

Complex Variables and Elliptic Equations

An International Journal

ISSN: 1747-6933 (Print) 1747-6941 (Online) Journal homepage: http://www.tandfonline.com/loi/gcov20

Schwarz lemma in Euclidean spaces

Yan Yang & Tao Qian

To cite this article: Yan Yang & Tao Qian (2006) Schwarz lemma in Euclidean spaces, Complex Variables and Elliptic Equations, 51:7, 653-659, DOI: 10.1080/17476930600688623

To link to this article: https://doi.org/10.1080/17476930600688623

4	•	(1
			п

Published online: 10 Oct 2011.

Submit your article to this journal 🕑

Article views: 80

View related articles

Citing articles: 3 View citing articles 🕑

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=gcov20

Schwarz lemma in Euclidean spaces

YAN YANG* and TAO QIAN

Faculty of Science and Technology, Department of Mathematics, University of Macau, PO Box 3001, Macao (via Hong Kong)

Communicated by F. Sommen

(Received 1 February 2006; in final form 10 March 2006)

In this note a Schwarz lemma for general Euclidean spaces is established. We show that the two-dimensional version of the lemma is equivalent to the Schwarz lemma in the complex plane.

Keywords: Schwarz lemma; Monogenic function; Laurent expansion

AMS Subject Classifications: 30G35; 32A05

1. Introduction

Higher-dimensional version of Schwarz lemma has been sought. Schwarz lemma was studied in the several complex variables context (see [3]). A natural question arises: 'Does there exist a Schwarz lemma in higher dimensional Euclidean spaces?' This note gives an answer to this question. With the Clifford analysis setting we show that a Schwarz lemma exists that is equivalent to the Schwarz lemma in the complex plane.

We first give some basic knowledge in relation to Clifford algebra [1,2]. Let $\mathbf{e}_1, \ldots, \mathbf{e}_m$ be the *basic elements* satisfying $\mathbf{e}_i \mathbf{e}_j + \mathbf{e}_j \mathbf{e}_i = -2\delta_{ij}$, where $\delta_{ij} = 1$ if i = j; and $\delta_{ij} = 0$ otherwise, $i, j = 1, 2, \ldots, m$. Let

$$\mathbf{R}^{m} = \{ \underline{x} = x_1 \mathbf{e}_1 + \dots + x_m \mathbf{e}_m : x_j \in \mathbf{R}, j = 1, 2, \dots, m \}$$

be identical with the usual Euclidean space \mathbf{R}^{m} , and

$$\mathbf{R}_1^m = \{x = x_0 \mathbf{e}_0 + \underline{x} : x_0 \in \mathbf{R}, \underline{x} \in \mathbf{R}^m\}, \text{ where } \mathbf{e}_0 = 1$$

Complex Variables and Elliptic Equations ISSN 1747-6933 print: ISSN 1747-6941 online © 2006 Taylor & Francis http://www.tandf.co.uk/journals DOI: 10.1080/17476930600688623

^{*}Corresponding author. Email: ya27406@umac.mo

An element in \mathbf{R}_1^m is called a *vector*. The real (or complex) Clifford algebra generated by $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_m$, denoted by $\mathbf{R}^{(m)}$ (or $\mathbf{C}^{(m)}$), is the associative algebra generated by $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_m$, over the real (or complex) field \mathbf{R} (or \mathbf{C}). A general element in $\mathbf{R}^{(m)}$, therefore, is of the form $x = \sum_S x_S \mathbf{e}_S$, where $\mathbf{e}_S = \mathbf{e}_{i_1} \mathbf{e}_{i_2} \cdots \mathbf{e}_{i_l}$, $x_S \in \mathbf{R}$, and Sruns over all the ordered subsets of $\{1, 2, \dots, m\}$, namely

$$S = \{1 \le i_1 < i_2 < \dots < i_l \le m\}, \quad 1 \le l \le m.$$

We define the conjugation of \mathbf{e}_S to be $\overline{\mathbf{e}}_S = \overline{\mathbf{e}}_{il} \cdots \overline{\mathbf{e}}_{i1}$, $\overline{\mathbf{e}}_j = -\mathbf{e}_j$. This induces the Clifford conjugate of a vector $x = x_0 + \underline{x}$ to be $\overline{x} = x_0 - \underline{x}$. It is easy to verify that for $0 \neq x \in \mathbf{R}_1^m$ we have

$$x^{-1} = \frac{\overline{x}}{|x|^2}.$$

The ball with centre x and radius r in \mathbf{R}_1^m is denoted by B(x; r) and the closure of B(x; r) is denoted by $\overline{B}(x; r)$. The natural inner product between x and y in $\mathbf{C}^{(m)}$, denoted by $\langle x, y \rangle$, is the complex number $\sum_S x_S \overline{y_S}$, where $x = \sum_S x_S \mathbf{e}_S$ and $y = \sum_S y_S \mathbf{e}_S$. The norm associated with this inner product is

$$|x| = \langle x, x \rangle^{1/2} = \left(\sum_{S} |x_{S}|^{2} \right)^{1/2}.$$

For $x = \sum_{S} x_{S} \mathbf{e}_{S} \in \mathbf{C}^{(m)}$, denoted $[x]_{0} = x_{0}$. It is called the *scalar part* of x. It then follows

$$|x| = \sqrt{[x\overline{x}]_0}.$$

In the following we shall study functions defined in \mathbf{R}_1^m taking values in $\mathbf{C}^{(m)}$. So, they are of the form $f(x) = \sum_S f_S(x)\mathbf{e}_S$, where the f_S are complex-valued functions. We shall use the generalized Cauchy–Riemann operator $D = (\partial/\partial x_0)\mathbf{e}_0 + \underline{D}$, where $\underline{D} = (\partial/\partial x_1)\mathbf{e}_1 + \cdots + (\partial/\partial x_m)\mathbf{e}_m$. Define the "left" and "right" roles of the operator D by

$$Df = \sum_{i=0}^{m} \sum_{S} \frac{\partial f_S}{\partial x_i} \mathbf{e}_i \mathbf{e}_S$$

and

$$fD = \sum_{i=0}^{m} \sum_{S} \frac{\partial f_S}{\partial x_i} \mathbf{e}_S \mathbf{e}_i.$$

If Df = 0 in a domain (open and connected) Ω , then we say that f is *left-monogenic* function in Ω ; and, if fD = 0 in Ω , we say that f is *right-monogenic* function in Ω . If f is both left- and right-monogenic function, then we say that f is *monogenic*.

In \mathbf{R}^m , we use the operator <u>D</u> to replace D, which is called the *Dirac operator*.

As a natural generalization of analytic functions to higher-dimensional spaces, left- or right-monogenic functions are the main objects in Clifford analysis. In such framework, there exist a Cauchy theorem and a Cauchy integral formula. Theory of Taylor and Laurent expansions can also be established (see [1,2]).

We call

$$E(x) = \frac{\overline{x}}{|x|^{m+1}}$$

the *Cauchy kernel* in \mathbf{R}_1^m . It is easy to verify that E(x) is a monogenic function in $\mathbf{R}_1^m - \{0\}$.

Call $M^+(k, \mathbf{R}_1^m)$ the space of homogeneous left-monogenic polynomials of degree kin \mathbf{R}_1^m , and $M^-(k, \mathbf{R}_1^m)$ the space of homogeneous left-monogenic polynomials of degree -(k+m) in $\mathbf{R}_1^m \setminus \{0\}$. Using the Kelvin's inversion formula $If(x) = E(x)f(x^{-1})$, there is a corresponding relation between $M^+(k, \mathbf{R}_1^m)$ and $M^-(k, \mathbf{R}_1^m)$. That is, if $P_k(x) \in M^+(k, \mathbf{R}_1^m)$, then $IP_k(x) = Q_k(x) \in M^-(k, \mathbf{R}_1^m)$; and if $Q_k(x) \in M^-(k, \mathbf{R}_1^m)$, then $IQ_k(x) = P_k(x) \in M^+(k, \mathbf{R}_1^m)$. Both $M^+(k, \mathbf{R}_1^m)$ and $M^-(k, \mathbf{R}_1^m)$ are right-Clifford modules with the same linear dimension the combinatorial number $C_k^{m+k-1} = (m+k-1)!/[(m-1)!k!]$. Note that if f(x) is left-monogenic function, then If(x) is also left-monogenic function (see [1], or from the intertwine results in [4]). In the sequel \mathbf{N}_0 denotes the set of non-negative integers.

2. The Schwarz lemma in \mathbb{R}_1^m

In this section, we extend Schwarz lemma in C to higher-dimensional Euclidean spaces. We first obtain a result in \mathbf{R}_1^m , then show that when m = 1 it is equivalent to the Schwarz lemma in the complex plane. We have (see [2])

LEMMA 1 (Laurent expansion) Let $\mathbf{n} = (n_1, n_2, ..., n_m) \in \mathbf{N}_0^m$, $|\mathbf{n}| = n_1 + n_2 + \cdots + n_m$, and $\underline{x}^{\mathbf{n}} = x_1^{n_1} \cdots x_m^{n_m}$. Assume that f(x) is left-monogenic function in the annular domain $r_1 < |x| < r_2$ (0 < $r_1 < r_2$). Then f can be expanded in a unique way into a Laurent series

$$f(x) = \sum_{|\mathbf{n}|=0}^{\infty} V_{\mathbf{n}}(x)a_{\mathbf{n}} + \sum_{|\mathbf{n}|=0}^{\infty} W_{\mathbf{n}}(x)b_{\mathbf{n}},$$
(1)

where the series converge normally in $B(0; r_2)$ and in $\mathbf{R}_1^m \setminus \overline{B}(0; r_1)$, respectively. Where

$$V_{\mathbf{n}}(x) = \frac{1}{n_1! \cdots n_m!} \sum_{\pi \in \operatorname{perm}(\mathbf{n})} z_{\pi(n_1)} z_{\pi(n_2)} \cdots z_{\pi(n_m)},$$

perm(**n**) denotes the set of all distinguishable permutations of the sequence $(n_1, n_2, ..., n_m)$ and $z_i = x_i \mathbf{e}_0 - x_0 \mathbf{e}_i$, for i = 1, 2, ..., m. $W_{\mathbf{n}}(x) = (\partial^{|\mathbf{n}|} / \partial \underline{x}^{\mathbf{n}}) W_0(x)$, $W_0(x) = E(x) = (\bar{x}/|x|^{m+1})$. The coefficients $a_{\mathbf{n}}$ and $b_{\mathbf{n}}$ are determined by

$$a_{\mathbf{n}} = \frac{1}{\omega_m} \int_{\partial B(0,r)} W_{\mathbf{n}}(y) d\sigma(y) f(y),$$

$$b_{\mathbf{n}} = \frac{1}{\omega_m} \int_{\partial B(0,r)} V_{\mathbf{n}}(y) d\sigma(y) f(y),$$

where $r \in (r_1, r_2)$ and ω_m is the area of the m-dimensional unit sphere in \mathbf{R}_1^m .

For purely negative powers we precisely have (see 12.1.3, [1]).

LEMMA 2 (Laurent expansion outside a ball) Let f(x) be left-monogenic function in the domain |x| > R such that

$$\lim_{|x| \to \infty} f(x) = 0.$$

Then

$$f(x) = \sum_{|\mathbf{n}|=0}^{\infty} W_{\mathbf{n}}(x) b_{\mathbf{n}}.$$

We normally have $|xy| \neq |x||y|$ for x and y in $C^{(m)}$. However, there holds:

LEMMA 3 If $\lambda_1 \in \mathbf{R}_1^m$, and $\lambda_2 \in \mathbf{C}^{(m)}$, then $|\lambda_1 \lambda_2| = |\lambda_1| |\lambda_2|$.

Proof

$$|\lambda_1\lambda_2| = |\overline{\lambda_2} \ \overline{\lambda_1}| = \sqrt{[\overline{\lambda_2} \ \overline{\lambda_1}\lambda_1\lambda_2]_0} = \sqrt{|\lambda_1|^2 [\overline{\lambda_2}\lambda_2]_0} = |\lambda_1| \sqrt{[\overline{\lambda_2}\lambda_2]_0} = |\lambda_1| |\lambda_2|.$$

THEOREM 1 Suppose that f(x) is left-monogenic function and satisfies $|f(x)| \le 1$ in the domain |x| > 1. If, furthermore,

$$\lim_{|x|\to\infty}f(x)=0,$$

then there follows

$$|x|^{m}|f(x)| \le 1 \ (1 < |x| < \infty),$$

and

$$\lim_{|x|\to\infty} |x^m| |f(x)| \quad exists, and \quad \lim_{|x|\to\infty} |x^m| |f(x)| \le 1$$

If, in particular,

$$\lim_{|x|\to\infty} |x^m| |f(x)| = 1,$$

or if there exists x_0 , $1 < |x_0| < \infty$, such that $|x_0|^m |f(x_0)| = 1$, then $f(x) = E(x)C_0$ (|x| > 1), where $C_0 \in \mathbb{C}^{(m)}$ is a constant and $|C_0| = 1$.

Proof Since f(x) is left-monogenic function in |x| > 1 and satisfies

$$\lim_{|x|\to\infty}f(x)=0,$$

by Lemma 2, it has a Laurent expansion outside the ball, and

$$\lim_{|x| \to 0} E(x)f(x^{-1}) = b_0.$$

We have that its Kelvin inversion *If* is left-monogenic function in |x| < 1. For any $x_0 \in \mathbf{R}_1^m$, $|x_0| > 1$, if $|x_0| > r > 1$, then $|x_0^{-1}| < (1/r) < 1$. By the maximum modulus principle ([1]) and Lemma 3, we have

$$|E(x_0^{-1})||f(x_0)| = |E(x_0^{-1})f(x_0)|$$

$$\leq \overline{\lim}_{r \to 1} \max_{\substack{|x| = 1/r}} |E(x)f(x^{-1})|$$

$$\leq \overline{\lim}_{r \to 1} r^n = 1.$$

Therefore,

$$|b_0| \leq 1.$$

Consequently,

$$|x_0|^m |f(x_0)| \le 1 \ (1 < |x_0| < \infty)$$
 and $\lim_{|x| \to \infty} |x|^m |f(x)| = |b_0| \le 1.$

In particular, when

$$\lim_{|x| \to \infty} |x^m| |f(x)| = 1,$$

or if there exists $x_0, 1 < |x_0| < \infty$, such that $|x_0|^m |f(x_0)| = 1$, then the maximum modulus principle implies

$$E(x)f(x^{-1}) = C_0(|x| < 1)$$
 and $|C_0| = 1$.

So $f(x) = E(x)C_0$ when |x| > 1.

Remark 1 The statement of the lemma and its proof may be adapted word by word to the context \mathbf{R}^{m} .

Let m = 1 in the theorem, we obtain.

COROLLARY 1 Suppose that f(z) is holomorphic and satisfies $|f(z)| \le 1$ in the domain |z| > 1. If

$$\lim_{|z|\to\infty}f(z)=0,$$

then $\lim_{|z|\to\infty} |zf(z)| \le 1$ and $|f(z)| \le (1/|z|) (1 < |z| < \infty)$. If, in particular, $\lim_{|z|\to\infty} |zf(z)| = 1$ or there exists $1 < |z_0| < \infty$ such that $|f(z_0)| = (1/|z_0|)$, then

$$f(z) = e^{i\theta} \frac{1}{z} \ (|z| > 1),$$

where $\theta \in \mathbf{R}$.

The corollary may be proved to be equivalent to:

LEMMA 4 (Schwarz lemma) Suppose that f(z) is holomorphic in |z| < 1 and $|f(z)| \le 1$ when |z| < 1. If f(0) = 0, then $|f'(0)| \le 1$ and $|f(z)| \le |z|$ (|z| < 1). If, in particular, when |f'(0)| = 1 or there exists $0 < |z_0| < 1$ such that $|f(z_0)| = |z_0|$, then

$$f(z) = e^{i\theta} z \ (|z| < 1),$$

where $\theta \in \mathbf{R}$.

The equivalence may be verified through the mapping $z \to 1/z$. Setting $f_1(z) = f(1/z)$, we obtain that f(z) is holomorphic and $|f(z)| \le 1$ in |z| < 1 if and only if $f_1(z)$ is holomorphic and $|f_1(z)| \le 1$ in |z| > 1. Therefore, we have

$$f(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n + \dots,$$
(2)

$$f_1(z) = a_0 + a_1 \frac{1}{z} + a_2 \frac{1}{z^2} + \dots + a_n \frac{1}{z^n} + \dots$$
(3)

So f(0) = 0 if and only if $\lim_{|z|\to\infty} f_1(z) = 0$. We accordingly have

$$f(z) = a_1 z + a_2 z^2 + \dots + a_n z^n + \dots,$$
 (4)

$$f_1(z) = a_1 \frac{1}{z} + a_2 \frac{1}{z^2} + \dots + a_n \frac{1}{z^n} + \dots.$$
 (5)

Obviously, $f(z) \leq |z|$ (|z| < 1) if and only if $f_1(z) \leq 1/|z|$ (|z| > 1). From (4) and (5), we get $|f'(0)| = |a_1| = \lim_{|z|\to\infty} |zf_1(z)|$, and, therefore, |f'(0)| = 1 if and only if $\lim_{|z|\to\infty} |zf_1(z)| = 1$. If $0 < |z_0| < 1$, $|f(z_0)| = |z_0|$, then for $z_1 = (1/z_0)$, $1 < |z_1| < \infty$, $|f_1(z_1)| = (1/|z_1|)$. The converse also holds. Finally, $f(z) = e^{i\theta} z$ (|z| < 1) if and only if $f_1(z) = e^{i\theta}(1/z)(|z| > 1)$.

Remark 2 For m > 1 the Schwarz lemma inside the unit ball does not hold at least in the original form. For example, the functions

$$f_j(x) = x_j \mathbf{e}_0 - x_0 \mathbf{e}_j, \quad j = 1, 2, \dots, m$$

are left-monogenic function in |x| < 1, and satisfy $|f_j(x)| \le 1$ when |x| < 1. However, for $x = x_0 \mathbf{e}_0(|x| < 1)$ and non-constant functions f_j there hold $|f_j(x)| = |x|, j = 1, ..., m$.

Remark 3 In the complex plane, if f(z) is analytic in the annular domain $r_1 < |z| < r_2$, then the Laurent expansion of f(z) is

$$f(z) = \sum_{n=1}^{\infty} a_n z^n + a_0 + \sum_{n=1}^{\infty} b_n z^{-n}.$$

For every $z^k \in P(k, \mathbb{C})$ and $z^{-k} \in Q(k, \mathbb{C})$, the corresponding relation between $P(k, \mathbb{C})$ and $Q(k, \mathbb{C})$ is through the inversion mapping $z \to 1/z$, but rather than Kelvin inversion with the conformal weight E(z), and, for any k, the dimension of $P(k, \mathbb{C})$ or $Q(k, \mathbb{C})$ is 1. So Schwarz lemma for inside and outside of the unit disk are equivalent. While in higher-dimensional spaces, just because $M^{-}(0, \mathbb{R}_{1}^{m}) = \{E(x)b_{0}\}$ has dimension 1, we are able to have Schwarz lemma for outside of the unit ball. The space $M^{+}(k, \mathbb{R}_{1}^{m})$ is transformed to $M^{-}(k, \mathbb{R}_{1}^{m})$ by Kelvin inversion $If(x) = E(x)f(x^{-1})$, and $I(W_{0}b_{0}) = b_{0} \in M^{+}(0, \mathbb{R}_{1}^{m})$. In particular, both spaces $M^{\pm}(k, \mathbb{R}_{1}^{m})$ for k > 0 are multi-dimensional. This explains why Schwarz lemma inside the unit ball does not hold for higher-dimensional spaces. It, however, further hints that Schwarz lemma is equivalent to the maximum modulus principle. As a matter of fact, in the proof of Theorem 1 we use the maximum modulus principle as a key step. Now we show that the latter is an immediate consequence of the former, as in the proof of

COROLLARY 2 (Maximum Modulus Principle) Assume that f is left-monogenic function in the open and connected set Ω . If there exists a point $a \in \Omega$ such that

$$|f(x)| \le |f(a)|, \quad y \in \Omega,$$

then f must be a constant function in Ω .

Proof We may assume |f(a)| > 0, for otherwise the assertion is trivial. We show that the set $A = \{x \in \Omega | |f(x)| = |f(a)|\}$ is non-empty, and is an open and closed set. Since Ω is open and connected, this will conclude $A = \Omega$. The fact that A being non-empty follows from $a \in A$. If $y \in A$, then there exists an open ball $B(y; r) \subset \Omega$. Construct function g(x) = (1/|f(a)|)f(y - rx). The function g is left-monogenic function and satisfies $|g(x)| \le 1$ in |x| < 1, with |g(0)| = 1. The Kelvin inversion of g, that is $Ig(x) = E(x)g(x^{-1})$, is left-monogenically defined in |x| > 1 satisfying $|Ig(x)| \le 1$ in |x| > 1. Since

$$\lim_{|x| \to \infty} |x^m| |E(x)g(x^{-1})| = \lim_{|x| \to 0} |g(x)| = 1,$$

Theorem 1 may be applied to conclude $g(x^{-1}) = C_0$, $|C_0| = 1$, for |x| > 1, or $g(x) = C_0$ for |x| < 1. This shows that $B(y; r) \subset A$. The closeness of A follows from the continuity of f. So, we have $A = \Omega$. In the above argument the usage of Theorem 1, in fact, shows that, not only the norm, but also the function value itself, is equal to a constant. The proof is complete.

Acknowledgement

This work was supported by Research Grant of the University of Macau No. RG079/04-05S/QT/FST.

References

- F. Brackx, R. Delanghe and F. Sommen, 1982, *Clifford Analysis*, Research Notes in Mathematics, Vol. 76 (Boston, London, Melbourne: Pitman Advanced Publishing Company).
- [2] R. Delanghe, F. Somman and V. Soucek, 1992, Clifford Algebra and Spinor-Valued Functions, Vol. 53 (Dorderecht, Boston, London: Kluwer Academic Publishers).
- [3] S. Gong, 1996, Concies Complex Analysis (Beijing, China: Peking University Press).
- [4] J. Peetry and T. Qian, 1994, Möbius covariance of iterated Dirac operators. Journal of Australian Mathematical Society (Series A), 56, 403–414.