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CHARACTERIZATION OF BOUNDARY
VALUES OF FUNCTIONS IN HARDY SPACES
WITH APPLICATIONS IN SIGNAL ANALYSIS

TAO QIAN

ABSTRACT. In time-frequency analysis Hilbert transfor-
mation is used to define analytic signals based on which mean-
ingful instantaneous amplitude and instantaneous frequency
are defined. In relation to this background we study charac-
teristic properties of the real-valued measurable functions ρ(t)
and θ(t), t ∈ R, such that

H(ρ(·) cos θ(·))(t) = ρ(t) sin θ(t), ρ(t) ≥ 0,

where H is the Hilbert transformation on the line. A weaker
form of this equation is

H(ρ(·)c(·))(t) = ρ(t)s(t), c2 + s2 = 1, ρ(t) ≥ 0.

We prove that a characterization of a triple (ρ, c, s) satisfying
the equation with ρ ∈ Lp(R), 1 ≤ p ≤ ∞, is that ρ(c + is) is
the boundary value of an analytic function in the Hardy space
Hp(C+) in the upper-half complex plane C+. We will be
dealing with parameterized and non-parameterized solutions
combined with the cases ρ ≡ 1 and ρ �≡ 1. The counterpart
theory in the unit disc is formulated first. The upper-half
complex plane case is solved by converting it to the unit disc
through Cayley transform. Examples in relation to signal
analysis are constructed.

1. Introduction. Hilbert transform of a nice function f on the real
line is defined by the principal value singular integral

(1) Hf(t) = p.v.
1
π

∫ ∞

−∞

1
t − x

f(x) dx.

2000 AMS Mathematics Subject Classification. Primary 30D55, 31A20, 31C05,
Secondary 42A50, 42B20.

Key words and phrases. Analytic signal, phase, amplitude, Hilbert trans-
form, Hardy spaces, Blaschke products, Möbius transform, Nevanlina class, inner
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160 T. QIAN

If f ∈ Lp(R), 1 ≤ p < ∞, then Hf is well defined [13]. The Fourier
multiplier form of the Hilbert transformation, when appropriate, is

(2) Hf(t) =
1
2π

∫
R

eiξt(−i sgn ξ)f̂(ξ) dξ,

where −i sgn is the corresponding Fourier multiplier, and sgn is the
signum function taking values 1,−1 or 0 for ξ > 0, ξ < 0 or ξ = 0,
respectively. In this paper, the Fourier transform of a function f in
L1(R) is defined by

f̂ (ξ) =
∫ ∞

−∞
e−itξf(t) dt.

It can be easily observed from the Fourier multiplier form of the Hilbert
transformation that H2 = −I, where I denotes the identity operator.
In Section 4, to define the Hilbert transform of essentially bounded
functions, we will adopt the definition of Hilbert transformation for
distributions. In below all functions discussed are assume to be mea-
surable in the Lebesgue sense.

In time-frequency analysis to define instantaneous amplitude and
frequency of a given signal, that is a function, f , one first formulates
the associated analytic signal, f +iHf , denoted by Af and then further
writes

Af(t) = f(t) + iHf(t) = ρ(t)eiθ(t),

where

ρ(t) =
√

f2(t) + (Hf(t))2, cos θ(t) =
f(t)√|f(t)|2 + |Hf(t)|2 .

As a consequence,

(3) f(t) = ρ(t) cos θ(t),

is called the canonical modulation of f , and the related pair (ρ, θ)
is called the canonical pair. Note that, depending on what type of
function θ one wants, the angular parametrization θ may not always
be possible. If not possible, the above can be written as

f(t) + iHf(t) = ρ(t)(c(t) + is(t)), ρ(t) ≥ 0, c2(t) + s2(t) = 1,
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and
f(t) = ρ(t)c(t).

In case an angular parametrization

(4) c(t) = cos θ(t), θ′(t) ≥ 0, a.e.

exists, then the corresponding ρ(t) and θ(t) are defined to be the
instantaneous amplitude and the instantaneous phase of f , respectively,
and θ′(t) the instantaneous frequency, at time t. Since cosine is periodic,
such a function θ is unique under the minimum increase property. That
is, let Θi(t), i ∈ I, be the collection of all the non-decreasing functions
satisfying (4). Then obviously

θ(t) = min{Θi(t) : i ∈ I}

is also one of them. Such defined θ is called the minimum angular
parametrization, or the angular parametrization of f .

The construction of analytic signals gives rise to the singular integral
equation

(5) H(ρ(·) cos θ(·)) = ρ(t) sin θ(t), ρ(t) ≥ 0, θ′(t) ≥ 0, a.e.

When the existence of angular parametrization θ is unknown, in
equation (5) the functions cos θ(t) and sin θ(t) are replaced by two
real-valued functions c(t) and s(t):

(6) H(ρ(·)c(·))(t) = ρ(t)s(t), ρ(t) ≥ 0, c2(t) + s2(t) = 1, a.e.

Due to the relation H2 = −I, if a pair (ρ, θ) is a solution of (5), then
the pair is also a solution of

(7) H(ρ(·) sin θ(·)) = −ρ(t) cos θ(t).

The latter is called the conjugate equation of (5). Similarly the
conjugate equation of (6) is

(8) H(ρ(·)s(·))(t) = −ρ(t)c(t), ρ(t) ≥ 0, c2(t) + s2(t) = 1, a.e.
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In the HHT algorithm [4] a signal is expanded into a series of terms,
each is of the form ρ(t) cos θ(t), called intrinsic mode functions (IMFs).
The IMFs are expected to satisfy the relation (5).

In what follows we call the equations (6) and (10) the non-parame-
terized equations, and their solutions non-parameterized solutions, and
for the equations (5) and (9) below, the parameterized equations and
parameterized solutions, respectively.

The cases ρ ≡ 1 is intrinsically related to Bedrosian’s theorem [1].
The theorem asserts that if suppf̂ ⊂ [−α, α], supp ĝ ⊂ R\ [−α, α], then

H(fg) = fHg.

Now assume that ρ and cos θ(t), in the positions of f and g above,
satisfy the spectrum requirements of Bedrosian’s theorem. Then we
have

H(ρ(·) cos θ(·))(t) = ρ(t)H(cos θ(·))(t).
So, in this case, the Hilbert transform relation in (5) holds if and only
if

(9) H(cos θ(·))(t) = sin θ(t).

If ρ and c satisfy the theorem in the same pattern, then (6) holds if
and only if

(10) Hc(t) = s(t), c2 + s2 = 1.

In such a way we are reduced to solve (9) and (10) in the respective
cases.

Note that the conjugate equations of (9) and (10) are

H(sin θ(·))(t) = − cos θ(t)(11)

and

Hs(t) = −c(t), c2 + s2 = 1.(12)

Our task with this study is to characterize the solutions of (5), (6),
(9) and (10). We will be interested in the characterization in terms of
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boundary values of the functions in the Hardy spaces. For completeness
we will also state some related results in the literature.

The definition of analytic signals is closely related to the Plemelj
theorem of boundary values of Cauchy integrals: If F (z) is the Cauchy
integral of a function f ∈ Lp(R), 1 < p < ∞, or a function f with
Hölder continuity and compact support, then F is analytic in the upper-
half complex plane, C+ (in fact, F is in the Hardy Hp space) and

lim
y→0+

F (x + iy) = (1/2)f(x) + i(1/2)Hf(x), a.e.

In the literature the equation (10) has been studied in [8] in which
solutions of the Blaschke product type, in the upper-half complex plane,
together with a factor of linear phase are obtained.

In Section 2 we recall preliminary knowledge of analytic functions in
the Nevanlina classes in the unit disc and in the upper-half complex
plane. In Sections 3 and 4 we prove, in the unit disc and the upper-
half complex plane, respectively, that the non-parameterized solutions
coincide with the boundary values of functions in the Hp spaces. The
results for 1 ≤ p < ∞, and p = ∞ in the unit disc are essentially known.
We, however, provide new formulation and systematic treatment. The
result for p = ∞ in the upper-half complex plane is new, where we adopt
the distributional Hilbert transformation. In Section 4 we also show
that any distribution represented by a function in the Hardy Hp space,
1 ≤ p ≤ ∞, has nonnegative spectrum. In Section 5 we characterize
a class of parameterized solutions of (9) and (5). Those are basically
finite Blaschke products. Some aspects of the “atomic” cases arising
from Möbius transforms are discussed. In Section 6 we construct,
from certain basic holomorphic mappings, and the composition and
multiplication laws, a class of parameterized solutions that contains
the class studied in [8] as a proper subclass.

2. Preliminary knowledge on holomorphic function spaces.
We will recall basic definitions and results of the Nevanlina classes N
and the Hardy spaces Hp, 0 < p ≤ ∞. The main references of this part
are [2, 3, 14].

We will deal with two contexts the unit disc D and the upper-half
complex plane C+ together, and will use the notation S for either D
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or C+. Under this convention, the notation N(S), or N in brief, will
stand for the Nevanlina class in either D or C+. If a paragraph or
sentence only refers to one of these two contexts, then we will specify
S to be D or C+. For instance, by N(D) we mean the Nevanlina class
in D.

We will use the parametrization eit : A ≤ t ≤ 2π + A, A ∈ R, for
the circle ∂D and t : −∞ < t < ∞, for ∂C+ = R. We call them
the natural or canonical parametrizations of D and C+. Below, unless
otherwise stated, we always assume that we are using the canonical
parametrization.

Denote the class of analytic (holomorphic) functions defined in S by
H(S). It is easy to prove that if f ∈ H(S), then log |f | is subharmonic in
S [3]. Jensen’s inequality in relation to convex functions further implies
that, if f ∈ H(S), then |f |p, 0 < p < ∞ and log+ |f | = max(log |f |, 0)
are subharmonic.

Among analytic functions with non-tangential boundary values, those
in the Nevanlina class are of particular interest.

Definition 2.1. A function f in H(S) is said to be in the Nevan-
lina class N(S) if the subharmonic function log+ |f | has a harmonic
majorant.

It is proved that functions in N(S) at almost all points of ∂S have
non-tangential boundary limits. Below we use the notation f∂S for the
boundary value function of f ∈ N(S).

Note that if f ∈ N, then

log |f∂S| ∈ L1(∂S),

and

(13) log |f(z)| =
∫

∂S

Pz(t) dμ(t),

where Pz(t) is the Poisson kernel in S, and, if S = C+, then Pz(t) =
PC+

z (t), where

(14) PC+

z (t) = Py(x−t) =
1
π

y

(x−t)2 + y2
=

1
π

Im
1

t−z
, z = x+iy;
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and, if S = D, then Pz(t) = PD
z (t), where

(15)
PD

z (t) = pr(θ − t) =
1
2π

1 − r2

1 − 2r cos(θ − t) + r2

=
1
2π

Re
eit + z

eit − z
, z = reiθ,

and

(16) dμ(t) = log |f∂S| dt + dμs(t),

where dμs(t) is a finite Borel signal measure singular to dt, the latter
being the Lebesgue measure on ∂S. We recall that two signal measures
ν1 and ν2 on the same σ-algebra are said to be singular to each other if
there is a set E in the σ-algebra such that |ν1|(E) = 0 and |ν2|(Ec) = 0,
where Ec denotes the complement set of E. Based on this definition,
the support of dμs is contained in a Lebesgue null set of ∂S.

Definition 2.2. Define

N+(S) =
{

f ∈ N(S) : log |f(z)| ≤
∫

∂S

log |f∂S(t)|Pz(t) dt

}
.

The relations (13) and (16) imply that f ∈ N+ if and only if f ∈ N
and dμs ≤ 0. An example of f ∈ N \N+ is given in Section 3 in which
f−1 is a singular function.

For 0 < p < ∞, define the Hardy spaces

Hp(D) =
{

f : f ∈H(D), ‖f‖p = sup
0<r<1

{
1
2π

∫
∂D

|f(reit)|p dt

}1/p

< ∞
}

,

and

Hp(C+) =
{

f : f ∈H(C+), ‖f‖p = sup
0<y<∞

{ ∫
R

|f(t+iy)|p dt

}1/p

< ∞
}

.
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For p = ∞, define

H∞(D) =
{

f : f ∈ H(D), ‖f‖∞ = sup
z∈D

|f(z)| < ∞
}
,

and

H∞(C+) =
{

f : f ∈ H(C+), ‖f‖∞ = sup
w∈C+

|f(w)| < ∞
}

.

For p ≥ 1, Hp are Banach spaces. For p < 1, Hp are complete metric
spaces under the metric

d(f, g) = ‖f − g‖p
p.

Functions in the Hardy spaces Hp, 0 < p ≤ ∞, satisfy the inequality
in Definition 2.2 and therefore belong to N+. They are, in fact, proper
subclasses of N+. The classes N(D) and N(C+), their subclasses
N+(D) and N+(C+) and the Hardy H∞-spaces are all invariant under
conformal mappings. The Hardy spaces Hp, 0 < p < ∞, however, do
not enjoy this property.

Since Hp ⊂ N+, 0 < p ≤ ∞, there exist non-tangential boundary
limits for functions f ∈ Hp. Denote the boundary value function
by f∂S or simply f if no confusion arises. There exists a one-to-one
correspondence between the functions in Hp and their boundary values.
The Hp-norm of f is identical to the Lp-norm of the boundary function,
f . Based on this we still denote the boundary value of f ∈ Hp by
f and the Lp-norm of the boundary value by ‖f‖p. If f ∈ Lp(∂S),
1 ≤ p ≤ ∞, then f is the boundary value of a function in Hp if and
only if the Poisson integral of f is in Hp, [3, Corollary 3.2, Chapter II].

We have the relation

Hp(S) ⊂ N+(S) ⊂ N(S), 0 < p ≤ ∞.

The monotones of the spaces Hp(D) implies the finer inclusion
relation

(17)
H∞(D) ⊂ Hp+s(D) ⊂ Hp(D) ⊂ N+(D) ⊂ N(D),

0 < p, s < ∞.
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We have

(18) N+(S) ∩ Lp(S) = Hp(S), 0 < p ≤ ∞,

where Lp(S) denotes the class of the functions in N(S) with boundary
values in Lp(∂S).

For Hardy spaces, we have

(19) Hr(S) ∩ Lp(S) ⊂ Hp(S), 0 < p ≤ ∞;

and, in D and for r < p, we have precisely

(20) Hr(D) ∩ Lp(D) = Hp(D), 0 < p ≤ ∞.

The assertion (19) for S is proved through the set inclusion relation:

Hr(S) ∩ Lp(S) ⊂ N+(S) ∩ Lp(S) = Hp(S),

while the assertion (20) for D is proved by the monotones of Hp(D).

The Cayley transform is

z = κ(w) =
i − w

i + w
.

It maps conformally C+ to D. The mapping is one to one that extends
continuously as a one-to-one mapping from R ∪ {∞} to ∂D (also see
Section 5). The inverse mapping is

w = i
1 − z

1 + z
.

The correspondence between the boundaries is

eit =
i − s

i + s
, −∞ < s < ∞, −π < t < π,

that implies
s = tan(t/2), or t = 2 arctan s.

The H∞ spaces are conformally invariant under the mapping κ and
its inverse. For 0 < p < ∞ the mapping κ maps Hp(C+) to Hp(D),
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but not vice versa. The conformal invariant relation, as a matter of
fact, remains true in the cases 0 < p < ∞ up to a conformal weight.
In fact, we have F (w) = (π−1/p/(z + i)2/p)f(κ(w)) ∈ Hp(C+) if and
only if f(z) ∈ Hp(D), and ‖F‖p = ‖f‖p, 0 < p < ∞. The conformal
weight is from the Jacobian relation |dz| = |dz/dw||dw|.

The inequality in Definition 2.2 implies that if f ∈ N+ and f(eit) = 0
in some interval of positive Lebesgue measure on ∂S, then f is identical
with 0.

We now recall the counterpart Hilbert transformation theory on the
unit circle ∂D.

Let f ∈ L2(∂D) and f(t) =
∑∞

k=−∞ ckeikt be its Fourier series. The
convergence of the series is in the L2-sense, and, due to Carleson’s
theorem, as well as in the point-wise convergence sense. Then the
circular Hilbert transform of f is defined by, see [3],

(21) H̃f(t) = −i

∞∑
k=−∞

sgn (k)ckeikt.

Denote f+(t) =
∑∞

k=0 ckeikt. The function f+ is the boundary value
of the analytic function

∑∞
k=0 ckzk in D. The latter is in the Hardy

space H2(D) that can be directly verified using the definition of the
Hardy space and the Plancherel identity. We have

(22) f + iH̃f = c0 + 2
∞∑

k=1

ckeikt = 2f+ − c0,

being the boundary value of the function F (z) = 2
∑∞

k=0 ckzk − c0,
F (0) = c0, in the Hardy H2-space of the unit disc. We also have

(23) H̃2f = −f + c0.

Therefore, H̃2 = −I + c, c ∈ C.

By taking f = f+ in (22), we have

(24) H̃f+ = −if+ + ic0.

This relation holds for functions in all the Hardy Hp(D), 1 ≤ p ≤ ∞,
spaces.
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The circular Hilbert transform has a singular integral representation
(see, for instance [7]):

(25) H̃f(t) =
1
2π

p.v.
∫ π

−π

cot
(

t − s

2

)
f(s) ds, a.e.

Using the Fourier multiplier definition of H̃ in (21) and the relation
cos kt = 1/2(e−ikt + eikt) we have H̃ cos kt = sin kt, and similarly
H̃ sin kt = − cos kt. Treating cos kt as a periodic function of t on the
real line we can prove H cos kt = sin kt using either the distributional
definition, see Section 4, or the relation (2) via the Fourier transform
of eikt, the Dirac-δ function. The latter, in particular, is widely used
by engineers. In Remark 1 of Section 5 we offer a third and non-
distributional proof of the relation. We show that if θ(t) is 2π-periodic
and H̃ cos θ(t) = sin θ(t), then H cos θ(t) = sin θ(t).

In the circular case the parametric equation (5) and the non-
parametric (6) are replaced by

(26) H̃(ρ(·) cos θ(·)) = ρ(t) sin θ(t), ρ(t) ≥ 0, θ′(t) ≥ 0, a.e.

and

(27) H̃(ρc)(t) = ρ(t)s(t), ρ(t) ≥ 0, c2(t) + s2(t) = 1, a.e.

When ρ ≡ 1, they are reduced to

(28) H̃(cos θ(·))(t) = sin θ(t), θ′(t) ≥ 0,

and

(29) H̃c(t) = s(t), c2(t) + s2(t) = 1, a.e.

Due to the relation H̃2 = −I + c, the conjugate equations of (26),
(27), (29) and (28) are, respectively,

(30) H̃(ρ(·) sin θ(·)) = −ρ(t) cos θ(t), ρ(t) ≥ 0, θ′(t) ≥ 0, a.e.,

(31) H̃(ρs)(t) = −ρ(t)c(t), ρ(t) ≥ 0, c2(t) + s2(t) = 1, a.e.,
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(32) H̃(sin θ(·))(t) = − cos θ(t),

and

(33) H̃s(t) = −c(t), c2(t) + s2(t) = 1, a.e.

It is a consequence of Section 3 that in the last two conjugate
equations c ∈ D.

In the following when we say that mod (modulo) an additive constant
the functions c, s satisfy (29) and (33), we mean that there exists a
complex number a ∈ D such that c, s satisfy the equations

(34) H̃c = s − Im (a), H̃s = −c + Re (a), c2 + s2 = 1, a ∈ D.

The same terminology is valid to the equation pairs (28) and (32), (10)
and (12), and (9) and (11).

In [8] the following concept is introduced.

Definition 2.3. If f(eit) = c(t) + is(t), c2 + s2 = 1 and c, s satisfy,
mod an additive constant, the equations (29) and (33), then f(eit) is
said to be phase function or phase signal.

3. Non-parameterized solutions on the unit circle. A
complex-valued function is said to be unimodular if its value has the
modulus 1 almost everywhere in its domain. A unimodular function
f may be written f = c + is, c2 + s2 = 1, almost everywhere. Ac-
cording to the context there will be no ambiguity, and c and s in that
case represent functions. In some other places the notation c stands for
constants and s denotes an independent variable in R and sometimes
represents singular functions in D.

The class of inner functions in S is denoted by IN (S) and defined by

IN(S) = {f ∈ H∞(S) : f∂S is unimodular on ∂S}.

The class of outer functions in S is denoted by OU (S) and defined
by

OU (S) =
{

f ∈ N+(S) : log |f(z)| =
∫

∂S

log |f∂S(t)|Pz(t) dt

}
.
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Alternatively, an outer function is a function in H(S) that does not
have zeros in S, and the harmonic function log |f(z)| is the Poisson
integral of some function k(t) satisfying∫

∂S

|k(t)|W (t) dt < ∞,

where in the notation of (14) and (15), if S = C+, then W (t) =
PC+

1 (t) = (1/π)(1/1 + t2); and, if S = D, then W (t) = PD
0 (t) =

p0(t) = (1/2π).

Jensen’s inequality implies that f ∈ Hp(S) if and only if f ∈ OU (S)
and exp k(t) ∈ Lp(R), 0 < p ≤ ∞.

A Blaschke product in D is a function in H(D) of the form

b(z) = czm
∏

|zn|�=0

−zn

|zn|
z − zn

z − znz
,

where c is a unimodular constant, and the infinite product is convergent
if and only if

(35)
∑

(1 − |zn|) < ∞.

If b is a Blaschke product, then b ∈ H∞(D) with |b(z)| ≤ 1 and
unimodular on ∂D. If E ∈ ∂D is the set of accumulation points of the
zeros zn, then b(z) is extendable to become an analytic function on the
complement of the set E ∪ {1/zn : n = 1, 2, . . . } in the complex plane.
In particular, b(z) is analytic across each arc on ∂D \E. On the other
hand, the function |b(z)| does not extend continuously from D to any
point of E [3, Theorem 6.1, Chapter 2].

Denote by S(S) the class of singular functions. Singular functions
have a constructive definition: s ∈ S(D) if

(36) s(z) = exp
{
−

∫ 2π

0

eit + z

eit − z
dμ(t)

}
,

where dμ(t) is a finite positive Borel measure singular to the Lebesgue
measure dt. Since any Borel measure finite on all compact sets is
automatically a regular Borel measure, by invoking the decomposition
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theorem of regular Borel measures we have the unique decomposition
dμ = dμc + dμd, where dμd is a discrete measure having positive mass
only on at most countably many points tn such that

∑
n dμd(tn) < ∞,

and dμc is a singular, finite and continuous measure, that is, dμc(t) = 0
for all points t. Some related knowledge can be found in [14, Chapters
IV and VII].

Properties of non-constant singular functions include

(i) s(z) has no zeros in D;

(ii) |s(z)| < 1 in D;

(iii) |s(z)| = 1, almost everywhere on ∂D; and

(iv) s(0) > 0.

Note that (ii) holds due to the relation

log |s(z)| = −
∫

Pz(θ) dμ(θ) < 0.

We will use factorization of functions in N(D).

(i) If f ∈ N(D), then apart from unimodular multiple constants, f
can be uniquely factorized into the form

f(z) = b(z)g(z)s1(z)s−1
2 (z),

where b(z) is a Blaschke product, g(z) is an outer function, s1, s2 are
singular functions;

(ii) f ∈ N+(D) if and only if s2 is a unimodular constant;

(iii) f ∈ Hp(D), 0 < p ≤ ∞, if and only if s2 is a unimodular constant
and g ∈ Hp(D); and

(iv) f ∈ IN (D) if and only if s2, g both are unimodular constants,
i.e., f(z) = b(z)s1(z).

Theorem 3.1. Let f(eit) = c(t) + is(t), 0 ≤ t < 2π, be unimodular
where functions c and s are real-valued. Then mod an additive constant
in D the functions c and s satisfy the equations (29) and (33) if and
only if f is the boundary value of an inner function in D.

Proof. Let f be a non-constant inner function in D. Then f has a
unimodular non-tangential boundary value f(eit) = c(t) + is(t). Let
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c0 = f(0). Since

f(z) =
1
2π

∫ 2π

0

Pz(θ)f(eiθ) dθ,

where

Pz(θ) = Re
eiθ + z

eiθ − z
,

[3, Corollary 3.2, Chapter 2], we have |f(0)| ≤ ‖f |∂D‖∞ = 1. The
maximal modulus principle then implies that |f(0)| < 1, and hence
|c0| < 1. Since f restricted to ∂D is the boundary value of a function
in H∞(D), the Fourier coefficients cn for negative n are all zero. Thus,
according to (22), H̃f(ei(·)) = −if(ei(·)) + ic0. In the last equality
substituting f(eit) = c(t)+ is(t) and comparing the real and imaginary
parts, we obtain

H̃c = s − Im (c0), and H̃s = −c + Re (c0).

Next we assume that f(eit) is unimodular, f(ei(·)) = c + is, where
the real-valued functions c and s satisfy the relation (34). Expanding
the bounded function c(t) into its Fourier series, we have

c(t) =
∞∑

k=−∞
ckeikt,

where the convergence is in the L2-sense on ∂D, and we have, in
particular, {ck} ∈ l2. Since s(t) = H̃c(t)+Im (a), the Fourier expansion
of s(t) is

s(t) = −i
∞∑

k=−∞
sgn (k)ckeikt + Im (a).

Therefore, the Fourier series of f(eit) is

f(eit) = [i Im (a) + c0] + 2
∞∑

k=1

ckeikt.

Define

f(z) = [i Im (a) + c0] + 2
∞∑

k=1

ckzk.
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Since
∑∞

k=1 |ck|2 < ∞, we have f ∈ H2(D) and f ∈ H2(D)∩L∞(D) =
H∞(D). Therefore, f ∈ IN (D) with the unimodular boundary value
f(eit). The second equation in (34) implies c0 = Re(a), therefore
f(0) = a. The proof is complete.

Functions of the type s−1, s ∈ S(D) satisfy the following properties

(i) s−1(z) is a well defined analytic function in D;

(ii) |s−1(z)| ≥ 1;

(iii) |s−1(z)| = 1 almost everywhere on ∂D;

(iv) s−1(0) > 0; and

(v) s−1(z) has non-tangential unimodular boundary limits on ∂D.

Functions of the type s−1 are in the Nevanlina class N(D), unimod-
ular on ∂D, but are not analytic phase functions. This may be easily
observed. In fact, since s(eit) = eiθ(t) is a phase signal, then e−iθ(t)

must not be a phase signal for, otherwise, sin θ(t) = H̃ cos(θ(t)) =
H̃ cos(−θ(t)) = sin(−θ(t)), which is a contradiction.

As a consequence of the above observation, functions of the type s−1,
although holomorphic with non-tangential boundary limits a.e., are not
Cauchy integrals of their boundary values.

The simplest example of singular functions is

s0 = exp
(

z + 1
z − 1

)

generated by the point mass at 1 in (36). Simple computation shows
that

|s−1
0 (reit)| =

1 + r2

1 − r2
, for t = arccos

2r

1 + r2
.

This proves s−1
0 /∈ H∞(D). Detailed computation shows that for every

ζ, 0 < |ζ| < 1, s0(z) = ζ infinitely often in every neighborhood of z = 1
[3].

Next we discuss the cases f ∈ N(D), f(eit) = c(t) + is(t), c2(t) +
s2(t) �≡ 1. We first note that the proof of Theorem 3.1 does not
rely on the unimodular property of the boundary function f(eit) and
it is valid if the unimodular condition is replaced by the condition



CHARACTERIZATION OF BOUNDARY VALUES 175

f(eit) = ρ(t)(c(t) + is(t)) ∈ L∞(∂D), where c2 + s2 = 1. We, in fact,
have the following result for 1 ≤ p ≤ ∞.

Theorem 3.2. Let 1 ≤ p ≤ ∞ and function f(eit) = ρ(t)(c(t) +
is(t)), 0 ≤ t < 2π, where ρ ≥ 0, c and s are real-valued and c2 +s2 = 1.
Then ρ ∈ Lp([0, 2π]) and ρc and ρs satisfy, mod an additive constant,
the equations (27) and (31) if and only if f is the boundary value of
some function in Hp(D).

Proof. The following proof is also an alternative proof of Theorem 3.
Assume that f is a non-constant function in Hp, 1 ≤ p ≤ ∞. Then
it has a non-tangential boundary value f(eit) = ρ(t)(c(t) + is(t)) ∈
Lp([0, 2π]). The function f has a representation, see [3],

(37) f(z) =
∫

∂D

Re (f(eit))S(eit, z)d(eit) + i Im (f(0)),

where S(ζ, z) = [1/(2πi)] [(ζ + z)/(ζ − z)](1/ζ) is the Schwarz kernel.

Writing z = reiα, we have

S(eit, z)d(eit) = [pr(t − α) + iqr(t − α)]dt,

where pr(t − α) is the Poisson kernel defined in (15), and qr(t − α) is
its conjugate defined by

(38) qr(t − α) =
1
2π

Im
eiα + z

eiα − z
=

1
2π

2r sin(α − t)
1 − 2r cos(α − t)

.

Taking limit r → 1 − 0 in (37), from the properties of the Poisson and
the conjugate Poisson kernels, we have, see [3, Chapter III],

f(eiα) = ρ(α)c(α) + iH̃(ρ(·)c(·))(α) + i Im (f(0)).

The last equality is simplified to

ρs = H̃(ρc) + Im (f(0)).
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By applying H̃ to both sides of the above relation, taking into account
H̃(Im {f(0)}) = 0 and H̃2c = −c + Re(f(0)), we obtain

H̃(ρs) = −ρc + Re(f(0))

as desired.

Next we assume that ρ ∈ Lp([0, 2π]), f(eit) = ρ(t)(c(t) + is(t)),
c2 + s2 = 1 and, mod an additive constant, H̃(ρc) = ρs, H̃(ρs) = −ρc.
We are to show that f is the boundary value of a function in Hp(D),
1 ≤ p ≤ ∞.

We first note, in the notation of (15) and (38) that there hold

(39) H̃((ρc) ∗ pr) = (H̃(ρc)) ∗ pr = (ρc) ∗ qr.

The relations may be proved by using Fourier multiples. They imply

(40) [(ρc) ∗ pr] + iH̃[(ρc) ∗ pr] = (ρc) ∗ (pr + iqr).

Alternatively,

(41) [(ρc) ∗ pr] + iH̃ [(ρc) ∗ pr] = [(ρc) + i(ρs)] ∗ pr = f(ei(·)) ∗ pr.

The function in (40) is the Cauchy integral of a function in Lp, and thus
one in Hp(D). On the other hand, (41) shows that the Hp-function
has the boundary value f(ei(·)). The proof is complete.

In view of Theorems 3.1 and 3.2, to find solutions of (29) and (27)
is to find inner functions and Hp-functions. For completeness, we cite,
without proof, some sufficient conditions for functions to be in IN (D)
and Hp(D)-spaces [3, Chapter II].

Theorem 3.3. Let f be in Lp(∂D), 1 ≤ p ≤ ∞. Then f is in Hp

thus satisfies (29) if one of the following conditions holds.

(i) The Poisson integral of f is analytic in D.

(ii) ∫ 2π

0

eintf(eit) dt = 0, n = 1, 2, . . .
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(iii) For all functions g ∈ Hq
0 (D),

∫ 2π

0

fg dt = 0,

where

Hq
0 =

{
g ∈ Hq(D) : g(0) =

1
2π

∫
g(eit) dt = 0

}
,

where q = p/(p − 1).

(iv) On |z| > 1,
1

2πi

∫
f(ζ) dζ

ζ − z
= 0.

(v) For p = ∞, there exists a uniformly bounded sequence of analytic
polynomials pn(z) such that p(eiθ) → f(eiθ) almost everywhere.

4. Theory in C+. Blaschke products in C+ are obtained from
Blaschke products in D via the Cayley transform z = (i − w)/(i + w).
They are of the form

B(w) = c

(
w − i

w + i

) ∏
wn �=i

|w2
n + 1|

w2
n + 1

w − wn

w − wn
,

where c is a constant, |c| = 1, and the condition (35) of the zeros
becomes ∑ yn

1 + |wn|2 < ∞, wn = xn + iyn.

Through the Cayley transform the classes of inner functions, outer
functions and singular functions in D are all changed to the correspond-
ing function classes in C+.

Before performing change of variables under the Cayley transform we
first write a singular function in D in the form

s(z) = exp
{

z − 1
z + 1

μ(π) −
∫ 2π

0

eiθ + z

eiθ − z
dμ1(θ)

}
,

where dμ1 is dμ in (36) diminished by the mass μ(π) at θ = π.
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Changing variables under the inverse Cayley transform w = i(1 − z/
1 + z), followed by the change of variable λ = tan(θ/2), we have

S(w) = s(z−1(w)) = exp i

{
wμ(π) +

∫
R

wλ + 1
λ − w

2
1 + λ2

dν(λ)
}

,

where 2/(1 + λ2) dν(λ) is a finite positive Borel measure on R. It is
usually further written as

S(w) = exp i

{
wμ(π) +

∫
R

(
1

λ − w
− λ

λ2 + 1

)
dν(λ)

}
.

We note that the quantity μ(π) is, in fact, the mass at the infinity after
the change of variables under the Cayley transform [2].

There are corresponding factorization results for functions in the
Nevanlina class of C+. In particular, for any inner function F ∈
IN(C+), we have F = BS, where B is a Blaschke product and S
a singular function, with the representations given above.

We need to define Hilbert transformation for bounded functions.
We adopt the distributional definition which is naturally related to
boundary values of functions in H∞(R).

Denote by D the space of infinitely differentiable functions with
compact support on the line, and D′ the space of continuous linear
functionals on D, viz. the space of distributions.

Definition 4.1. Let T be a distribution and u a harmonic function
in the upper-half complex plane. If

〈T, φ〉 = lim
y→0+

∫ ∞

−∞
u(x, y)φ(x) dx, φ ∈ D,

then u is said to be a harmonic representation of T .

Obviously, a distribution may have more than one harmonic repre-
sentation. The following result is known (see, for instance [5] or [6]).

Theorem 4.1. Let T be a distribution and U one of its harmonic
representations. Let V be any harmonic conjugate of U . Then V is a
harmonic representation of some distribution, S.
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Definition 4.2. Any distribution S in Theorem 4.1 is called a Hilbert
transform of T .

For a chosen harmonic representation of T its harmonic conjugates
are not unique. As a consequence the above defined Hilbert transform
is unique only up to an additive constant. The relation H2 = −I now
is changed to H2 = −I + [c], where [c] denotes the class of constants.

On R the analogous result to Theorem 3.1 reads

Theorem 4.2. Let F be a unimodular function, F (s) = C(s)+iS(s),
−∞ < s < ∞, where functions C and S are real-valued. Then C and
S, mod additive constants, satisfy the equations (10) and (12) if and
only if F is the boundary value of an inner function in C+.

Proof. Let F be an inner function in C+. Write F = U + iV , where
U and V are real-valued, and thus are bounded and harmonic. In the
pointwise sense,

lim
y→0+

U(s, y) = C(s), lim
y→0+

V (s, y) = S(s), a.e.

Lebesgue’s dominated convergence theorem implies that, for any φ ∈ D,

lim
y→0+

∫ ∞

−∞
U(s, y)φ(s) ds =

∫ ∞

−∞
C(s)φ(s) ds

and
lim

y→0+

∫ ∞

−∞
V (s, y)φ(s) ds =

∫ ∞

−∞
S(s)φ(s) ds.

Since V is a harmonic conjugate of U , we obtain

HC = S,

as desired.

Next we assume F = C + iS, C2 + S2 = 1 and, in the distribution
sense, HC = S. We will show that F is the boundary value of an inner
function in C+. The idea is to transfer the problem to the unit disc
via Cayley transform. We divide the proof into a few steps.
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Step 1. Let U(s, h) = Ph ∗ C(s), the Poisson integral of C. It
is bounded and harmonic in C+. Let V (s, h) be any, but fixed,
harmonic conjugate of U . Temporarily we take for granted that V is
bounded. Then the function F (s, h) = U(s, h) + iV (s, h) is a bounded
holomorphic function in C+, and thus it has a non-tangential boundary
value, denoted by U(s, 0) + iV (s, 0), where due to the property of the
Poisson integral, U(s, 0) = C(s). Since V is bounded and harmonic,
distributionally V (s, h) → V (s, 0). Since HC = S, we have, for a
constant c0, V (s, 0) = S(s) + c0. Hence F (s) = C(s) + iS(s) is the
boundary value of the bounded analytic function U + i(V − c0) in C+.
Since F (s) is unimodular, U + i(V −c0) is an inner function, as desired.
In below we devote ourselves to showing that V (s, h) is bounded.

Step 2. We will use Cayley transform z :C+→D, z=(i − w)/(w + i),
where on their boundaries we have the relation eit = (i − s)/(s + i)
that gives rise to the parametrizations s = tan t/2, −π < t < π,
and t = 2 arctan s, −∞ < s < ∞. Under the transform we have
u(z) + iv(z) = U(w) + iV (w), f(eit) = c(t) + is(t) = C(s) + iS(s) =
C(tan(t/2)) + iS(tan(t/2)). The functions U + iV and u + iv have the
same range. Since both Cayley transform and its inverse are conformal,
and thus preserve the harmonicity of the real and the imaginary parts
of analytic functions, we are reduced to showing that v is bounded in
D.

Step 3. Since c(t), the bounded boundary value of u, is in L2(∂D),
the integral

f(z) =
1
2π

∫ 2π

0

eiθ + z

eiθ − z
c(θ) dθ = u(reit) + v1(reit), z = reit,

is a function in H2(D) with L2-non-tangential boundary value u(eit)+
v1(eit). As consequence, there exists a constant c1 such that v1 = v+c1.
We are therefore reduced to show that v1 is bounded in D.

Step 4. From the Cayley transform in Step 2 and that S(s) is the
distributional Hilbert transform of C(s) in C+, we have for all C∞

functions φ on ∂D with compact support away from the point −1,

(42) lim
r→1−

∫
v(reiθ)φ(θ) dθ =

∫
S(tan θ/2)φ(θ) dθ.
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Since in the L2(∂D)-norm sense we have v1(rei·) → v1(ei·) as r → 1,
for such functions φ we also have

(43) lim
r→1−

∫
v1(reiθ)φ(θ) dθ =

∫
v1(eiθ)φ(θ) dθ.

Recalling the relation v1 = v + c1 and comparing (42) and (43), we
have

v1(eit) = S(tan t/2) + c1, a.e.

Step 5. The above shows that the analytic function u + i(v1 − c1),
as a function in H2(D), has unimodular boundary value C(tan t/2) +
iS(tan t/2). The relation H2∩L∞ = H∞ in D implies that u+i(v1−c1)
is an inner function, and hence v1 is bounded in D. The proof is
complete.

The inconvenience with C+ is that the spaces Lp(R), as well as
the spaces Hp(C+), do not enjoy the set inclusion relation (17), and,
especially, functions in L∞(R) are not integrable. Cayley transform
is used in the proof of the above theorem to facilitate convenience.
With essentially the same proof as Theorem 4.2 may be extended to
F = ρC + iρS ∈ L∞(R). For the cases 1 ≤ p < ∞, one uses a similar
proof as in Theorem 3.2, where the Schwarz kernel is replaced by the
Cauchy kernel. We have

Theorem 4.3. Let 1 ≤ p ≤ ∞ and F (s) = ρ(s)(C(s) + iS(s)),
−∞ < s < ∞, where ρ ≥ 0, C and S are real-valued with C2 +S2 = 1.
Then ρ ∈ Lp(R) and, ρC and ρS, mod additive constants, satisfy the
equation (6) and (8) if and only if F is the boundary value of a function
in Hp(C+).

As in the circle case, we cite, without proof, a number of sufficient
conditions for Lp(R) functions to be in Hp(C+), see [3, Chapter II].

Theorem 4.4. Let F = ρC + iρS ∈ Lp(R), 1 ≤ p ≤ ∞. Then
F ∈ Hp(C+) if one of the following conditions holds.

(i) The Poisson integral of F is analytic in C+.
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(ii) When p < ∞,

∫
F (s)
s − z

ds = 0, Im z < 0,

and when p = 0,

∫ ∞

−∞
F (s)

(
1

s − z
− 1

s − z0

)
ds = 0, Im z < 0,

where z0 is any fixed point in the lower half plane.

(iii) For all functions G inHq(C+), q = p/(p − 1),

∫ ∞

−∞
FG ds = 0.

(iv) For 1 ≤ p ≤ 2, (so that the Fourier transform is defined on Lp

by Plancherel’s theorem),

F̂ (ξ) = lim
N→∞

∫ N

−N

F (s)e−2πiξs ds = 0

almost everywhere on ξ < 0.

Definition 4.3. Let T be a distribution and f(x + iy) an analytic
function in C+ such that, for any φ ∈ D,

〈T, φ〉 = lim
y→0+

∫
R

f(x + iy)φ(x) dx,

then we say that T is an upper-Hardy distribution and f(x + iy) is is
an analytic representation of T . In such a case we may write T = T+.

Let T be the tempered distribution represented by the boundary
value of a function in Hp(C+). From Definition 4.3, T = T+ is an
upper-Hardy distribution. The following theorem asserts that T̂+, the
Fourier transform of T+, has positive spectrum in the sense specified
in the following theorem.
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Theorem 4.5. If T+ is the tempered upper-Hardy distribution
represented by the boundary value of a function in Hp(C+), 1 ≤ p ≤ ∞,
then supp {T̂+} ⊂ [0,∞), that is,

〈T̂+, φ〉 = 0, for all φ ∈ D such that supp φ ⊂ (−∞, 0].

We need two technical lemmas.

Lemma 4.1. For any f ∈ Lp(R), 1 ≤ p ≤ 2 and φ ∈ S(R), where
S(R) stands for the Schwartz space of rapidly decreasing functions, we
have ∫

R

fφ̂ dx =
∫
R

f̂φ dx.

Proof. For p = 1, 2 the results are standard. For 1 < p < 2, let
fn ∈ L1 ∩ Lp(R) such that fn → f in Lp. For every n we have∫

R

fnφ̂ dx =
∫
R

f̂nφ dx,

For 1/p + 1/p′ = 1, on one hand,

∣∣∣ ∫
R

(fn − f)φ̂ dx
∣∣∣ ≤ ‖fn − f‖p‖φ̂‖p′ → 0;

and, on the other hand, from the Hausdorff-Young inequality,

∣∣∣ ∫
R

(f̂n − f̂)φ dx
∣∣∣ ≤ ‖f̂n − f̂‖p′‖φ‖p ≤ ‖fn − f‖p‖φ‖p → 0.

Taking limit n → ∞, we conclude the desired identity. The proof is
complete.

Lemma 4.2. Let f ∈ Hp(C+), 1 ≤ p ≤ 2. Then suppf̂ ⊂ [0,∞).

Proof. The assertion for p = 1 is proved in [3, Lemma 3.7, Chapter
II]. For a proof of the case p = 2 see, for instance, [12, Theorem 19.2,
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Chapter 19]. We provide a uniform treatment for the cases 1 < p ≤ 2,
using the classes UN defined in [3, Corollary 3.3, Chapter II]. Now
let f ∈ Hp, 1 < p ≤ 2. Then the above cited Corollary 3.3 implies
that there exists a sequence {fn}∞n=1 in H1(C+) ∩ Hp(C+) such that
fn → f ∈ Hp(C+). Using the same notation for the boundary values
of f and fn, the result for p = 1 and the Hausdorff-Young inequality
imply

( ∫ 0

−∞
|f̂(ξ)|p′

dξ

)1/p′

≤ ‖f̂ − f̂n‖p′ ≤ ‖f − fn‖p −→ 0.

It follows that f̂(ξ) = 0, almost everywhere ξ ∈ (−∞, 0]. The proof is
complete.

Proof of Theorem 4.5. First consider the cases 1 ≤ p ≤ 2. Let T+ be a
tempered distribution with a holomorphic representation f ∈ Hp(C+).
Let φ be any function in D with supp φ ⊂ (−∞, 0]. From Lemma 4.2,
for any fixed y > 0, suppf̂(· + y) ⊂ [0,∞). By using Lemma 4.1 we
have

〈T̂+, φ〉 = lim
y→0+

∫ ∞

−∞
f(t + iy)φ̂(t) dt

= lim
y→0+

∫ ∞

−∞
f̂(t + iy)φ(t) dt

= 0.

Below we assume 2 < p ≤ ∞ is fixed and f is the Hp- function
representing T+. Let gδ(t) be a function in D that is even, taking
the value 1 for |t| ≤ 1/δ, zero for |t| ≥ 2/δ and between 1 and zero
for 1/δ < |t| < 2/δ. Denote by gδ(z) its Cauchy integral that is in
Hr(C+), 1 < r < ∞, whose boundary value, by the Plemelj theorem,
is (1/2)gδ(t)+ i(1/2)Hgδ(t). We claim that there exists q ∈ (1, 2], such
that the product function gδ(z)f(z) ∈ Hq(C+). For p < ∞, taking
1 < q < 2 < p and s = p/q > 1, Hölder’s inequality implies

∫
R

|gδ(x + iy)f(x + iy)|q dx ≤
( ∫

R

|gδ(x + iy)|qs′
dx

)1/s′

×
( ∫

R

|f(x + iy)|qs dx

)1/s

< ∞.
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If p = ∞ we can take q = 2 as gδ(z) ∈ H2(C+).

Let φ ∈ D be of compact support in (−∞, 0]. Temporarily accepting
that for every fixed y > 0,

(44) lim
δ→0+

∫ ∞

−∞
gδ(t + iy)f(t + iy)φ̂(t) dt =

1
2

∫ ∞

−∞
f(t + iy)φ̂(t) dt.

The Parseval’s relation proved in Lemma 4.1 implies

〈T̂+, φ〉 = 〈T+, φ̂〉
= lim

y→0+

∫ ∞

−∞
f(t + iy)φ̂(t) dt

= 2 lim
y→0+

lim
δ→0+

∫ ∞

−∞
gδ(t + iy)f(t + iy)φ̂(t) dt

= 2 lim
y→0+

lim
δ→0+

∫ ∞

−∞
(gδ(· + iy)f(· + iy))ˆ(t)φ(t) dt.

Now as a function in Hq(C+), 1 < q ≤ 2, the support of (gδ(· + iy)×
f(· + iy))ˆ is contained in [0,∞), as proved in Lemma 4.2, and hence
〈T̂+, φ〉 = 0 as desired.

Now we are left to show (44). Let y be fixed. Set

gδ(z) =
1
2

Py ∗ gδ(t) + i
1
2

Qy ∗ gδ(t), z = t + iy,

Py(t) =
1
π

y

t2 + y2
, Qy(t) =

1
π

t

t2 + y2
.

The properties of the Poisson kernel imply that Py ∗ gδ(t), as δ → 0,
converges to the identity function 1 point-wisely, and is bounded
uniformly in δ and t. The Lebesgue dominated convergence theorem
implies

lim
δ→0+

∫ ∞

−∞
Py ∗ gδ(t)f(t + iy)φ̂(t) dt =

∫ ∞

−∞
f(t + iy)φ̂(t) dt.

For the fixed y the functions Qy ∗ gδ(t) are not uniformly bounded as
a function of t as δ → 0. We, however, through explicit computation,
can show

(45) lim
δ→0+

∫ ∞

−∞
Qy ∗ gδ(t)f(t + iy)φ̂(t) dt = 0.
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Write

Qy ∗ gδ(t) =
1
π

∫
|x|≤1/δ

t − x

(t − x)2 + y2
dx

+
1
π

∫
1/δ<|x|≤2/δ

(t − x)gδ(x)
(t − x)2 + y2

dx

= I
(δ)
1 (t, y) + I

(δ)
2 (t, y).

We first estimate I1. Without loss of generality, we may assume t > 0.
Simple computation gives

I
(δ)
1 =

1
π

∫ t+1/δ

t−1/δ

x

x2 + y2
dx =

1
2π

log
(

(t + 1/δ)2 + y2

(t − 1/δ)2 + y2

)
.

First note that, for a fixed y as δ → 0 in the point-wise manner,

lim
δ→0

I
(δ)
1 (t, y) = 0.

Now we show that it is also uniformly bounded as δ → 0. Set

α
(δ)
1 (t, y) =

(t + 1/δ)2 + y2

(t − 1/δ)2 + y2
.

For each δ > 0 the function takes the value 1 at t = 0, and 1 again
as t → ∞. As t leaves zero and goes the infinity, the function first
increases to reach its maximum, and then decreases. The maximum
value happens at tδ =

√
δ2 + y2/δ with value

1
π

(δtδ + 1)2 + δ2y2

(δtδ − 1)2 + δ2y2
−→ 1

π

(y + 1)2

(y − 1)2
, as δ → 0.

This shows that, in restricting y ∈ (0, 1/2) as δ → 0, the functions
α

(δ)
1 (t, y), and therefore I

(δ)
1 (t, y) as well, are uniformly bounded in δ

and t. Then the Lebesgue dominated convergence theorem may be used
to conclude

lim
δ→0+

∫ ∞

−∞
I
(δ)
1 (t, y)f(t + iy)φ̂(t) dt = 0.
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Next we study I
(δ)
2 . Since gδ is even, I

(δ)
2 is reduced to

1
π

∫ 2/δ

1/δ

(
t − x

(t − x)2 + y2
+

t + x

(t + x)2 + y2

)
gδ(x) dx

=
2t

π

∫ 2/δ

1/δ

y2 + t2 − x2

(y2 + t2 + x2 − 2xt)(y2 + t2 + x2 + 2xt)
dx.

With the assumption t > 0 the above is dominated by

2t

π

∫ 2/δ

1/δ

1
(x − t)2 + y2

dx =
2t

π
α

(δ)
2 (t, y).

It is easy to verify that, for the fixed y ∈ (0, 1/2), the function α
(δ)
2 (t, y)

is uniformly bounded and tends to zero as δ → 0. Since (2t/π)φ̂(t) is
a function in the Schwartz class, we finally obtain, by the Lebesgue
dominated convergence theorem,

lim
δ→0+

∫ ∞

−∞
I
(δ)
2 (t, y)f(t + iy)φ̂(t) dt = 0.

The proof is complete.

5. Parameterized solutions. The parameterized cases are essen-
tially finite Blaschke products. The results of this section are general-
izations of [10].

We have the following theorem.

Theorem 5.1. Assume that θ is a continuous function on R strictly
increasing with m(θ([0, 2π])) = 2πn, where m stands for the Lebesgue
measure. Then the following two conditions are equivalent.

(i) dθ(t) is a sum of a number of n harmonic measures on the unit
circle.

(ii)

H̃ cos θ(t) = sin θ(t) − (−1)nIm
( n∏

k=1

ak

)
(46)
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and

H̃ sin θ(t) = − cos θ(t) + (−1)nRe
( n∏

k=1

ak

)

for some ak ∈ D, k = 1, . . . , n.

Proof. Let ιa(z) = eiθ0(z − a)/(1 − az), a ∈ D, be a Möbius
transform of the disc D transforming a to 0 whose the boundary value
is defined by

eiθa(t) = ιa(eit) =
eit − a

1 − aeit
, 0 ≤ t ≤ 2π.

Then, see [10] or [3],

(47)
1
2π

dθa(t)
dt

=
1
2π

1 − |a|2
1 − 2|a| cos(t − θ0) + |a|2 = p|a|(t − θ0)

is the Poisson kernel of the disc at a = |a|eiθ0 . Therefore, dθa is a
harmonic measure.

Note that τa is an inner function in D. Thus by Theorem 3.1 its
boundary value satisfies the equation

H̃ cos θa(t) = sin θa(t)+Im (a) and H̃ sin θa(t) = − cos θa(t)−Re (a).

This corresponds to the case n = 1 (the atomic case).

Now let dθ(t) be a sum of a number of n harmonic measures on
the unit circle with respect to ak ∈ D, k = 1, . . . , n. The function
ei

∑n

k=1
θak

(t) is the boundary value of the Blaschke product b(z) =∏n
k=1 τak

(z), ak ∈ D, the latter being an inner function in D. Since
b(0) = (−1)n

∏n
k=1 ak, by invoking the relation (24), we have

H̃eiθ(t) = −ieiθ(t) + i(−1)n
n∏

k=1

ak.

The desired relations in (ii) then follow.
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(ii) → (i). The assumptions on θ(t) imply that eiθ(t) ∈ L2(∂D) and

iH̃eiθ(t) = eiθ(t) + a.

Therefore,

(48) eiθ(t) + iH̃eiθ(t) = 2eiθ(t) + a.

The lefthand side of (48), due to (22), is equal to

(49) 2(eiθ(t))+ − c0,

while the righthand side of (48) is equal to

(50) 2(eiθ(t))+ + 2(eiθ(t))− + a.

Comparing (49) and (50), we have

−c0 = (2eiθ(t))− + a,

and hence
c0 = −a, and (2eiθ(t))− = 0.

The last two relations show that eiθ(t) itself is the boundary value of
an analytic function, f , in D, with f(0) = −a.

Next we show f(D) ⊂ D. First, f ∈ H2 and f |∂D(t) = eiθ(t) ∈ L∞

imply, due to (20), f ∈ H∞. Since f |∂D is unimodular, we obtain
that f is an inner function. From the factorization theorem of inner
functions, we have f = cbs, where c is a constant with |c| = 1, b is a
Blaschke product and s is a singular function. The fact that any Möbius
transform maps D into D implies b(D) ⊂ D. As for any non-constant
singular function s, we have

log |s(z)| = −
∫

Pz(θ) dμ(θ) < 0,

where dμ is a nonnegative Borel measure, we have s(D) ⊂ D, and thus
also f(D) ⊂ D.

Since f is an inner function, it is the Poisson integral of its boundary
value eiθ(t) [3, Corollary 3.2, Chapter II]. This, together with the fact
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that the boundary value is continuous, implies that f is continuously
extended ∂D. This further implies that f only has at most a finite
number of zeros in D. As a matter of fact, if there were infinitely
many zeros, then there would exist a cluster point, z0, of the zeros.
If z0 ∈ D, then f is identical to zero; and, if z0 ∈ ∂D, then f
cannot be everywhere unimodular on ∂D. In this case the argument
principle can be used for f on the boundary of D to conclude that f
has exactly n zeros in D, together with multiplicities. Let b be the
finite Blaschke product formed from the zeros of f ; then s = f/b is
the singular function in the corresponding factorization of f . Note
that f/b is continuously extended to all points of ∂D. This will
imply that the singular function s must be trivial and thus equal to
a unimodular constant. In fact, a non-trivial singular functions cannot
be continuously extended to the closure of the support of the singular
measure on ∂D defined through dμ in (36) [3, Theorem 6.2, Chapter
II]. The proof is complete.

We present below an example of a nonlinear phase as a parameterized
solution of (29). Taking n = 1 and a = 1/2 in Theorem 5.1, we have

eiθa(t) = c(t) + is(t),

where
c(t) =

5 cos t − 4
5 − 4 cos t

, s(t) =
3 sin t

5 − 4 cos t
.

The theorem asserts that H̃c = s, c2 + s2 = 1 and c(t) is well
parameterized by c(t) = cos θa(t), where

eiθa(t) = τa(eit) =
eit − a

1 − aeit
,

with θ′a(t) = p|a|(t) > 0, where p|a| is the Poisson kernel of D at z = |a|
(for more details see [11]).

Note that c(t) = cos θa(t) from a Möbius transform may be viewed
as a periodic function on R. In Section 6, Remark 1, we provide a non-
distributional proof of periodization of solutions of (29) on D including
the one in the following theorem. All these, however, are particular
cases of Theorem 4.2.
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Theorem 5.2 For a ∈ D, treating cos θa(t) as 2π-periodic on the
line, we have

(51)

H cos θa(t) = sin θa(t)+Im (a) and H sin θa(t) = − cos θa(t)−Re (a).

For a ∈ D, writing a = |a|eita , it is easy to verify

τa(z) = eitaτ|a|(ze−ita), θa(t) = ta + θ|a|(t − ta)(52)

and

PD
a (t) = PD

|a|(t − ta) = p|a|(t − ta).

We define

(53) L2
a(∂D) =

{
f : ∂D → C |

( ∫ 2π

0

|f(t)|2Pa(t) dt

)1/2

< ∞
}

,

and denote by ‖f‖a =
( ∫ 2π

0
|f(t)|2Pa(t) dt

)1/2 the norm of f ∈ L2
a(∂D).

We call L2
a(∂D) the weighted L2-space associated with a. The space

L2
a(∂D) is a Hilbert space equipped with the inner product

〈f, g〉a =
∫ 2π

0

f(t)g(t)Pa(t) dt.

Note that, if a = 0, then all these reduce to the standard case on ∂D.

We have the following

Theorem 5.3. Let a ∈ D and Fa = {1/
√

2πeinθa(t)}∞n=−∞. Then

(i) Fa is a weighted orthonormal system with weight Pa in [0, 2π].

(ii) The Plancherel theorem holds for the system. Especially, the
system is complete in L2

a.

(iii) For the system Fa the Carleson theorem holds.

(iv) The mapping θa(t) preserves the Hardy spaces inside and outside
the unit circle.
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The proof is by change of variable, also see [10].

In view of Theorem 5.3 every a ∈ D corresponds to a trigonometric
system. For different numbers a in D, the shapes of the graphs of
cos θa(t) and those of sin θa(t) are different (see [11] for graphical
examples). It is observed that the closer the complex number |a|
gets to 1 − 0, the sharper the graph of cos θa(t) is. The generalized
trigonometric systems are expected to be better suited and adaptable,
along with different choices of a, to nonlinear and non-stationary time-
frequency analysis.

To study the counterpart theory on the real line we again use the
Cayley transform w(z) = (i − z)/(i + z) that maps the real line to the
unit circle through

w(s) =
1 − s2

1 + s2
+ i

2s

1 + s2
.

Setting t = 2 tan−1 s, the above reads w(s) = cos t + i sin t, where
t ∈ (−π, π), s ∈ (−∞,∞). Now, if f(t) = cos θ(t) + i sin θ(t) is the
boundary value of an inner function inside D, then

F (s) = cos θ(2 tan−1 s) + i sin θ(2 tan−1 s)

is the boundary value of the corresponding inner function in the upper-
half complex plane. Invoking Theorem 4.2, we have

H[cos θ(2 tan−1 s)] = sin θ(2 tan−1 s).

Based on the same principle, we have

Theorem 5.4. Assume that Θ is a function on R that is continuous,
strictly increasing with m(Θ(R)) = 2πn. Then, the following two
conditions are equivalent.

(i) dΘ(s) is a sum of a number of n harmonic measures on the line.

(ii)
H cosΘ(s) = sin Θ(s).

Moreover, if (i) or (ii) holds, then Θ(s) = θ(2 tan−1 s), where θ is a
function satisfying the conditions in Theorem 5.1.
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Proof. In view of the Cayley transform, the proof is converted to
the unit disc case. We only note that with the single factor case
Θ(s) = θa(2 tan−1 s), the derivative (d/ds)Θ(s) is a Poisson kernel
on the line. In fact,

d

ds
Θ(s) =

1
π

h0

(s − s0)2 + h2
0

= Ph0(s − s0),

where

h0 =
1 − |a|2

1 + 2|a| cos t0 + |a|2 , s0 =
2|a| sin t0

1 + 2|a| cos t0 + |a|2

and a = |a|eit0 .

Analogous to the weighted trigonometric series on the circle we can
formulate a weighted Fourier transform theory on the line.

Define

(55) L2
a(R) =

{
f : R → C |

( ∫ ∞

−∞
|f(t)|2P̃a(t) dt

)1/2

< ∞
}

,

where P̃a is the 2π-periodic extension of the circular Poisson kernel Pa

associated with a ∈ D.

Denote

‖f‖a =
( ∫ ∞

−∞
|f(t)|2P̃a(t) dt

)1/2

the norm of f ∈ L2
a(R).

The space L2
a(R) forms a Hilbert space under the inner product

〈f, g〉a =
∫ ∞

−∞
f(t)g(t)P̃a(t) dt.

Note that, if a = 0, then all those just defined reduce to the standard
case on R.

Define the new Fourier transformation by

Fa(f)(ξ) =
1√
2π

∫ ∞

−∞
e−iξθa(t)f(t)P̃a(t) dt.
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For the generalized case we have the corresponding Plancherel theo-
rem and the Fourier inversion theorem that are all deducible from the
classical case through change of variable. There is also an associated
Poisson summation formula that reads, [10],∑

f(t0 + 2kπ) =
∑

Fa(f)(k).

6. Constructive examples of inner functions. Based on the
following holomorphic mappings

(i) The Cayley transform C+ → D defined by

z = κ(w) =
i − w

i + w
.

The mapping κ : C+ → D is univalent and onto.

(ii) The mappings C+ → D

εL(z + 2L) = εL(z), L > 0.

They are onto but not univalent. They are periodic, satisfying εL ×
(z + 2L) = εL(z). Denote by [ε] the class of such mappings.

(iii) Möbius transforms D → D

τa(z) =
−a

|a|
z − a

1 − az
, a ∈ D.

The mappings are univalent and onto. We denote by [τ ] the class of
Möbius transforms.

(iv) The mappings C+ → C+

μa,b,c,d(z) =
az + b

cz + d
, a, b, c, d real numbers, and ad − bc > 0.

The conformal mappings are univalent and onto. We denote the class
of such mappings by [μ].

(v) The mappings C+ → D

νa(z) =
|a2 + 1|
a2 + 1

w − a

w − a
, a ∈ C+ \ {i}.
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The mappings are univalent and onto. We denote the class of the
mappings by [ν]. Clearly, κ ∈ [ν].

(vi) Denote by [b] and [B] the classes of Blaschke products in D and
C+, respectively.

(vii) Denote by [f ] and [F ] the classes of inner functions in D and
C+, respectively.

We can construct functions in [F ] from the above listed elementary
ones. Some examples are given in the following theorem.

Theorem 6.1. We have

(i) [τ ] ◦ [ε] ⊂ [b] ◦ [ε] ⊂ [f ] ◦ [ε] ⊂ [F ].

(ii) [ν] = κ ◦ [μ] = [τ ] ◦ κ ⊂ [b] ◦ κ = [B] ⊂ [f ] ◦ κ = [F ].

(iii) [τ ] ◦ [ε] ◦ [μ] ⊂ [b] ◦ [ε] ◦ [μ] ⊂ [f ] ◦ [ε] ◦ [μ] ⊂ [F ].

(iv) Products of functions in the classes in (i) (iii) are functions in
[F ].

Proof. The constrictions are based on the fact that compositions and
multiplications of inner functions are still inner functions.

We conclude the paper by drawing a number of remarks to the
theorem.

Remark 1. The class [b] ◦ [ε] in assertion (i) consists of the phase
signals on R of the form

F1(t) = ei
∑

θak
(πt/Lk), ak ∈ D, Lk > 0,

where we take the convention that θak
(t + 2π) = θak

(t) + 2π, and thus
each factor in the above product is periodic. The smallest class in (i)
is [τ ] ◦ επ that is studied in Theorem 5.2.

We now cite a non-distributional proof for the boundary values of
the functions in [f ] ◦ [ε] being phase signals. Take L = π and f an
inner function in D. Then we can write f ◦ eit = c(t) + is(t), where
c(t) and s(t) are 2π-periodic. Owing to the periodic property of c(t)
the principal value integral in the definition of Hilbert transform is well
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defined, and we have

p.v.
1
π

∫ ∞

−∞

1
x − t

c(t) dt = p.v.
1
π

∫ 2π

0

∞∑
k=−∞

1
x − t + 2kπ

c(t) dt

= p.v.
1
2π

∫ 2π

0

cot
(

x − t

2

)
c(t) dt,

where the identity

lim
N→∞

N∑
k=−N

1
x − t + 2kπ

=
1
2

cot
(

x − t

2

)

may be found, for instance, in [9]. Due to f ∈ N (D), we have

Hc(t) = H̃c(t).

Similarly,
Hs(t) = H̃s(t).

Remark 2. The functions in the class [ν] of the assertion (ii) is
discussed in Theorem 5.4. They are the atomic cases of the class
[B]. The class [B] together with a factor of linear phase is studied
in Picinbono [8]. As analyzed in Section 4, any linear-phase signal
eiω0t comes from the mass at the infinity of the Borel measure in the
integral representation of the singular function. In fact, the whole
class of functions [b] ◦ [ε], in assertions (i) and (iii), are from singular
functions. To see this, we note that functions [b] ◦ [ε] are periodic but
functions in [B] are not. The role of singular functions therefore is by
no means “singular.”

Remark 3. It is easy to see that if f1, f2, . . . , fn are inner functions,
then the composition f1◦· · ·◦fn is also an inner function. The question
is: by doing composition consecutively, do we always get new types of
inner functions? The answer is negative in view of Frostman’s theorem.
Indeed, Frostman’s theorem asserts that if f is an inner function in D,
then the composition of f with a Möbius transform

fζ =
f(z) − ζ

1 − ζ f(z)



CHARACTERIZATION OF BOUNDARY VALUES 197

is a Blaschke product, except possibly some ζ in a set of capacity zero.
Frostman’s theorem in our notation is [τ ] ◦ [f ] ⊂ [b]. On the real line
Frostman’s theorem reads [τ ] ◦ [F ] ⊂ [B].

Remark 4. In spite of the argument made in Remark 3, assertion
(iii), however, does contain new types of phase signals. The simplest
example is of the form eiμ(s) = ei(as+b)/(cs+d) that are not contained
in any subclasses in (i) and (ii). These functions are not periodic but
with infinitely many oscillations. They are not Blaschke products as
the associated analytic phase signal do not have zeros.

Remark 5. We may construct complicated phase signals based on the
product rule stated in assertion (iv). For instance, by multiplying the
basic phase signals in (i), (ii) and (iii), we obtain, as long as convergent,
the phase signal

eiθ0

∞∏
k=1

zk − z

z − zk
exp

(
i

∞∑
k=1

θwk

(
akz + bk

ckz + dk

))
,

where θ0 is a real constant, zk, k = 1, 2, . . . , are complex numbers in
the upper-half complex plane, wk, k = 1, 2, . . . are complex numbers
in the unit disc, and for each k, the real numbers ak, bk, ck, dk satisfy
akdk − bkck > 0.
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