Schwarz lemma in Euclidean spaces

Yan Yang \& Tao Qian

To cite this article: Yan Yang \& Tao Qian (2006) Schwarz lemma in Euclidean spaces, Complex Variables and Elliptic Equations, 51:7, 653-659, DOI: 10.1080/17476930600688623

To link to this article: https://doi.org/10.1080/17476930600688623

Published online: 10 Oct 2011.

Article views: 80

View related articles

Citing articles: 3 View citing articles

Schwarz lemma in Euclidean spaces

YAN YANG* and TAO QIAN
Faculty of Science and Technology, Department of Mathematics, University of Macau, PO Box 3001, Macao (via Hong Kong)
Communicated by F. Sommen

(Received 1 February 2006; in final form 10 March 2006)

Abstract

the two-dimensional version of the lemma is equivalent to the Schwarz lemma in the complex plane.

In this note a Schwarz lemma for general Euclidean spaces is established. We show that

Keywords: Schwarz lemma; Monogenic function; Laurent expansion
AMS Subject Classifications: 30G35; 32A05

1. Introduction

Higher-dimensional version of Schwarz lemma has been sought. Schwarz lemma was studied in the several complex variables context (see [3]). A natural question arises: 'Does there exist a Schwarz lemma in higher dimensional Euclidean spaces?' This note gives an answer to this question. With the Clifford analysis setting we show that a Schwarz lemma exists that is equivalent to the Schwarz lemma in the complex plane.

We first give some basic knowledge in relation to Clifford algebra [1,2]. Let $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ be the basic elements satisfying $\mathbf{e}_{i} \mathbf{e}_{j}+\mathbf{e}_{j} \mathbf{e}_{i}=-2 \delta_{i j}$, where $\delta_{i j}=1$ if $i=j$, and $\delta_{i j}=0$ otherwise, $i, j=1,2, \ldots, m$. Let

$$
\mathbf{R}^{m}=\left\{\underline{x}=x_{1} \mathbf{e}_{1}+\cdots+x_{m} \mathbf{e}_{m}: x_{j} \in \mathbf{R}, j=1,2, \ldots, m\right\}
$$

be identical with the usual Euclidean space \mathbf{R}^{m}, and

$$
\mathbf{R}_{1}^{m}=\left\{x=x_{0} \mathbf{e}_{0}+\underline{x}: x_{0} \in \mathbf{R}, \underline{x} \in \mathbf{R}^{m}\right\}, \text { where } \mathbf{e}_{0}=1 .
$$

[^0]An element in \mathbf{R}_{1}^{m} is called a vector. The real (or complex) Clifford algebra generated by $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{m}$, denoted by $\mathbf{R}^{(m)}$ (or $\mathbf{C}^{(m)}$), is the associative algebra generated by $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{m}$, over the real (or complex) field \mathbf{R} (or \mathbf{C}). A general element in $\mathbf{R}^{(m)}$, therefore, is of the form $x=\sum_{S} x_{S} \mathbf{e}_{S}$, where $\mathbf{e}_{S}=\mathbf{e}_{i_{1}} \mathbf{e}_{i_{2}} \cdots \mathbf{e}_{i}, x_{S} \in \mathbf{R}$, and S runs over all the ordered subsets of $\{1,2, \ldots, m\}$, namely

$$
S=\left\{1 \leq i_{1}<i_{2}<\cdots<i_{l} \leq m\right\}, \quad 1 \leq l \leq m
$$

We define the conjugation of \mathbf{e}_{S} to be $\overline{\mathbf{e}}_{S}=\overline{\mathbf{e}}_{i l} \cdots \overline{\mathbf{e}}_{i 1}, \overline{\mathbf{e}}_{j}=-\mathbf{e}_{j}$. This induces the Clifford conjugate of a vector $x=x_{0}+\underline{x}$ to be $\bar{x}=x_{0}-\underline{x}$. It is easy to verify that for $0 \neq x \in \mathbf{R}_{1}^{m}$ we have

$$
x^{-1}=\frac{\bar{x}}{|x|^{2}} .
$$

The ball with centre x and radius r in \mathbf{R}_{1}^{m} is denoted by $B(x ; r)$ and the closure of $B(x ; r)$ is denoted by $\bar{B}(x ; r)$. The natural inner product between x and y in $\mathbf{C}^{(m)}$, denoted by $\langle x, y\rangle$, is the complex number $\sum_{S} x_{S} \overline{\bar{S}}$, where $x=\sum_{S} x_{S} \mathbf{e}_{S}$ and $y=\sum_{S} y_{S} \mathbf{e}_{S}$. The norm associated with this inner product is

$$
|x|=\langle x, x\rangle^{1 / 2}=\left(\sum_{S}\left|x_{S}\right|^{2}\right)^{1 / 2}
$$

For $x=\sum_{S} x_{S} \mathbf{e}_{S} \in \mathbf{C}^{(m)}$, denoted $[x]_{0}=x_{0}$. It is called the scalar part of x. It then follows

$$
|x|=\sqrt{[x \bar{x}]_{0}} .
$$

In the following we shall study functions defined in \mathbf{R}_{1}^{m} taking values in $\mathbf{C}^{(m)}$. So, they are of the form $f(x)=\sum_{S} f_{S}(x) \mathbf{e}_{S}$, where the f_{S} are complex-valued functions. We shall use the generalized Cauchy-Riemann operator $D=\left(\partial / \partial x_{0}\right) \mathbf{e}_{0}+\underline{D}$, where $\underline{D}=\left(\partial / \partial x_{1}\right) \mathbf{e}_{1}+\cdots+\left(\partial / \partial x_{m}\right) \mathbf{e}_{m}$. Define the "left" and "right" roles of the operator D by

$$
D f=\sum_{i=0}^{m} \sum_{S} \frac{\partial f_{S}}{\partial x_{i}} \mathbf{e}_{i} \mathbf{e}_{S}
$$

and

$$
f D=\sum_{i=0}^{m} \sum_{S} \frac{\partial f_{S}}{\partial x_{i}} \mathbf{e}_{s} \mathbf{e}_{i} .
$$

If $D f=0$ in a domain (open and connected) Ω, then we say that f is left-monogenic function in Ω; and, if $f D=0$ in Ω, we say that f is right-monogenic function in Ω. If f is both left- and right-monogenic function, then we say that f is monogenic.

In \mathbf{R}^{m}, we use the operator \underline{D} to replace D, which is called the Dirac operator.

As a natural generalization of analytic functions to higher-dimensional spaces, left- or right-monogenic functions are the main objects in Clifford analysis. In such framework, there exist a Cauchy theorem and a Cauchy integral formula. Theory of Taylor and Laurent expansions can also be established (see [1,2]).

We call

$$
E(x)=\frac{\bar{x}}{|x|^{m+1}}
$$

the Cauchy kernel in \mathbf{R}_{1}^{m}. It is easy to verify that $E(x)$ is a monogenic function in $\mathbf{R}_{1}^{m}-\{0\}$.

Call $M^{+}\left(k, \mathbf{R}_{1}^{m}\right)$ the space of homogeneous left-monogenic polynomials of degree k in \mathbf{R}_{1}^{m}, and $M^{-}\left(k, \mathbf{R}_{1}^{m}\right)$ the space of homogeneous left-monogenic polynomials of degree $-(k+m)$ in $\mathbf{R}_{1}^{m} \backslash\{0\}$. Using the Kelvin's inversion formula $I f(x)=E(x) f\left(x^{-1}\right)$, there is a corresponding relation between $M^{+}\left(k, \mathbf{R}_{1}^{m}\right)$ and $M^{-}\left(k, \mathbf{R}_{1}^{m}\right)$. That is, if $P_{k}(x) \in M^{+}\left(k, \mathbf{R}_{1}^{m}\right)$, then $I P_{k}(x)=Q_{k}(x) \in M^{-}\left(k, \mathbf{R}_{1}^{m}\right)$; and if $Q_{k}(x) \in M^{-}\left(k, \mathbf{R}_{1}^{m}\right)$, then $I Q_{k}(x)=P_{k}(x) \in M^{+}\left(k, \mathbf{R}_{1}^{m}\right)$. Both $M^{+}\left(k, \mathbf{R}_{1}^{m}\right)$ and $M^{-}\left(k, \mathbf{R}_{1}^{m}\right)$ are right-Clifford modules with the same linear dimension the combinatorial number $C_{k}^{m+k-1}=(m+k-1)!/[(m-1)!k!]$. Note that if $f(x)$ is left-monogenic function, then $I f(x)$ is also left-monogenic function (see [1], or from the intertwine results in [4]). In the sequel \mathbf{N}_{0} denotes the set of non-negative integers.

2. The Schwarz lemma in \mathbf{R}_{1}^{m}

In this section, we extend Schwarz lemma in \mathbf{C} to higher-dimensional Euclidean spaces. We first obtain a result in \mathbf{R}_{1}^{m}, then show that when $m=1$ it is equivalent to the Schwarz lemma in the complex plane. We have (see [2])

Lemma 1 (Laurent expansion) Let $\mathbf{n}=\left(n_{1}, n_{2}, \ldots, n_{m}\right) \in \mathbf{N}_{0}^{m},|\mathbf{n}|=n_{1}+n_{2}+\cdots+n_{m}$, and $\underline{x}^{\mathbf{n}}=x_{1}^{n_{1}} \cdots x_{m}^{n_{m}}$. Assume that $f(x)$ is left-monogenic function in the annular domain $r_{1}<|x|<r_{2}\left(0<r_{1}<r_{2}\right)$. Then f can be expanded in a unique way into a Laurent series

$$
\begin{equation*}
f(x)=\sum_{|\mathbf{n}|=0}^{\infty} V_{\mathbf{n}}(x) a_{\mathbf{n}}+\sum_{|\mathbf{n}|=0}^{\infty} W_{\mathbf{n}}(x) b_{\mathbf{n}} \tag{1}
\end{equation*}
$$

where the series converge normally in $B\left(0 ; r_{2}\right)$ and in $\mathbf{R}_{1}^{m} \backslash \bar{B}\left(0 ; r_{1}\right)$, respectively. Where

$$
V_{\mathbf{n}}(x)=\frac{1}{n_{1}!\cdots n_{m}!} \sum_{\pi \in \operatorname{perm(\mathbf {n})}} z_{\pi\left(n_{1}\right)} z_{\pi\left(n_{2}\right)} \cdots z_{\pi\left(n_{m}\right)}
$$

perm(n) denotes the set of all distinguishable permutations of the sequence $\left(n_{1}, n_{2}, \ldots, n_{m}\right)$ and $\quad z_{i}=x_{i} \mathbf{e}_{0}-x_{0} \mathbf{e}_{i}$, for $i=1,2, \ldots, m . \quad W_{\mathbf{n}}(x)=\left(\partial^{|\mathbf{n}|} / \partial \underline{x}^{\mathbf{n}}\right) W_{0}(x), \quad W_{0}(x)=E(x)=$ $\left(\bar{x} /|x|^{m+1}\right)$. The coefficients $a_{\mathbf{n}}$ and $b_{\mathbf{n}}$ are determined by

$$
\begin{aligned}
a_{\mathbf{n}} & =\frac{1}{\omega_{m}} \int_{\partial B(0, r)} W_{\mathbf{n}}(y) \mathrm{d} \sigma(y) f(y), \\
b_{\mathbf{n}} & =\frac{1}{\omega_{m}} \int_{\partial B(0, r)} V_{\mathbf{n}}(y) \mathrm{d} \sigma(y) f(y),
\end{aligned}
$$

where $r \in\left(r_{1}, r_{2}\right)$ and ω_{m} is the area of the m-dimensional unit sphere in \mathbf{R}_{1}^{m}.

For purely negative powers we precisely have (see 12.1.3, [1]).
Lemma 2 (Laurent expansion outside a ball) Let $f(x)$ be left-monogenic function in the domain $|x|>R$ such that

$$
\lim _{|x| \rightarrow \infty} f(x)=0 .
$$

Then

$$
f(x)=\sum_{|\mathbf{n}|=0}^{\infty} W_{\mathbf{n}}(x) b_{\mathbf{n}} .
$$

We normally have $|x y| \neq|x||y|$ for x and y in $\mathbf{C}^{(m)}$. However, there holds:
Lemma 3 If $\lambda_{1} \in \mathbf{R}_{1}^{m}$, and $\lambda_{2} \in \mathbf{C}^{(m)}$, then $\left|\lambda_{1} \lambda_{2}\right|=\left|\lambda_{1}\right|\left|\lambda_{2}\right|$.
Proof

$$
\left|\lambda_{1} \lambda_{2}\right|=\left|\overline{\lambda_{2}} \overline{\lambda_{1}}\right|=\sqrt{\left[\overline{\lambda_{2}} \overline{\lambda_{1}} \lambda_{1} \lambda_{2}\right]_{0}}=\sqrt{\left|\lambda_{1}\right|^{2}\left[\overline{\lambda_{2}} \lambda_{2}\right]_{0}}=\left|\lambda_{1}\right| \sqrt{\left[\overline{\lambda_{2}} \lambda_{2}\right]_{0}}=\left|\lambda_{1}\right|\left|\lambda_{2}\right| .
$$

Theorem 1 Suppose that $f(x)$ is left-monogenic function and satisfies $|f(x)| \leq 1$ in the domain $|x|>1$. If, furthermore,

$$
\lim _{|x| \rightarrow \infty} f(x)=0,
$$

then there follows

$$
|x|^{m}|f(x)| \leq 1(1<|x|<\infty),
$$

and

$$
\lim _{|x| \rightarrow \infty}\left|x^{m}\right||f(x)| \quad \text { exists, and } \quad \lim _{|x| \rightarrow \infty}\left|x^{m}\right||f(x)| \leq 1 .
$$

If, in particular,

$$
\lim _{|x| \rightarrow \infty}\left|x^{m}\right||f(x)|=1
$$

or if there exists $x_{0}, 1<\left|x_{0}\right|<\infty$, such that $\left|x_{0}\right|^{m}\left|f\left(x_{0}\right)\right|=1$, then $f(x)=$ $E(x) C_{0}(|x|>1)$, where $C_{0} \in \mathbf{C}^{(m)}$ is a constant and $\left|C_{0}\right|=1$.
Proof Since $f(x)$ is left-monogenic function in $|x|>1$ and satisfies

$$
\lim _{|x| \rightarrow \infty} f(x)=0,
$$

by Lemma 2, it has a Laurent expansion outside the ball, and

$$
\lim _{|x| \rightarrow 0} E(x) f\left(x^{-1}\right)=b_{0}
$$

We have that its Kelvin inversion If is left-monogenic function in $|x|<1$. For any $x_{0} \in \mathbf{R}_{1}^{m},\left|x_{0}\right|>1$, if $\left|x_{0}\right|>r>1$, then $\left|x_{0}{ }^{-1}\right|<(1 / r)<1$. By the maximum modulus principle ([1]) and Lemma 3, we have

$$
\begin{aligned}
\left|E\left(x_{0}^{-1}\right)\right|\left|f\left(x_{0}\right)\right| & =\left|E\left(x_{0}^{-1}\right) f\left(x_{0}\right)\right| \\
& \leq \varlimsup_{\lim _{r \rightarrow 1}} \max _{|x|=1 / r}\left|E(x) f\left(x^{-1}\right)\right| \\
& \leq \varlimsup_{\lim _{r \rightarrow 1} r^{n}=1 .}
\end{aligned}
$$

Therefore,

$$
\left|b_{0}\right| \leq 1
$$

Consequently,

$$
\left|x_{0}\right|^{m}\left|f\left(x_{0}\right)\right| \leq 1\left(1<\left|x_{0}\right|<\infty\right) \quad \text { and } \quad \lim _{|x| \rightarrow \infty}|x|^{m}|f(x)|=\left|b_{0}\right| \leq 1
$$

In particular, when

$$
\lim _{|x| \rightarrow \infty}\left|x^{m}\right||f(x)|=1,
$$

or if there exists $x_{0}, 1<\left|x_{0}\right|<\infty$, such that $\left|x_{0}\right|^{m}\left|f\left(x_{0}\right)\right|=1$, then the maximum modulus principle implies

$$
E(x) f\left(x^{-1}\right)=C_{0}(|x|<1) \text { and }\left|C_{0}\right|=1 .
$$

So $f(x)=E(x) C_{0}$ when $|x|>1$.
Remark 1 The statement of the lemma and its proof may be adapted word by word to the context \mathbf{R}^{m}.

Let $m=1$ in the theorem, we obtain.
Corollary 1 Suppose that $f(z)$ is holomorphic and satisfies $|f(z)| \leq 1$ in the domain $|z|>1$. If

$$
\lim _{|z| \rightarrow \infty} f(z)=0
$$

then $\lim _{|z| \rightarrow \infty}|z f(z)| \leq 1$ and $|f(z)| \leq(1 /|z|)(1<|z|<\infty)$. If, in particular, $\lim _{|z| \rightarrow \infty}|z f(z)|=1$ or there exists $1<\left|z_{0}\right|<\infty$ such that $\left|f\left(z_{0}\right)\right|=\left(1 /\left|z_{0}\right|\right)$, then

$$
f(z)=e^{i \theta} \frac{1}{z}(|z|>1)
$$

where $\theta \in \mathbf{R}$.

The corollary may be proved to be equivalent to:
Lemma 4 (Schwarz lemma) Suppose that $f(z)$ is holomorphic in $|z|<1$ and $|f(z)| \leq 1$ when $|z|<1$. If $f(0)=0$, then $\left|f^{\prime}(0)\right| \leq 1$ and $|f(z)| \leq|z|(|z|<1)$. If, in particular, when $\left|f^{\prime}(0)\right|=1$ or there exists $0<\left|z_{0}\right|<1$ such that $\left|f\left(z_{0}\right)\right|=\left|z_{0}\right|$, then

$$
f(z)=e^{i \theta} z(|z|<1)
$$

where $\theta \in \mathbf{R}$.
The equivalence may be verified through the mapping $z \rightarrow 1 / z$. Setting $f_{1}(z)=f(1 / z)$, we obtain that $f(z)$ is holomorphic and $|f(z)| \leq 1$ in $|z|<1$ if and only if $f_{1}(z)$ is holomorphic and $\left|f_{1}(z)\right| \leq 1$ in $|z|>1$. Therefore, we have

$$
\begin{align*}
f(z) & =a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}+\cdots \tag{2}\\
f_{1}(z) & =a_{0}+a_{1} \frac{1}{z}+a_{2} \frac{1}{z^{2}}+\cdots+a_{n} \frac{1}{z^{n}}+\cdots \tag{3}
\end{align*}
$$

So $f(0)=0$ if and only if $\lim _{|z| \rightarrow \infty} f_{1}(z)=0$. We accordingly have

$$
\begin{align*}
f(z) & =a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}+\cdots \tag{4}\\
f_{1}(z) & =a_{1} \frac{1}{z}+a_{2} \frac{1}{z^{2}}+\cdots+a_{n} \frac{1}{z^{n}}+\cdots \tag{5}
\end{align*}
$$

Obviously, $f(z) \leq|z|(|z|<1)$ if and only if $f_{1}(z) \leq 1 /|z|(|z|>1)$. From (4) and (5), we get $\left|f^{\prime}(0)\right|=\left|a_{1}\right|=\lim _{|z| \rightarrow \infty}\left|z f_{1}(z)\right|$, and, therefore, $\left|f^{\prime}(0)\right|=1$ if and only if $\lim _{|z| \rightarrow \infty}\left|z f_{1}(z)\right|=1$. If $0<\left|z_{0}\right|<1, \quad\left|f\left(z_{0}\right)\right|=\left|z_{0}\right|$, then for $z_{1}=\left(1 / z_{0}\right)$, $1<\left|z_{1}\right|<\infty,\left|f_{1}\left(z_{1}\right)\right|=\left(1 /\left|z_{1}\right|\right)$. The converse also holds. Finally, $f(z)=e^{i \theta} z(|z|<1)$ if and only if $f_{1}(z)=e^{i \theta}(1 / z)(|z|>1)$.
Remark 2 For $m>1$ the Schwarz lemma inside the unit ball does not hold at least in the original form. For example, the functions

$$
f_{j}(x)=x_{j} \mathbf{e}_{0}-x_{0} \mathbf{e}_{j}, \quad j=1,2, \ldots, m
$$

are left-monogenic function in $|x|<1$, and satisfy $\left|f_{j}(x)\right| \leq 1$ when $|x|<1$. However, for $x=x_{0} \mathbf{e}_{0}(|x|<1)$ and non-constant functions f_{j} there hold $\left|f_{j}(x)\right|=|x|, j=1, \ldots, m$.
Remark 3 In the complex plane, if $f(z)$ is analytic in the annular domain $r_{1}<|z|<r_{2}$, then the Laurent expansion of $f(z)$ is

$$
f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}+a_{0}+\sum_{n=1}^{\infty} b_{n} z^{-n}
$$

For every $z^{k} \in P(k, \mathbf{C})$ and $z^{-k} \in Q(k, \mathbf{C})$, the corresponding relation between $P(k, \mathbf{C})$ and $Q(k, \mathbf{C})$ is through the inversion mapping $z \rightarrow 1 / z$, but rather than Kelvin inversion with the conformal weight $E(z)$, and, for any k, the dimension of $P(k, \mathbf{C})$
or $Q(k, \mathbf{C})$ is 1. So Schwarz lemma for inside and outside of the unit disk are equivalent. While in higher-dimensional spaces, just because $M^{-}\left(0, \mathbf{R}_{1}^{m}\right)=\left\{E(x) b_{0}\right\}$ has dimension 1, we are able to have Schwarz lemma for outside of the unit ball. The space $M^{+}\left(k, \mathbf{R}_{1}^{m}\right)$ is transformed to $M^{-}\left(k, \mathbf{R}_{1}^{m}\right)$ by Kelvin inversion $I f(x)=E(x) f\left(x^{-1}\right)$, and $I\left(W_{0} b_{0}\right)=b_{0} \in M^{+}\left(0, \mathbf{R}_{1}^{m}\right)$. In particular, both spaces $M^{ \pm}\left(k, \mathbf{R}_{1}^{m}\right)$ for $k>0$ are multi-dimensional. This explains why Schwarz lemma inside the unit ball does not hold for higher-dimensional spaces. It, however, further hints that Schwarz lemma is equivalent to the maximum modulus principle. As a matter of fact, in the proof of Theorem 1 we use the maximum modulus principle as a key step. Now we show that the latter is an immediate consequence of the former, as in the proof of

Corollary 2 (Maximum Modulus Principle) Assume that f is left-monogenic function in the open and connected set Ω. If there exists a point $a \in \Omega$ such that

$$
|f(x)| \leq|f(a)|, \quad y \in \Omega
$$

then f must be a constant function in Ω.
Proof We may assume $|f(a)|>0$, for otherwise the assertion is trivial. We show that the set $A=\{x \in \Omega| | f(x)|=|f(a)|\}$ is non-empty, and is an open and closed set. Since Ω is open and connected, this will conclude $A=\Omega$. The fact that A being non-empty follows from $a \in A$. If $y \in A$, then there exists an open ball $B(y ; r) \subset \Omega$. Construct function $g(x)=(1 /|f(a)|) f(y-r x)$. The function g is left-monogenic function and satisfies $|g(x)| \leq 1$ in $|x|<1$, with $|g(0)|=1$. The Kelvin inversion of g, that is $\operatorname{Ig}(x)=E(x) g\left(x^{-1}\right)$, is left-monogenically defined in $|x|>1$ satisfying $|\operatorname{Ig}(x)| \leq 1$ in $|x|>1$. Since

$$
\lim _{|x| \rightarrow \infty}\left|x^{m}\right|\left|E(x) g\left(x^{-1}\right)\right|=\lim _{|x| \rightarrow 0}|g(x)|=1,
$$

Theorem 1 may be applied to conclude $g\left(x^{-1}\right)=C_{0},\left|C_{0}\right|=1$, for $|x|>1$, or $g(x)=C_{0}$ for $|x|<1$. This shows that $B(y ; r) \subset A$. The closeness of A follows from the continuity of f. So, we have $A=\Omega$. In the above argument the usage of Theorem 1 , in fact, shows that, not only the norm, but also the function value itself, is equal to a constant. The proof is complete.

Acknowledgement

This work was supported by Research Grant of the University of Macau No. RG079/ $04-05 \mathrm{~S} / \mathrm{QT} / \mathrm{FST}$.

References

[^1]
[^0]: *Corresponding author. Email: ya27406@umac.mo

[^1]: [1] F. Brackx, R. Delanghe and F. Sommen, 1982, Clifford Analysis, Research Notes in Mathematics, Vol. 76 (Boston, London, Melbourne: Pitman Advanced Publishing Company).
 [2] R. Delanghe, F. Somman and V. Soucek, 1992, Clifford Algebra and Spinor-Valued Functions, Vol. 53 (Dorderecht, Boston, London: Kluwer Academic Publishers).
 [3] S. Gong, 1996, Concies Complex Analysis (Beijing, China: Peking University Press).
 [4] J. Peetry and T. Qian, 1994, Möbius covariance of iterated Dirac operators. Journal of Australian Mathematical Society (Series A), 56, 403-414.

