Below, we
restrict ourselves to n = 2. For n > 2 the proof is similar. As defined, for
n = 2,

J(x) = −C

∫

[−π,π]2
ei〈x,ξ〉e−x0|ξ|ξdξ.
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Applying the identity

e−β =
1√
π

∫ ∞

0

e−u

√
u

e−
β2

4u du

(see [12]) for β = x0|ξ| to the exponential function in the integrand of J(x), we
have

J(x) =
−C√

π

∫ ∞

0

e−u

√
u

∫ π

−π

∫ π

−π

ξ1e
i〈x,ξ〉e−

x2
0ξ21+x2

0ξ22
4u dξ1 dξ2 du

=
−4C√

π

∫ ∞

0

e−u

√
u

(∫ π

0

ξ1 sin(x1ξ1)e
−x2

0ξ21
4u dξ1

)

×
(∫ π

0

cos(x2ξ2)e
−x2

0ξ22
4u dξ2

)
du.

(19)

First study the last integral. On one hand,
∣∣∣∣
∫ π

0

cos(x2ξ2)e
−x2

0ξ22
4u dξ2

∣∣∣∣ ≤
∫ ∞

0

e−
x2
0ξ22
4u dξ2 =

C
√

u

x0

.

On the other hand, the Second Mean Value Theorem of integration gives
∣∣∣∣
∫ π

0

cos(x2ξ2)e
−x2

0ξ22
4u dξ2

∣∣∣∣ =

∣∣∣∣
∫ η

0

cos(x2ξ2)dξ2

∣∣∣∣ ≤
C ′

|x2| .

The last two estimates may be combined together to obtain
∣∣∣∣
∫ π

0

cos(x2ξ2)e
−x2

0ξ2
2dξ2

∣∣∣∣ ≤
C
√

u + C ′

x0 + |x2| =
C(
√

u)

x0 + |x2| , (20)

where C(
√

u) is a polynomial in
√

u.

Next, we have, similarly,
∣∣∣∣
∫ π

0

ξ1 sin(x1ξ1)e
−x2

0ξ21
4u dξ1

∣∣∣∣ ≤
∫ ∞

0

ξ1e
−x2

0ξ21
4u dξ1 ≤ Cu

x2
0

. (21)

To get an estimate in terms of |x1|, consider the function f(t) = te−x2
0t2/4u. Since

f ′(t) = (1− 2t2x2
0

4u
)e−x2

0t2/4u, the maximum of f(t) is
√

2u
x0

e−
1
2 , occurring at

√
2u

x0
.

We discuss two cases. First assume t0 =
√

2u
x0

≤ π, that implies u ≤ π2x2
0

2
.

From the Second Mean Value Theorem of integration, we have
∫ π

0

ξ1 sin(x1ξ1)e
−x2

0ξ21
4u dξ1

=

∫ t0

0

ξ1 sin(x1ξ1)e
−x2

0ξ21
4u dξ1 +

∫ π

t0

ξ1 sin(x1ξ1)e
−x2

0ξ21
4u dξ1

=

√
2ue−

1
2

x0

∫ t0

η1

sin(x1ξ1)dξ1 +

√
2ue−

1
2

x0

∫ η2

t0

sin(x1ξ1)dξ1.



Shannon Sampling 837

Since ∣∣∣∣
∫ t0

η

sin(x1ξ1)dξ1

∣∣∣∣ +

∣∣∣∣
∫ η2

t0

sin(x1ξ1)dξ1

∣∣∣∣ ≤
C

|x1| ,

we obtain ∣∣∣∣
∫ π

0

ξ1 sin(x1ξ1)e
−x2

0ξ21
4u dξ1

∣∣∣∣ ≤
C
√

u

x0|x1| .

Combining this with (21), we obtain
∣∣∣∣
∫ π

0

ξ1 sin(x1ξ1)e
−x2

0ξ21
4u dξ1

∣∣∣∣ ≤
C(
√

u)

x0(x0 + |x1|) , (22)

where C(
√

u) is a polynomial in
√

u.

Second, assume t0 =
√

2u
x0

> π, that implies u >
π2x2

0

2
. Then f(t) is increasing

in the whole range [0, π]. The Second Mean Value Theorem of integration and
the estimate e−t < 1

t
, t > 0, then imply

∣∣∣∣
∫ π

0

ξ1 sin(x1ξ1)e
−x2

0ξ21
4u dξ1

∣∣∣∣ = πe−
x2
0π2

4u

∣∣∣∣
∫ π

η

sin(x1ξ1)dξ1

∣∣∣∣ ≤
Ce−

x2
0π2

4u

|x1| ≤ Cu

x2
0|x1| .

Combining this with (21), due to x0 > 1, we have
∣∣∣∣
∫ π

0

ξ1 sin(x1ξ1)e
−x2

0ξ21
4u dξ1

∣∣∣∣ ≤
Cu

x2
0(1 + |x1|) ≤

Cu

x0(x0 + |x1|) . (23)

By invoking (20), (22) and (23), the integral expression for J(x) given in (19)
is dominated by

∫ ∞

0

e−u

√
u

[
C(
√

u) + Cu

x0(x0 + |x1|)
] [

C(
√

u)

x0 + |x2|
]

du ≤ C

x0(x0 + |x1|)(x0 + |x2|) ,

as desired in (18).

Now for any x0, using the estimates (17) and (18) for n = 2, we have

|I+
1 (x)| =

∣∣∣∣−
∫ ∞

x0

J(t + x) dt

∣∣∣∣

≤
∣∣∣∣
∫ 1

x0

J(t + x)dt

∣∣∣∣ +

∫ ∞

1

|J(t + x)| dt

≤ 1

(1 + |x1|)(1 + |x2|)

∣∣∣∣
∫ 1

x0

C(t)e
√

2π|t| dt

∣∣∣∣

+ C

∫ ∞

1

1

t(t + |x1|)(t + |x2|) dt

≤ C(|x0|)e
√

2π|x0|

(1 + |x1|)(1 + |x2|) + C

∫ ∞

1

1

t(t + |x1|)(t + |x2|) dt.

(24)
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Next we show that
∫ ∞

1

1

t(t + |x1|)(t + |x2|)dt ≤ C

(1 + |x1|)(1 + |x2|) . (25)

The evaluation of the last integral is

∫ ∞

1

1

t(t + |x1|)(t + |x2|) dt = − ln(1 + |x1|)
|x1|(|x1| − |x2|) +

ln(1 + |x2|)
|x2|(|x1| − |x2|)

=
1

|x1||x2|
[
− ln(1 + |x1|)(1+|x2|) − ln(1 + |x2|)(1+|x1|)

(1 + |x1|)− (1 + |x2|)
+

ln(1 + |x1|)− ln(1 + |x2|)
(1 + |x1|)− (1 + |x2|)

]
.

Denoting y1 = 1 + |x1| and y2 = 1 + |x2|, the above is equal to

1

|x1||x2|
[
− ln yy2

1 − ln yy1

2

y1 − y2

+
ln y1 − ln y2

y1 − y2

]
.

Since for any y1 > 1 and y2 > 1, the quantities (ln yy2

1 − ln yy1

2 )/(y1 − y2) and
(ln y1 − ln y2)/(y1 − y2) both are bounded, we obtain

∫ ∞

1

1

t(t + |x1|)(t + |x2|) dt ≤ C

|x1||x2| .

Since obviously

∫ ∞

1

1

t(t + |x1|)(t + |x2|) dt ≤ 1

1 + |xi|
∫ ∞

1

1

t2
dt ≤ C

1 + |xi| , i = 1, 2,

we conclude
∫ ∞

1

1

t(t + |x1|)(t + |x2|) dt ≤ C

1 + |x1|+ |x2|+ |x1||x2| ≤
C

(1 + |x1|)(1 + |x2|) ,

as desired in (25).

Using the estimate (25) in (24), we have

|I+
1 (x)| ≤ C(|x0|)e

√
2π|x0|

(1 + |x1|)(1 + |x2|) ∀x ∈ Rn
1 . (26)

Combining (15) and (26), we obtain

|sinc+(x)| ≤ C(|x0|)e
√

2π|x0|

(1 + |x1|)(1 + |x2|) ∀x ∈ Rn
1 .
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The above proof can be generalized to arbitrary dimension number n and
shows that

|sinc+(x)| ≤ C(|x0|)e
√

nπ|x0|
∏n

i=1(1 + |xi|) ∀x ∈ Rn
1 .

This completes the proof of Lemma 3.5.

Now we show

Lemma 3.6. The cardinal function C(f, h)(x) is uniformly convergent.

Proof. Recall that

C(f, h)(x) =
∑

k∈Zn

f(hk)sinc

(
x− hk

h

)
.

For any positive number M , using the Cauchy-Schwarz inequality,

∣∣∣∣∣
∑

|k|>M

f(hk)sinc

(
x− hk

h

) ∣∣∣∣∣

≤
( ∑

|k|>M

|f(hk)|2
) 1

2
( ∑

|k|>M

∣∣∣∣sinc

(
x− hk

h

)∣∣∣∣
2
) 1

2

.

(27)

Applying Lemma 3.5 to the square of the second factor, we have

∑

|k|>M

∣∣∣∣sinc

(
x− hk

h

)∣∣∣∣
2

≤ C
(∣∣∣x0

h

∣∣∣
)
e
√

nπ
|x0|

h

∑

|k|>M

1
∏n

j=1

[
1 +

∣∣∣ (xj−hkj)

h

∣∣∣
]2 .

(28)

For a fixed h > 0, the last sum is uniformly bounded for all x ∈ Rn and M > 0,
and the factor in front of it, viz. C(|x0

h
|)e√nπ|x0|/h, is uniformly bounded in any

bounded neighborhood of x0. The first factor of (27), owing to (8), tends to zero
as M goes to infinity. These conclude that in any bounded neighborhood of x
the series C(f, h)(x) is uniformly convergent.

Since each function sinc[x−hk
h

] is right-monogenic,the partial sums C(f, h)(x)
are right-monogenic. Owing to Lemma 3.2 and the argument made before the
statement of Lemma 3.1, we complete the proof of Theorem 3.4.
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Remark 3.7. For n > 2 we have a quicker proof of Theorem 3.4 by using the
weaker estimate

|sinc(x)| ≤ C(|x0|)e
√

nπ|x0|
∏n

j=1(1 + |xj|)n−1
n

∀x ∈ Rn
1 . (29)

Indeed, in the case, if replacing the sum on the right-hand side of inequality (28)
by ∑

|k|>M

1

∏n
j=1

[
1 +

∣∣∣ (xj−hkj)

h

∣∣∣
]2n−1

n

,

the whole proof of Lemma 3.2 is still valid. The assertion of (29) involves to
show

|I±1 (x)| ≤ C(|x0|)e
√

nπ|x0|

(1 + |xi1|) · · · (1 + |xin−1|)
∀x ∈ Rn

1 , (30)

with any 1 ≤ i1 < . . . < in−1 ≤ n. This can easily be done by using the same
integration by parts method used for deducing (15). The method, however,
cannot be used to deduce (16), for in the integration by parts the factor ξ/|ξ|,
after being taken partial derivatives n times, will have the magnitude 1/|ξ|n
that is not locally integrable around ξ = 0 There are n inequalities like (30).
Multiplying them together, we obtain

|I±1 (x)| ≤ C(|x0|)e
√

nπ|x0|

(1 + |x1|)n−1
n · · · (1 + |xn|)n−1

n

∀x ∈ Rn
1 .

Combining this with (15), we obtain (29).

Remark 3.8. The inequality in Lemma 3.1 has a homogeneous form

|sinc(x)| ≤ C(|x0|)e
√

nπ|x0|
∏n

j=1(|x0|+ |xj|) ∀x ∈ Rn
1 , (31)

where C(|x0|) is a polynomial of |x0| with positive coefficients. For x0 6= 0, the
relations

min{1, |x0|}
|x0|+ |xj| ≤ 1

1 + |xj| ≤
1 + |x0|
|x0|+ |xj| , j = 1, . . . , n,

show that the inequality (31) is equivalent to (14). For x0 = 0 inequality
(14) implies (31), but not vice versa. Hence the homogeneous form is actually
weaker.
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The following corollary can be deduced from Theorem 3.4 and the technique
in [4].

Corollary 3.9. There hold:

(a) Let

F (x) =
1

ωn

∫

Rn

sinc
(
y
)
E(y − x)n(y) dy x ∈ Rn+1

+ ,

where E(x) = x/|x|n+1 is the Cauchy kernel, and ωn = 2π
n+1

2 /Γ(n+1
2

) is
the area of the n-dimensional unit sphere in Rn

1 . Then

F (x) = sinc+(x) =
1

2
(sinc ∗ Px0) (x) +

1

2
(sinc ∗Qx0) (x),

where

Px0(x) =
2

ωn

x0

(|x|2 + x2
0)

n+1
2

and Qx0(x) =
2

ωn

x

(|x|2 + x2
0)

n+1
2

are thePoisson andtheconjugatePoisson kernel. In particular, as x0 → 0+,
(sinc ∗ Px0) (x) → sinc(x) and (sinc ∗Qx0) (x) → ∑n

j=1 Rj (sinc) (x)ej,
where

Rj(f)(x) = lim
ε→0+

1

ωn

∫

|y−x|>ε

xj − yj

|x− y|n+1
f(y) dy (32)

is the jth-Riesz transform of f .

(b) Let ∆ =
∑n

j=0
∂2

∂x2
j
, ∆u = 0 in Rn+1

+ , and u(0+ + x) = f(x), where f is

the scalar part of a function in PW (π
h
). Then, for x = x0 + x ∈ Rn+1

+ ,

u(x0 + x) =
1

2

∑

k∈ZZn

f(hk)

(
sinc

( · − hk

h

)
∗ Px0

)
(x).

(c) Let ∆ =
∑n

j=0
∂2

∂x2
j
, ∆u = 0 in Rn+1

+ , and u(0+ + x) =
∑n

j=1 Rj(f)(x)ej,

where f is the scalar part of a function in PW (π
h
) and Rj(f) is as in (32).

Then, for x = x0 + x ∈ Rn+1
+ ,

u(x0 + x) =
1

2

∑

k∈ZZn

f(hk)

(
sinc

( · − hk

h

)
∗Qx0

)
(x).
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