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1 Introduction

To explain the idea we start from the very basic facts, denote by T the unit circle
in the complex plane C and L2(T) the class of square integrable functions on T. We
have the correspondence between a function f in L2 (T) and its Fourier series:

fl2)~ Y et (1)

k=—o00

where
o= 5m CHOF, ke,
where Z stands for the set of all integers.

Note that the term cyz* is the projection of the function f onto the one-dimensional
complex linear space, Py(T), of restrictions to the unit circle of k-homogeneous holo-
morphic functions. The projection operator, Py, is the convolution operator with the
kernel p*)(z) = 2*:

Pe(f)(2) = ez = p® % £(2) = / (C‘l)f()f kez, @
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where the measure 2—11”%( is the normalized Haar measure of the multiplicative group

on the circle.
The N-th symmetric partial sum of the Fourier series is

snf(z) = Z cx2. 3)

lkI<N
Inserting the integral expression for ¢n2™ we have that
1 _ d¢ 1
- el (k) (¢—1 = D
i@ = 3 o [P 90% = Loyuse),
Ikl<N
where
Dn(z)= Y~ p®(z) = > 4)
lkI<N [kI<N

is the N-th Dirichlet kernel. Under the change of a variable » —s e’ on letting
F(6) = f(e®), the relation (1) becomes

0
FO)~ Y oy, )
k=—00
and, we have, correspondingly,
SNF(8) = Y cpei? (6)
lkl<N
1 27 —~
=5 ), F@Dn(6-g)dg (7)
1 ~
where for § # 0(mod 2m)
~ . in(N + 1)¢
Dn(B)= ) & = M , (8)
I<w sin 56

and for ¢ congruent to 0 (mod 27r), EN(H) has the value 2N + 1, obtained by the
continuous extension of the cases for 6 # 0 (mod 2m). The function 5N is the classical
N-th Dirichlet kernel in angle on the circle.

It is noted that Dy (e%) = Dy (6), and Dy is a trigonometric polynomial of degree
N which is even in 6 and satisfies

1 [ 1 (™~
%/_W Dy (6)d8 = ;/O Dn(6)ds = 1.
It can be shown (see, for instance, ref. [1]) that
~ 4
IDnll1 = 7—r—210gN+ 0(1) (N — 00).

The formula (6) may be rewritten as

N
SNE(6) = a0/2+ )" ay, cos k + by, sin k6, 9)
k=1
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where 9
1 v
ap = ;/ coskgF(p)dp, k=0,1,...,N,
0

and

2w
b = %/ sink¢F(¢)dp, k=1,...,N.
0

The expansion (9) is the so called real form Fourier series, where ag, by are the corre-
sponding Fourier coefficients. Note that the term a cos k8 + by sin k@ is the projection
of the function f onto the two-dimensional complex linear space generated by

k - —
coskf = z—%z—k, sinkf = ik—;—iz—k—,

where z = = + iy, |2| = 1,0 = argz. The functions cos k6 and sin k, consisting of a

basis, are “circular” k-homogeneous harmonic functions.

If f is the restriction of a holomorphic function on an annulus containing the unit
circle, then the theory of Laurent series of holomorphic functions asserts that the partial
sum (1) converges to f at all points on T. Carleson extended this result to L%(T) in
ref. [2] with convergence almost everywhere on T in a place of convergence everywhere
for the Laurent series case. In 1967 Hunt further extended this result to functions in
LP(T),1 < p < ooldl,

Being well known, one naturally asks: what is the analogous theory on the n-sphere,
S™, in the (n + 1)-dimensional Euclidean space R (see sec. 2), where R} = {z =
zo+2z|zo€R,zeR"}?

For any square integrable function f on the n-sphere, denoted by f € L2(S™), there
is an associated Fourier-Laplace series:

£ frs (10)
k=0

where f is the projection of f onto the multi-dimensional complex linear space Py (S™)
of k-homogeneous spherical harmonics. The relation (10) is the analogy of (5). There
are also analogies in the multi-dimensional cases for (7), (8) and (9), of which all are
in terms of special spherical harmonics, and in particular, Legendre polynomials, and
Gegenbauer polynomials of order 2 for the space dimension n > 3 (see refs. [4, 5]).

There has been a long history for the study of convergence and summability of
Fourier-Laplace series on the spheres (see refs. [4, 5]). However, except for the very
lowest dimensions, the pointwise convergence, being the initial motivation of the study,
could be said to be very little known. The case n = 2 seems to be the only well studied
case. Dirichlet!®] gave the first detailed study on the case n = 3, on the so called Laplace
series. Koschmieder?? studied the case n = 4. In 1976, Roetman considered that the
general cases under certain conditions, reduce the convergence problem of n = 2k + 2
to n = 2 and that of n = 2k + 3 to n = 3/, Among others, Meaney addressed some
related topics, including the L? cases!”.

The existing theory of Fourier-Laplace series is not facilitated with a complex struc-
ture like that in the complex plane. All the known studies on Fourier-Laplace series
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heavily depend on the properties of spherical harmonics, especially Legendre polyno-
mials and other special functions. In the current study we offer a new approach based
on Clifford algebra. It is known that Clifford algebra offers a structure on Euclidean
space similar to that on the complex plane. Based on the complex structure and re-
lated results, we will obtain integral expressions of partial sums in terms of Dirichlet
kernels where no knowledge of special functions is involved. Our approach makes use
of generalizations of Fueter’s Theorem (or inducing theorems, see below) on inducing
monogenic and harmonic functions from those of the same type but for one complex
variable. In particular, the Dirichlet kernels (see sec. 2) are induced from those for
one complex variable by using inducing theorems. We note that in the present paper
we stress on the method but do not make deliberate efforts to obtain the results of
the best possible under the types of conditions assumed. Compared with the results
obtained in ref. [4] that heavily relies on the special function machinery, our approach
has at least the equal force, but much simpler.

With the complex structure induced from Clifford algebra we further expect to de-
velop the function theory and the operator theory in higher dimensional spaces analo-
gous to those in the complex plane. The study of this paper is, as a matter of fact, a
continuation of those made in refs. [8, 9], in which the Hilbert transformation and an
algebra of monogenic singular integral operators on Lipschitz perturbations of spheres
are studied.

The preceding study along this line has been done in the quaternionic space case,
considered as a counterpart of the four dimensional spacell% . The quaternionic space
has certain advantages: They form a non-commutative associative divisible algebra.
A higher dimensional Euclidean space is merely a linear algebra, imbedded into a
none-commutative and none-divisible algebra. The present paper is to show that the
principles of the study in the quaternionic space can be carried out to higher but even
dimensional cases. The present study contains richer results: Besides the simplification
role of the approach skipping over special functions, we deduce certain relations between
the even dimensional Dirichlet kernels and those in dimension 2. Although this study
is independent of quaternions, we recommend the author to refer to ref. [10] for a
comparison.

The applicability of the method adopted in the present paper is restricted to the
even dimensional cases. That is because the Fueter’s theorem in those cases reduces
the pointwise differentiation and further reduces the problems in the complex plane.
Our paper is based on this pointwise differentiation approach. On the other hand,
for the odd dimensional cases, Fueter’s theorem reduces the calculations on Fourier
multiplier operators, with connections to complex plane; or, alternatively, the pointwise
differentiation but based on the three dimensional space. Those latter cases would
require different ideas(t112):1),

In sec. 2 we give an account of Fueter’s theorem and its generalizations related to

1) Pefia D, Qian T, Sommen F. An alternative proof of Fueter’s theorem. (preprint)
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this work, and the monomial functions in R} and the convolution integral expressions
of Laurent series by the monomial functions. In sec. 3 formulas for the monomial
functions and the Dirichlet kernels are deduced. In sec. 4 we prove the Riemann-
Lebesgue theorem, localization principle, and a Dini’s type convergence theorem in the

context.

2 Basic Clifford analysis and inducing theorems

For the reader’s convenience we include the basic knowledge of Clifford algebra used
in this paper. For a more detailed account, see refs. [9, 13, 14]. Let n be a positive
integer, and e, e3, .. ., e, the basic elements satisfying

eje; +eje; = —28;, 1 <i,j < n.

We shall be working with the universal algebra generated by ey, ...,e, over the real
number field, called the real-Clifford algebra, denoted by R(™. Denote by R™ and R}
the linear subspaces of R("™ spanned by e1,...,e, and by eg,e1,es,...,e,, respec-
tively, where eg is the algebraic unit element, i.e. eg = 1, viz.

R'={z=me1+ - +zpe, |z €R,i=1,2,...,n},
and
T={z=z+z |z €R,ze€R"}.

Similarly one can define Clifford algebras over the complex number field, C™, and
correspondingly the linear spaces C™ and C7.

Elements of R or C™ are denoted by z,v,... and called Clifford numbers. An
element in RT or C7 is called a vector and of the form xz = zgep+z, where zg € R or C,
and z € R™ or C". The parts zgoeg and z are called the real and the imaginary parts of
x, respectively. Define two operations on the basic elements: (e;, - -€;)* =€, ---ey,

and (eil to eil)l = (ei1 ), T (eiz),

, where (eg) = eg,(e;)) = —e;,j = 1,...,n, and
extend them by linearity to R(™, and hence to R} and R™. By combining them we
define a third operation ~ by T = (z*). If z and y are two Clifford numbers in
R(™), then we have Zg = J . If 2 = xp + &, then T = 29 — z. If = is a vector and

-1 1

z # 0, then its inverse z7! exists: 7! = and z7'z = zz~! = 1. The complex

z
T
imaginary element ¢ commutes with all th(le ’ej, j=0,1,...,n and ¢/ = —i. So we
extend the definitions of * and ’/ and therefore ~ to C(™. The natural inner product
between z and y in C™), denoted by (z,y), is the complex number Y s ZsTs, where
T =) sTses,y = y cyses,S runs over all the ordered subsets (1,42, - 4;),%1 <
ig < -+ < i, of the set {1,2,---,n} and es = e;,e;, ' --e;,. The norm associated
with this inner product is |z| = (z,z)% = (3] g |zs]2)%. The norm and inner products
satisfy the relation (z,y) = 1(|z + y|> — |z — y|?). So, if a transform in C™ preserves
the norm, then it also preserves the inner product. If z,y,...,u are vectors, then
|zy - - -u| = |z||y| - - - |u|]. The angle between two vectors x and y, denoted by arg(z,y),
is defined to be arccos %, where the inverse function arccos takes values in [0, 7).
The concept of angle can be extended to any two elements in R with the same
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definition, as both the inner product and the norm one are available to the elements
in R(™. By the unit sphere of R} we mean the set {x € R} : |z| = 1}, denoted by S™.
We use Bx(z,9) for the ball in the metric space X centered at  with a radius é. The
substitutions for X are R?,R™ and C in the sequel. If X = C, then z is replaced by
z and the balls are called the discs.

We shall be working with RP-variable and C(")-valued functions. The Cauchy-
Riemann operator or the C-R operator in brief, is defined to be D = Dy + D, where
Dy = Ba: , D= 3:1:1 ei+-+3 en D is called the homogeneous C-R operator or the
Dirac operator in R™. The conjugate of the C-R operator is D = Dy — D. We define
the “left” and “right” roles of the operator D on continuously differentiable functions
by

Dif = Z Z Ofs ezeS
i=0 §

and
n

Z 6fs

If in a domain (open and connected) €2 there holds D;f = 0, then we say that f is

left-monogenic; and, if D,.f = 0, then right-monogenic, in £2. A function is said to be
monogenic, if it is both left- and right-monogenic.

The integers and positive integers are denoted by Z and Z™, respectively. In equal-
ities or inequalities, the capital letter C' will be used for constants which may vary
from one occurrence to the other. Subscripts, such as v in C,,, etc. are used to stress
the dependence of the constants. We usually work out the explicit formulas of the
constants to specify the dependence.

Assume that 2 is a bounded, open and connected set in R} with a Lipschitz bound-
ary. Let f, g be respectively the left- and right-regular functions defined in a neighbor-
hood of the closure of £). Then there holds the Cauchy Theorem

/ g(z)n(z)f(z)do(z) = 0,
a0

where do is the surface area measure and n(z) the outward pointing unit normal to
O at x € 9. Under the set conditions, for € Q, there holds
1
flz)=— - E(y — z)n(y)f(y)do(y),

Wn
known as the Cauchy formula, where E(z) = I—il%ﬁ is the Cauchy kernel, w, =
ﬁ’%}%, the surface area of Sy, the n-dimensional sphere in RT.

Denote by I the Kelvin inversion defined by

I(f)(z) = E(z)f(z™").
Define, for k € Z

_1)k-1 k-1
POR(z) = —((kl_) " (a%) E(z),
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and
PED (g) = 1(PCR) ().

The defined functions P, k € Z, are called the monomial functions.

Note that in R7 a vector x = zo + z whereby z can be written in the form z = e|z],
where e = % and e? = —1. This shows that the variable zo + e|z| behaves like the
complex variable z = t + is, under the correspondence t — zg,s — |z],7 — €.

The monomial functions are induced from generalizations of Fueter’s theorem. Fueter’s
theorem provides a method to induce the monogenic (regular) functions of a quater-
nionic variable from holomorphic functions of a complex variable. Denote by H the
space of quaternions that is the Clifford algebra space R(?) generated by e;, e5. It can
be easily verified that by letting i = e1,] = e2 and k = ejeq, i,j, k satisfy the re-
quirements for the quaternionic basic elements. The quaternionic monogeneity is also
called the quaternionic regularity or the brief regularity in literature. Now assume that
f° is holomorphic, defined in a relatively open set O in the upper half complex plane,
f%2) = ult,s) +iv(t,s),z = t + is, where u and v are real-valued. Then Fueter’s
theorem asserts that A f_b is a quaternionic regular function in the relatively open set
O={g=q+q€H:(qlgl) € O}, where f0 = u(qo, |g]) + eqv(qo, lg]), and eg = |q|

We will call fO the induced function from f° and O the induced set from O. The
following relations hold:
dfo
0 _ (H°
Dj ( .2 ) ()

where % = %(Bt —i0s), and

A7) = 5wl + 26y (1 oo o) — peCanla) ). (12

We refer to refs. [15, 16] for proofs of these equalities and the two-sided regularity
of A f‘b. In the sequel we will call the generalizations of Fueter’s theorem inducing
theorems. Some inducing theorems are contained in refs. [9, 11, 12, 17, 18]. In below
we recall some of those results in relation to this work.

The concept of intrinsic functions suits our theory well. An open set in the complex
plane C is said to be intrinsic if it is symmetric with respect to the real-axis; and a
function f0 is said to be intrinsic if the domain of 0 is an intrinsic set and f0(z) = f°(z)
in its domain. An open set in R is said to be intrinsic if it does not change under
the rotations of RT, considered as an n + 1 dimensional Euclidean space, that keep
the eg-axis unchanged. If O is an open set in the complex plane, then 0= {zeR}:
(%o, |z|) € O} is called the induced set from O. It is clear that an induced set is always
an intrinsic set in R7. Functions of the form Y cx(z — ax)*, k € Z,ax,cx € R are
intrinsic functions. If fO = u + v, where u and v are real-valued, then f° is intrinsic
if and only if u(z,—y) = u(z,y),v(z,—y) = —v(z,y) in its domain. In particular,
v(z,0) = 0, i.e. fO is real-valued if it is restricted to the real line in its domain. For
more information on intrinsic functions in the complex plane and in the quaternionic
space, we refer the readers to refs. [19, 20].
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Let f%(z) = u(t, s)+iv(t, s) be an intrinsic function defined on an intrinsic set U c C.
We may induce a, function fO from 9, defined on the induced set U , as follows:

(m) = u(xo, |z|) + z Iv(zo, lz)), zeU. (13)

The function }—6 will be called the induced function from f°.
Denote by 7 the mapping

T(f%) =k 1ATT O, (14)
where A = DD, D = Dy — D and &, = (26)""'T"?(2£L) is the normalizing constant
that makes 7((-)~!) = E (see Proposition 1 in ref. 9.

The operator A"7" is defined via the Fourier multiplier transformation on tempered
distributions M : S’ — & induced by the multiplier m(¢) = (2i|¢[)n~1 :

Mf =R(mFf),

where

Fi©) = [ 9 sy
Ry
and

Rh(z) = / e=2mED) (£ de
R}

It is noted that both the Fourier transformation F and its inverse R are defined on

tempered distributions via pairing with rapidly decreasing functions.

If n is an odd integer, then AT reduces to an ordinary differential operator that
was first studied by Sce who extended Fueter’s result to R? for n € Z+ being odd!”]
. The corresponding result for n being even is obtained and discussed by refs. [9, 11].
We have the following (see refs. (9, 11, 17, 21])

Theorem 1. Let f0(2) = u(s,t) + iv(s,t) be an intrinsic function defined on an
intrinsic set U C C. Then the function 7(f°) is monogenic in U.

If we consider f° to be of the form z* k € Z, then the monomial functions R?
defined above are P(=%) = 7((-)=%), P(*~1) = [(P(=R)) k ¢ Z+. We shall write P{¥
for P(*) in RT in case we wish to emphasize its dependence on the dimension n. We

have
Proposition 1. Let k € Z*. Then
(i) PV = E;
k—1
(i) PR () = Lo (52 )51 E(2);

(iii) P-*) and P*~1 both are monogenic;

(iv) PR is homogeneous of degree —n + 1 — k and P*-1) homogeneous of degree
k-1,

(v) P75 (xo txer+- -+ Th1€4-1) = ffooo P,(fk) (z)dzx,, where ¢, = ffooo(l +
t2)~ <”“)dt,

(vi) P-R) = [(p-1),

(vii) if 7 is odd, then P*~1) = r((.)n+k—2),

While the other assertions are easy to prove (see ref. [9]), the proof of (vii) is
troublesome and contained in ref. [11].
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Remark 1. The definition of the monomial functions together with the properties
proved in Proposition 1 provides a generalization of Fueter’s result for quaternions. The
assertions (ii) and (vi) amount to re-producing Sce’s result for z*, k € Z. The assertion
(viii), in particular, shows that, if n is odd, then P*~1) may be alternatively defined
by using the operator 7, in the pointwise differentiation sense, instead of using the
Kelvin inversion.

The following estimates are useful.

Proposition 2. The monomials satisfy the following estimates: for k € Z+,

|PCR(@)] < Cuk™a| =D, g] > 1,
and
PP (z)] < Cok™azl*, |z| < 1.
The operator 7 establishes a corresponding relationship between the sequence
{273,272 270 2t 2m )
and the sequence
{...,PE3 p=2) p=1) p© p1) p@ 3.
In R} we consider the class of functions
A(S™) ={f(z): f(z) isleft-regularin 1-s<|z|<1+s forsome s> 0}.
It was proved in ref. [9] that the restrictions to S™ of functions in the class A(S™) form

a dense subclass of L2(S™). From ref. [9] we have
Proposition 3. If f € A(S™), then

oo

@)=Y o [ POCTBWRG) o), 1-s<[sl <145 (15)

k=—oc
Note that. the expressions P¥)(y~1z) make sense as the domain of P*) may be
extended to products of vectors!®). Comparing (15) with (2), we see that the functions
P®) and p*) play the same role in their respective spaces. When n is an odd number,
the striking fact is

r(p®)y=P® k=—-1-2 ... (16)
and
rp®tnD)y = p® k=012, ... 17

We note that for any k,
P® (y~'z)E(y)

is monogenic in both z and y®l. Since E(y)n(y) = 1 on the sphere, by Cauchy’s
theorem, we have

| P o) =0, el =1, k£0; (19)
and, since P(O) = [(P(-1) = I(E) = 1, we have
1 _
— | POy z)do(y) =1, |z|=1 (19)

wn Sn
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These results will be used in sec. 4.

Thanks to Clifford algebras and the associated complex structure we are enable to
decompose spherical harmonics into sums of spherical monogenics. For any k-spherical
harmonics f, as those appearing in the Fourier-Laplace series of f € L?(S™) in (10),
one has the unique decomposition

Je=gx + hs, (20)
where gy, is the restriction on the sphere of a left-monogenic function of homogeneity k,
and hy the same restriction of a left-monogenic function of homogeneity —k+ 1 —n!!4l.
The results in ref. [9] imply that
1 —
a@) = o [ PG w)dow),
and )
m@) = o [ PO @),
The partial sum corresponding to (10), denoted by Sy f(z), may be expressed as
]. n —
Swi@) = [ DEI w0 w)dot), (21)
where
D) = Y PP() (22)

[kl<N
is called the N-th Dirichlet kernel in R}. When n is an odd number, invoking (16) and
(17),

N+n—1

D@ =r( Y. )@, (23)
k=—N

where p¥)(z) = 2*. Note that the superscript n + 1 in the notation D%’H) indicates

that the Dirichlet kernels are dependent of the space dimension n+ 1. In the following,

we preserve the notation Dy for the case n =1, that is Dy = Dg).

The equality (12) is sufficient for computing the Dirichlet kernels in the quaternionic
spacel’®l. The analogy of (12) for higher dimensional cases involving the pointwise
differential operator A("~1)/2 is rather complicated (also see ref. [9]). In our paper,
we only consider n being odd numbers and therefore (n — 1)/2 being positive integers.
The computation for this case is based on the inducing theorem obtained in ref. [12],
as cited in the following proposition.

Proposition 4. Let A(t, s) be harmonic for ¢ and s in a region O in which s > 0,
t > 0. Let n € Z* be odd and z = 9 + z € R}. Defining

H(z) = A" D 2(zq, 2]),
where the Laplacian A is in the n + 1 variables, then

1,_\(r-1)/2
H@) = (n-DU(58,) hlt)limap,sal (24)
and H is harmonic in zg,21,...,Z, in the corresponding region in R7}.
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Remark 2. It would be interesting to note that not only the Dirichlet kernels,
but also the Newton potentials, Poisson kernels and even heat kernels are all deducible
from those in the lowest dimensional cases by using the inducing theorems in ref. [12]
(see Applications of ref. [12]).

3 Dirichlet kernels and their estimates

Without loss of generality, we assume that the functions to be expanded in (10) are
scalar-valued. Indeed, a C(™-valued function may be separated into 2" parts of which
each is scalar-valued.

Assume that f € L?(S") and f is associated with an expansion (10). From the
decomposition (20) and the integral formulas for g, and hj we have

fu@) = o [ (PO 4+ PO 0 f)doy).

Since f is scalar-valued, the scalar part of P*) + P(=k) will produce fi, and the non-
scalar parts of P*) and P(—*) will have to be cancelled out. This concludes that only
the scalar part of the Dirichlet kernels is concerned. In the following we denote the
scalar part of DJ(:,’H) by D%LH).
Denote
N+4n-1
@)= 3 W@ =24t b Tzt N
k=—N
and fY(2) = Un(t,s) + iVn(t,s), where z = t + is, t,8 € R. Thus, both Uy and Vy
are harmonic functions in ¢ and s.
Since we only consider n being odd numbers, we write n = 21 + 1,1 € Z* for the rest
of the paper. Then D%LH) = Dﬁlu) . We first have
Lemma 1.
Dg\%l"'z) (x) = n;1(2l)!!(%as)lUN(t, S)lt:a:a,s:[gl' (25)
Proof.
D (@) = Re 7(f3)(2) = k7 " ReA™ /27 ()

= £, ACTI2TN (@) = k7 ACTD U (2, |a)).

By invoking Proposition 4, we have

1 l
DY (@) =m0 (<0,) Un(t: 9)le=so,acial-

When [ =1, i.e. n = 3, it is the quaternionic case (see ref. [10]). From ref. [12], we

have (19,)! = E;=1 Cys7=2(8,), where CJ = (—1)}-7 Ql"(;jg!!gf:gg)—!l)”, 1<j<I-1;

C! = 1. So we can write ’Dﬁ”z) (z) in a finite summation:

l
D () = k1 (20! D I (B,Y U, 8)|1=zo,0=z|- (26)
j=1

For z =t +1s,t = rcos#, s = rsin6, we have the following
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Lemma 2. There exist homogeneous polynomials Q,(-j ) and Rfj ) of degree j about

two variables, such that

(%)jUN = Tl ZQ(J)(sm9 0030)( ) vt %gjo)(Sine’coso)(%)iVN' 27)

Proof. We prove this lemma by the mathematical induction on j.
When j = 1, we have
BUN — GUNQQ + aUNQ _ 8UN cosf + 6UN sin 6.
Os 80 0Os Or 0Os 00 r or
By taking into account Cauchy-Riemann equations in polar coordinates,
OUny 10Vy OV 10UN

or r 89’ or r 98’

we have

oUn _ 1 OUNn 1. O6Wn
Bs = ;cos@—aa— + - s1n070—.
So, (27) holds for j = 1.
Now we assume that

9 jU Q(’) sin 6, cos 8) LAY Uy +— R(J) sinf,cosf) o iVN.
9s Z o0 ; 06
Then

() ow = () o) = = g5 () o) wsno () o)

; i
_ cos @ [i Z %Ql(j)(sinﬁ, cose)(gg) Un

+_1_, EJ_: g—R(J)(sme cos0)(aae) Un

+r1 ZJ: R (sin 6, cos §) (%)iHVN}

i ‘ :
+sind [N.IH Z(—ngi) (sin @, cos 6)) (%) Un

+5 ZQ(’)(SlnH cos0)((,;90) aaUN

sy Z( JR(’)(smﬁ cos0))(60) VN

0

+ R(’)(sm0 cos0)( ) g;VN]-

By Cauchy-Riemann equatlons in polar coordinates, and by simplifying the above
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expression, we have
(%) Uy = I ;COSG%Qi (Slne,c0s0)(a_) N
J . 5
—_HZcoseQz(J)(sinﬂ,cosa)(E-) Un
i=1
Ly 0 ni) (o 8\
+rj+1 ZCOSO%Ri (smH,cosO)(ag—) Vn

J+1 Zcos ORY (sin 0, cos 0)(82

i=1

J+1 ZsmGQ(J)(suﬂ cos 6 (585

=1

)"
]H Z ]Sme)Q(J)(SlnG cosf (82)
Vn

I

0]
) Vs
1~ " 8\t
o ;(-sm0)R§])(s1n0,cos0)(%) Un.

D

r1+1 Z jsmO)R(J) sin 6, cos §)

=1

Now let

1°. QU (sin 6, cos ) = cosO Q(J)(sme cos8) + cos Q. (sin 6, cos )
—jsin OQEJ) (siné, cos §) — sin 0R,§J_)1 (sin8, cos §),

where 1 < 7 < 7 and we set Q(()j) = R((,j ) = 0(the same in below);

2°. Qg-’_':il) (sin 8, cos #) = cos OQ(.j ) (sind, cos §) — sin GR(-j ) (sin B, cos 8);

3°. RV (sin 6, cos ) = cos — 0 R (sin 8, cos 6) + cos R, (sin 6, cos §)

00
+5in6QY, (sin 6, cos8) — jsinORY (sinb, cos ), 1< i< j;

4°, R]({:il) (sin @, cos f) = cos 9R§.J ) (sin §, cos ) + sin 0Q§j )(sin6, cos §).

Since -a—ng(-j) and %jo), 1 € i € j, are still homogeneous polynomials of degree
J about variables sinf and cosf, obviously, QEHI) and REHI), 1<ig<g+1, are
homogeneous polynomials of degree j + 1 about variables sin# and cos 8.

We also have

(%)jHUN = ZQ(’“) sin cos0)(§0)iU

J+1 ZR(HU sin 6, cosO)( )i V.

This completes the proof.
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Now, from (26) and (27), Dgl”) (z) can be written in polar coordinates,

!
Dg”z) (z) = &, (2D Z C’f (rsin @) —Hy=3
j=1
j

' [Z ng)(sinG, cosf) (%)iUN + Z;jo)(sin& cosf) (%)iVN] .

i=1

Restricting Dﬁ”z)(a:) on the unit sphere(r = 1), we have

1 . ;
D () = n;l(Zl)!!ZZClJ (sin0)j_2’Q§’)(sin0,cose)(z%) Un

=1 i=1
+n;1(2z)uZZcg(sine)ﬂ—ﬂRg”(smo,coso)(55) Vw.
j=1i=1
We turn to compute P*(x). Denote p®) (2) = 2% = ug(t, s) +ivk (¢, s), then ;;J(_ki(x) =
ug (o, |Z|) + ;ﬁvk(wo, |z|). Invoking (14}, (16) and (17), we obtain
TG
P®(z) = vy Al (2), (28)

where ¥ =k fork< 0;and ¥  =k+n—1for k > 0.
From Lemma 1 of ref. [9], we have

Lemma 3.
P®(z) = Re P®)(z) + l%lm P®(g), (29)
where
1 l

Re PO (@) = r (20150, ) e (8, 8) imap s=lal (30)

_ 1 Lry /(t S)

®) () = k=1 (2Ds( = kAT
Im P®)(2) = 71 2018 (50, ) (P2 ) lemaoromialy (31)

where k' =k for k< 0;and k' =k+n—1fork > 0.
Clearly, Re P(*)(z) also can be obtained by Proposition 4, like Lemma 1. From the
decomposition of (19,)!, we have

{
Re P®)(z) = k1201 Y C7 72 (85 Y uy (2, 8) =, =lal> (32)

=1

l
_ P v (E, 8
m PO (@) = w7 @00 Y 2 @y () (a9)
j=1
In order to express Re P(*)(x) and Im P*)(z) in polar coordinates, we need another
lemma.

Lemma 4. There exist bounded constants Bzgj ), 0 <7 < 7, such that

(2 (200 < Sape (B o

s
1=0
Proof. We prove this lemma by the mathematical induction on j. To simplify the
notation, we briefly write v,/ (¢, s)=vi in this proof.
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When j = 1, we have

0 fuk 1 18
35 (3) = —Fu + S o

Let B(gl) = -1, Bfl) =1, 0, the lemma is true for j=1.
Now we assume that

Then,
(5)" (%) - %((2) ( 7))
=3 [ - it z+z>( 52) ot BOs e (D)0, 1
=0
Let BU+D — —-(-i+ {l)B(J) + B9 where 0 < < j and we set B(J) = 0; Bj(ﬂl) =
B(J) Obviously, B(J D 0 g <j+1, are all bounded since Bi(J), 0< i<y, are all

bounded. Summarily, we have

G (2) = F w602 )

=0
This completes the proof.
Now form Lemma 2, Lemma 3 and Lemma 4, restricting Re P*)(z) and Im P®)(z)
on the unit sphere (r=1), we have

1 j ¢
Re PO(@) = k. (2013 3 CF 6in 6~ FP) (sin , cos ) (5)

j=1i=1

I J ) i
+r, 120N Z Z C{(sin0)"~2HY (sin g, cos 6) (;;Z) CR

j—l i=1

Im P®)(z) = ”—1(21)”22 Z ¢! BY (sin §)i~ 20 (sin 4, cos 6) (%)m

j=14i=0 m=1
1 K] i ) 0 6 m
-1 1 7 (U i—21 4 ,
+r, (20N Ez _E_O E CiB;” (sin8)* 2w (sin g, cos 0)(—80) Up s

where k' = k for k < 0 and K=k+n-—-1fork> F(J) and H(J) 1<i<y, are
homogeneous polynomials of degree j about varla,bles sin§ and cos 9, O(l) and W(z)
1 < m < i, are homogeneous polynomials of degree i about variables siné and cosé.

Now, we work out U N, VN, ux and vy in polar coordinates. Clearly, it is trivial for
ur and vy, since z¥ = r¥ cogkd +irksin k8, so,

uk (¢, 8) = ug(r cos 6, rsin ) = r* cos k0, vk(t,s) = vg(rcos@,rsin 6) = r*sin k6.

Restricting to the unit sphere, we have uy(cos 0, sin 0) = cos kb, v (cos 8, sin 8) = sin k6.
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On the other hand,
Nin-1 N+n

1 z
Z pk(z)zzN(l—z)—l—z

k=—N
cos N — rcos(N + 1)8 — r2N+7 cos(N 4+ n)f + r2V+7+l cog(N 4+ n — 1)8
rN(r2 — 2rcosf + 1)
iz sin N@ + rsin(N + 1)8 — r2N T sin(N + n)f + r2N+"+lgin(N +n — 1)
rN(r2 — 2rcosf+1)
= Un(rcosf,rsinf) + iVy(rcos8,rsin §).

|

fr()

Restricting to the unit sphere, we have
cos NG — cos(N +1)0 — cos(N +n)f + cos(N +n — 1)8
2(1 — cos9)
sin 20410 4 sin 2¥420=19  sin(N + 2)fcos 2516
= - ,
2

Un(cosf,sinf) =

2sin g sin
and

Viv(cos6, sin ) = — sin N@ + sin(N + 1)8 — sin(N + n)f + sin(N +n — 1)

2(1 — cosf)
cos 219 _ oog 2N+2n-1g (N 4+ B)ggin 2=lg
_ 2 2 = 2 i
2gin 2 sin &

2 2

4 Convergence results

The classical Riemann-Lebesgue theorem asserts that for any function in L1([0, 27])
its Fourier series coefficients ¢y enjoy the property that |cx| — 0, as |k| — oco. For any
function f € L*(R"), its Fourier transform f (&) — 0, as |€] — co. On the sphere case
there does not exist the concept “Fourier coeflicients” (not like the one dimensional

k may be separated into two parts cx and zk), instead, the projec-

case where ciz
tions Py(f) of a function f onto the multi-dimensional spaces of monogenic functions
of k-homogeneity. For each k, the coefficients depend on the base that you choose.
Therefore, we should consider the whole projection, and the assertion Py(f)(z) — 0,
as |k| — o0, is the analogy of the classical Riemann-Lebesgue theorem (see Theorem 2
below).

Averages of spherical functions on (n—1)-dimensional spheres are involved. From the
study in sec. 3, we know that the terms in P*)(z) and the Dirichlet kernels DI(\’;H)(Q:)
on S™ depend only on the angle 8, where 6 = arccoszg, 6 € [0, 7], which means that -
P®(y~1z) and D (y~1z) on S™ depend only on Re(y~'z). In addition, when
z,y € S, we have that Re (y~'z) = Re (yz) = (y,z). Now let z be a fixed point on
S™ and write y = x cosf + §sin 6, where § is orthogonal to z and 6 = arg(y, ). In this
! = § = Zcosf + gsinf and Re(y~'z) = (y,z) = cosf. We an take average
of a function f € L'(S™) over the (n — 1)-dimensional sphere whose points y satisfy

case, Yy~

arg(y,z) = 6. This average is denoted by

&, ((9) = wl /an f(zcosb + §sinB)dop—1(F),

n—1
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where § is the spherical variable on S™7!, do,_1(J) is the normalized surface area
measure on S"~1. We call ®;(f)(0) the average of f about z in angle §. Let e,-1, =

-1
%1—', we can similarly define the average ®€(f)(6) = ®z(e(y-1,f(-))(8).
In accordance with Proposition 3, for any function f integrable on the unit sphere

S™, we can associate it with a Fourier series
1 & _
= 3 [ PO B W)dow)
Wy, [ Sn
=—00
and the above series is also written as

Z Pk(f)(m)a

k=—o0
where Py (f)(z) = 2= [g. P®) (y~2)E(y)n(y) f (y)do(y) is the projection of f onto the
space of left-monogenic functions of k-homogeneity.

Note that in considering convergence problems it suffices to assume f to be scalar-
valued. Without repeating, we will always assume this for the rest of the paper. In
the following we denote ®,(0) = ®,(f)(8) and () = ®(f)(). In addition, we use
W!([0,]) to denote the Sobolev space

wmmﬂy=@eL%pﬂy(;)geLq0ﬂ)k_12 1),
The Riemann-Lebesgue theorem may be formulated as follows.
Theorem 2 (Riemann-Lebesgue Theorem). Assume that f € L'(S™) and let z
be a fixed point on S™. If ®,(0), ®€(8) € W' (]0,]), then

lklllm Py(f)(z) =0.

Proof. Since on the unit sphere E(y)n(y) = 1, the integration formula of Py(f)
is abbreviated as

Pu(f)(e) = ./PW )£ (W)do(y),

where y ! = § = yo — y1€1 — - - — ynen and y 7'z = Re(y~'z) + Im(y~'z) =< g,z >
+Im(y~1z) = cosf + e,—1,sinf. Substituting the formula for P*)(y~1z) into the
integral expression and,?a;ed on Fubini’s theorem, decomposing the integral on the
sphere S™ into the iterated integral composed by one in angle € with respect to the
direction of z and the other in the (n — 1)-dimensional sphere orthogonal with the z

direction, we have

By, (f)(=)
-1 7r(sin0)(2l+2—2)[ ~1(21 ”in:C’f(smﬁ i- 2ZF(J)(SIH0 cosﬁ)(—a-)iuk/]
Wn Jo j=11i=1 00
. (6)do
J i
/ (sin §)(@+2- 2)[ _1(2l)”ZZCl] (sin )7~ 2IH(J)(smG cos0)(%) ka}
j=1i=1

B,(8)dé
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[ i

+— [ (sing)@+2-2 [n#(%)!! >3- ¢{BY (sing) ¥

w
n JO j=1 i=0 m=1

08 (sin 9, cos 0 2 "y ®(0)do
k

(2

I J
/ (sin6) (2H—2 2)[ —1(2l ||ZZ Z CJB(J) sme)’ 2!

j=1i=0m=1

WO (si I\ |88
o’ (sin @, cos 0)(80) Uy, ]':I)w (6)do
I n L J TN i) (o
= —kK, (2l)..§ E C; ; (60) uy [(sin @) F;”’ (sin 8, cos )P (6)]d6

+L k-t YN / i (%)ivk/ [(sin8) HY (sin 6, cos 6), (6)]d6
w 0

L—l n L j(j)/wim . i) (o e
+—kn (2l)..22=% C]B; A (80) vy [(sin 8)* O, (sin 8, cos )@ (6)]dO

L J . ™ m ] )
+;1—n;1(2l)!!22 C’ljBlg])/0 (;%) uyy [(sin 0)* WP (sin 6, cos ) (6)]d9,

=0 m=1
where k' = k for k < 0; and k' = k+n — 1 for k > 0. Since there exist factors (sin 8)7,
j > and (sin )¢, i > m, so, we can take integration by parts repeatedly, then we have

Pe(f)(z) = 20”22 /1r uy (cos 8, sin 6)

j=11i=1

(—-) [(sin8) F (sin 6, cos 0) @ (8)]d6

_1(21)”22( 1) C'J/ vy (cos 6, sin 9)

j=11=1
: (%) [(sin6)7 HY (sin 6, cos 6) B, (8)]d8
—n_1(2l ”ZZ Z( 1 mC”B(’)/ vy (cos 0, sin 0)
j=1i=0 m=1

'(a%)m[(sin 6)*0%) (sin 6, cos 6)®% ()] d6
1(2l) IIZZ Z( UmC’Bm/ ty (oostsind)
] 14i=0 m=1
'(%)m[(sin 0 W, (sin 6, cos 6) @ (6)]d8.
Recall that

uk (cos f,sin @) = cos k'8, vg(cosb,sin ) = sin k'6,

where k' = k for k < 0; and ¥’ = k+n — 1 for k > 0. Since ®,(0), (9) € W'([0,x]),
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then, (sin6)?F? (sin, cos 0)®z(6), (sin6)H? (sin 6, cos 0)@:(6), (sin6) 0% (sind,
cos 0)®2(8), (sind) W, (sinf, cos 6)®¢ (8) also belong to W0, 7]). So, the assump-
tions on @,(¢) and ®€(6) allow us to use the classical Riemann-Lebesgue theorem on
[0, 27], and we obtain

lim Py(f)(z) = 0.

|k|— o0

Corollary 1.  Let f € L2(5") and « be a fixed point on §™. If &, (6) € W([0,x]),
then from (10), for the Fourier-Laplace series of f in spherical harmonics:

f@) ~ " fala),
k=0
we have
klEEo fk(.’L‘) = 0.

Proof.  Since f € L?(S"), then we have that f € L'(S™). 1t is a general result
that fi, as a k-spherical harmonic on the n-dimensional unit sphere, has a unique
decomposition f = gy + hx, where gi and h; are spherical monogenic functions of,
respectively, homogeneity degree k and —k-+1 — n[14]. It turns out that, in the notation
of the proof of Theorem 1, gk = Po(f), hi = P_yi1 n(f). In fact, the partial sum
Zﬁ:o fr(z) is identical with the partial sum Sy f(z) induced from the N-th Dirichilet
kernel D%H"l) (z). Since fy is scalar-valued, we have

fr =Re (P(f)) + Re (P_is1-n(£)).

So, from the proof of Theorem 1, we have
Jm fi(z) = 0.

The corollary may be regarded as the Riemann-Lebesgue theorem on the sphere
with the traditional setting. We will call the series in the corollary a scalar Fourier
series. Due to the fact that all entries of the series, as well as the function itself, are
scalar-valued, in the proof we only need to assume the condition on ®,(6) is sufficient.

The localization principle in the context is as follows.

Theorem 3. Let f e LY(S™) and z be a fixed point on S§™. If f vanishes in some
neighborhood of z, ®,(6) € W([o, 7)), then

Jim Sy (f)(@) =0.

Proof. In view of the proof of Corollary 1, the partial sums are scalar-valued
and we can restrict ourselves to the scalar-part of the integral under study. Using the
formula for ’DJ(\?ZH) , and performing the integration by parts, we have

Sn(f)(z) |
-1 /W(sinﬁ)(zl“_z) [ﬁ‘%ﬂ)”iiC’j(sinﬁ)j_2lQ(j)(sin0 cosf) (Q)ZU
B Wn Jo " N ! : ’ o0 N

Jj=1i=1

B, (6)dd
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I J .
2+2-2) | -1 j—21 p(d) (s 9 \¢
/ (sin )3+ )[ (2nn E E CJ (sin @) "2 R;” (sin 6, cos 0)(80) VN]

j=11i=1

8,(0)d6

4 7 g
= ) ”ZZC/O ( )UN[(sma)JQU)(smo c0s.8)®,(6)]df

j=1i=1

o~

1. 1 3 /7r iRy
o 2! Fl;c 0 ( )VN[(smo)R (sin 8, cos 6)®, ()] d6
J

= 21)”22( 1) C”/ Un (cos 8, sin 8)

j=11i=1

( ) [(s1n0)7Q(’)(sm0 cos )@, (6)]d6 + —n_1(2l)”22( 1)iCy
j=11i=1
" . O N r o i () g
. VN(COSO,sme)(—) [(sin6)? R;” (sin 6, cos §) @, ()] d6.
0 o6
Since f vanishes in a neighborhood of z, there exists § > 0 such that ®;(f) = 0
0<6<9, 0 =arg(y,x). So, we have

I J T
Sn(f)(z) = —r; (2 HZZ(—WC{/‘s Un (cos 8, sin )
. (5%) [(sin 0)jQ(j) (sin 8, cos 6)®,(6)] b
_1(2’)"22( 1) CJ/;VN(coso,sine)

'(%) [(5in6)? Ri? (sin, co3 6) 4 (9)]d6.

Recall

sin(N + %)6 cos 2310

6 )
sin 2 )

sin(N + 2)0sin 2516

in @
sin 5

Un(cos6,sinf) =

Vn(cos6,sin) =

From the assumption of this theorem, ®,(8) € W!([0, 7]), then (&) [(sin 6)7 ng ) (sind,
cos8)®,(0)] and (ae) ‘[(sin 0)JR(J)(s1n0 cos0)®,(0)], 1 < 7 < j, are integrable in the
interval (8, ), on letting N go to infinity and applying the classical Riemann-Lebesgue
theorem, we conclude

Jim_Sw(f)(a) =0.
Denote
®,(0) = ;1_1% o, (0)

if the limit exists.
A Dini’s type convergence theorem is as follows.

-
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Theorem 4. Let f € L'(S™) and z be a fixed point on S™. We assume that,
for some & > 0, ®,(0) exists and MO— is integrable in (0,6). In addition, if
®,(8) € W([0, n]), then

Jm_Sy(f)(z) = 2.(0).
If, in particular, f is continuous at z, then
Jim Sx(f)(@) = £().
—00
Proof. It suffices to show
lim (Sy(f)(z) - @(0)) = 0.
N—ooo

From the relations (18) and (19) we have

]. n —
o [ DS adey) < 1.
Wn Jgn
We are reduced to show

tim = [ DY 12 (f(y) — 8,(0)doly) = 0.

N—oo Wn Sn

The last integral is scalar-valued and thus is the scalar part of the N-th Dirichilet
kernel DI(\?H) = Dggl'ﬂ), viz.

o L 280D - 2.0)d0)
Wn Jon

Substituting the expression of Dﬁ”z) (y~lz) and writing the integral into an iterated
integral, the above becomes

—/ (sin §)(2+2- 2)[ _1(2l)”ZZC’J(sm0)J 2QW (sing, cos0)( ) J

7j=11i=1

(®2(6) — ®,(0))d8

+_/ (sin ) (@+2— 2)[ “1(2l)”ZZC’(sm0)J 2RY) (sing, cos9)( ) VN]

j=11i=1

(®2(6) — ©,(0))do

= i,i—l(m)llzzcj/o (60) UN[(smG)JQ(’)(SInG cos 0)(®;(8) — ©,(0))]d

Jj=1i=1

+win’“771(2”" ZZ cy /0 ((%)iVN[(sin 6)' RY(sin 6, cos 6)(®,(8) — @,(0))]de.

Jj=li=1
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Taking integration by parts repeatedly, we have
I J ™
. _ _ . 1 —1 n 1)} j/ .
Jim (Sn(£)(z) - @2(0)= Jim_ Soha (20! ;;( 1)iCs i Un(cos 8, sin 6)

'(_c’)a_o)i[(sina)jQ(-j)(Sine»COS 0)(@.(6) — ©.(0)))d9

1 J o ™
. e " 1 J »
+Nh_xgo wnn L2 g; -1) Cl/O VN (cos8,sin )

.(%)i[(SinG)"RZ@’)(sino, c0s 6)(@4(6) — 82(0))]do

= lim I; + lim I.
N—ooc N—oo
We first consider the second part of the above expression. Since ®,(8) € W!([0,7]),

®.(6)— 24 (0) also belongs to W([0, 7)), as a consequence, (£5)((sin 8)7 R (sin 6, cos )
sin(N+2)9sin 2516

(®:(6) — ®:(0))}, 1 < @ < j, is integrable. Replacing Vy by 27 and
2
applying the classical Riemann-Lebesgue theorem, we have
N-—oo
As for I, since Uy is equal to sin(N+§ )egc 0s 2729 , there will be a singular point 8 = 0

sin 2
when we use the classical Rlemann-Lebesgue theorem directly. However, for any j,

1 < j £ I, we first consider the second summation Zizl- There is a factor (sin)’ in
the integrand and the order of 5‘%— isfrom1toj. Whenl £ < j—il, after taking (b%)i
on (sin O)ngj)(sinO,cos 0)(®.(8) — ®(0)), there must a factor (sin @)™ left, m; > 1.
In addition, even if i = j, after taking ()’ on (sin 6)7 QY (sin 8, cos 8) (24 (8) — ®4(0)),
there also must be a factor (sin@)™2 left, ms > 1, except the first item which is
j!(cos )7 ng ) (sin6, cos 0)(®5(0) — 5(0)), that is, all the derivatives are taken on sin 6.

After using the classical Riemann-Lebesgue theorem for I; except the first items of
the summation Y7_. of I1, we have

th—mo Il
1
= ngnoo —w—n'1(2l ”Z( 1) JCJ/ Un (cos 6, sin 6)

[5"(cos O)jQ(-J) (sm0 cos 0)(®.(0) — ©,(0))]do

1 _ sin(N + 2)6 cos 25160
= Jim L ofn 1(2l)”2:( 1) 'C’/ 5

i=1 sm§
-(cos O)jQ(.J)(mnO cos 0)(@(0) — ©,(0))do
— - VFiled] " n
1\}1_1}100 wnﬂ ; -1) j.Cl/O sin (N+ 2)0

() — 2,(0)

. 8
s1n§

de.

n—1
+ COS

6(cos §)7 Q;j) (sin 6, cos )

Since gﬂo_)g_qlgo_) is integrable in (0, §), for some § > 0, applying the classical Riemann-
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Lebesgue theorem, again, we obtain limy_,o, [1 = 0. Therefore, we have

Jm_ S (f)(@) = 2.(0).
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