Co-dimension-p Shannon sampling theorems

YAN YANG* and TAO QIAN
Faculty of Science and Technology, University of Macau, China
Communicated by F. Sommen

(Received 7 April 2006; in final form 26 April 2006)

In this article, by defining the generalized co-dimension- p sinc function, the corresponding sinc interpolations (Shannon sampling theorems) are obtained.

Keywords: Shannon sampling; Sinc function; Clifford algebra
AMS Subject Classifications: 62D05, 30A05, 30D10, 42B35

1. Introduction

Sinc function in the real line \mathbf{R} is defined by

$$
\operatorname{sinc}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i x t} \mathrm{dt}=\frac{\sin (\pi x)}{\pi x} .
$$

It has a holomorphic extension to the complex plane \mathbf{C}, i.e.,:

$$
\begin{equation*}
\operatorname{sinc}(z)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i z t} \mathrm{dt}=\frac{\sin (\pi z)}{\pi z} \tag{1}
\end{equation*}
$$

Some applications of the sinc function may be found in [1].
For a set A, let χ_{A} denote the characteristic function of A. Sinc function in \mathbf{R}^{m} is defined by

$$
\begin{aligned}
\operatorname{sinc}(\underline{x}) & =\left(\chi_{\left.[-\pi, \pi]^{m}\right)}(\underline{x})=\frac{1}{(2 \pi)^{m}} \int_{\mathbf{R}^{m}} e^{i(x, x, \underline{\xi}\rangle} \chi_{[-\pi, \pi]^{m}}(\underline{\xi}) \mathrm{d} \underline{\xi}\right. \\
& =\prod_{i=1}^{m} \operatorname{sinc}\left(x_{i}\right)=\prod_{i=1}^{m} \frac{\sin \left(\pi x_{i}\right)}{\pi x_{i}} .
\end{aligned}
$$

[^0]As a counterpart generalization of the sinc function (1) to higher-dimensional cases, Kou and Qian extended the sinc function in \mathbf{R}^{m} to $m+1$-dimensional real variables \mathbf{R}_{1}^{m} with the Clifford analysis setting in [2]. The definition of the extended sinc function (we call it inhomogeneous co-dimension-1 sinc function) is based on the generalized exponential function $e(x, \xi)$ in $\mathbf{R}_{1}^{m} \times \mathbf{R}^{m}$, extending the classical exponential function $e^{i\langle x, \underline{\xi}\rangle}$ in $\mathbf{R}^{m} \times \mathbf{R}^{m}$. Furthermore, using the inhomogeneous co-dimension-1 sinc function, they obtained the Shannon sampling theorem [2] corresponding to the Paley-Wiener ($\mathrm{P}-\mathrm{W}$) theorem in \mathbf{R}_{1}^{m} [3]. In this article, we define co-dimension- p sinc functions and prove the corresponding Shannon samplings in relation to the $\mathrm{P}-\mathrm{W}$ theorems obtained in [4].

2. Preliminaries

For a basic knowledge and notation in relation to the Clifford algebra the readers are referred to [5-7].

Let $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ be basic elements satisfying $\mathbf{e}_{i} \mathbf{e}_{j}+\mathbf{e}_{j} \mathbf{e}_{i}=-2 \delta_{i j}$, where $\delta_{i j}=1$ if $i=j$ and $\delta_{i j}=0$ otherwise, $i, j=1,2, \ldots, m$. Set

$$
\mathbf{R}^{m}=\left\{\underline{x}=x_{1} \mathbf{e}_{1}+\cdots+x_{m} \mathbf{e}_{m}: x_{j} \in \mathbf{R}, j=1,2, \ldots, m\right\}
$$

and

$$
\mathbf{R}_{1}^{m}=\left\{x=x_{0}+\underline{x}: x_{0} \in \mathbf{R}, \underline{x} \in \mathbf{R}^{m}\right\} .
$$

\mathbf{R}^{m} and \mathbf{R}_{1}^{m} are called, respectively, the homogeneous and inhomogeneous Euclidean spaces.

Elements in \mathbf{R}^{m} are called homogeneous vectors and those of \mathbf{R}_{1}^{m} inhomogeneous vectors or vectors. The real (or complex) Clifford algebra generated by $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{m}$, denoted by $\mathbf{R}^{(m)}$ (or $\mathbf{C}^{(m)}$), is the universal associative algebra generated by $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{m}$, over the real (or complex) field \mathbf{R} (or \mathbf{C}). A general element in $\mathbf{R}^{(m)}$ (or $\mathbf{C}^{(m)}$), a Clifford number, therefore, is of the form $x=\sum_{S} x_{S} \mathbf{e}_{S}$, where for $S \neq \emptyset$, \mathbf{e}_{S} are ordered reduced products of the basis elements and $\mathbf{e}_{S}=\mathbf{e}_{i_{1}} \mathbf{e}_{i_{2}} \cdots \mathbf{e}_{i,}$, where S runs over all the ordered subsets of $\{1,2, \ldots, m\}$, namely

$$
S=\left\{1 \leq i_{1}<i_{2}<\cdots<i_{l} \leq m\right\}, \quad 1 \leq l \leq m,
$$

and, for $S=\emptyset$, we set $\mathbf{e}_{\emptyset}=\mathbf{e}_{0}=1$.
The natural inner product between x and y in $\mathbf{C}^{(m)}$, denoted by $\langle x, y\rangle$, is the complex number $\sum_{S} x_{S} \overline{y_{S}}$, where $x=\sum_{S} x_{S} \mathbf{e}_{S}$ and $y=\sum_{S} y_{S} \mathbf{e}_{S}$. The norm associated with this inner product is

$$
|x|=\langle x, x\rangle^{1 / 2}=\left(\sum_{S}\left|x_{S}\right|^{2}\right)^{1 / 2}
$$

The Clifford conjugate of a vector $x=x_{0}+\underline{x}$, is defined to be $\bar{x}=x_{0}-\underline{x}$. It is easy to verify that if $x \neq 0$ and $x \in \mathbf{R}_{1}^{m}$, then x has an inverse, x^{-1}, and

$$
x^{-1}=\frac{\bar{x}}{|x|^{2}} .
$$

The unit sphere $\left\{\underline{x} \in \mathbf{R}^{m}:|\underline{x}|=1\right\}$ is denoted by S^{m-1}. We use $B(\underline{x}, r)$ for the open ball in \mathbf{R}^{m} centered at \underline{x} with radius r, and $\bar{B}(\underline{x}, r)$ for the topological closure of $B(\underline{x}, r)$.

Subsequently we shall study functions defined in the homogeneous space \mathbf{R}^{m} taking values in $\mathbf{C}^{(m)}$. So, they are of the form $f(\underline{x})=\sum_{S} f_{S}(\underline{x}) \mathbf{e}_{S}$, where f_{S} are complex-valued functions. We shall use the Dirac operator, or the homogeneous Dirac operator, $\partial_{\underline{x}}$, where $\partial_{\underline{x}}=\left(\partial / \partial x_{1}\right) \mathbf{e}_{1}+\cdots+\left(\partial / \partial x_{m}\right) \mathbf{e}_{m}$. We define the "left" and "right" roles of the operator $\partial_{\underline{x}}$ by

$$
\partial_{\underline{x}} f=\sum_{i=1}^{m} \sum_{S} \frac{\partial f_{S}}{\partial x_{i}} \mathbf{e}_{i} \mathbf{e}_{S}
$$

and

$$
f \partial_{\underline{x}}=\sum_{i=1}^{m} \sum_{S} \frac{\partial f_{S}}{\partial x_{i}} \mathbf{e}_{S} \mathbf{e}_{i} .
$$

If $\partial_{\underline{x}} f=0$ in a domain (open and connected) U, then we say that f is left-monogenic in U; and, if $f \partial_{\underline{x}}=0$ in U, then f is said to be right-monogenic in U. Left- or rightmonogenic are called one-sided-monogenic or simply monogenic. The function theories for left- and right-monogenic functions, respectively, are parallel. If f is both left- and right-monogenic, then we say that f is two-sided-monogenic.

In \mathbf{R}_{1}^{m} we shall use the inhomogeneous Dirac operator, or the generalized Cauchy-Riemann operator, $\partial_{x}=\partial_{0}+\partial_{\underline{x}}, \partial_{0}=\left(\partial / \partial x_{0}\right)$. The concept of monogenic functions in \mathbf{R}_{1}^{m} is defined via the inhomogeneous Dirac operator ∂_{x} in a similar manner. The monogenic function theories for the homogeneous and inhomogeneous spaces, respectively, are analogous.

Let $k \in \mathbf{N}$, where \mathbf{N} denotes the set of non-negative integers. Denote by $M_{\ell}^{+}\left(m, k, \mathbf{C}^{(m)}\right)$ the space of k-homogeneous left-monogenic polynomials in \mathbf{R}^{m}, whose restriction to S^{m-1} is denoted by $\mathcal{M}_{\ell}^{+}\left(m, k, \mathbf{C}^{(m)}\right)$.

The Fourier transform of functions in \mathbf{R}^{m} is defined by

$$
\hat{f}(\underline{\xi})=\int_{\mathbf{R}^{m}} e^{-i(\underline{x}, \underline{\xi})} f(\underline{x}) \mathrm{d} \underline{x},
$$

and the inverse Fourier transform by

$$
\check{g}(\underline{x})=\frac{1}{(2 \pi)^{m}} \int_{\mathbf{R}^{m}} e^{i(\underline{x}, \underline{\xi})} g(\underline{\xi}) \mathrm{d} \underline{\xi},
$$

where $\underline{\xi}=\xi_{1} \mathbf{e}_{1}+\cdots+\xi_{m} \mathbf{e}_{m}$.

To extend the domain of Fourier transforms to \mathbf{R}_{1}^{m}, we first need to extend the exponential function $e^{i\langle\underline{x}, \underline{\xi}\rangle}$. Denote, for $x=x_{0} \mathbf{e}_{0}+\underline{x}$,

$$
\begin{equation*}
e(x, \underline{\xi})=e^{i(\underline{x}, \underline{\xi})} e^{-x_{0}|\underline{\xi}|} \chi_{+}(\underline{\xi})+e^{i\langle(x, \underline{\xi}\rangle} e^{x_{0}|\underline{\xi}|} \chi-(\underline{\xi}), \tag{2}
\end{equation*}
$$

where

$$
\chi_{ \pm}(\underline{\xi})=\frac{1}{2}\left(1 \pm i \frac{\xi \mathbf{e}_{0}}{|\underline{\xi}|}\right) .
$$

It is easy to verify that the functions $\chi_{ \pm}$satisfy the properties for projections:

$$
\chi_{-} \chi_{+}=\chi_{+} \chi_{-}=0, \quad \chi_{ \pm}^{2}=\chi_{ \pm}, \quad \chi_{+}+\chi_{-}=1
$$

As extension of $e(\underline{x}, \underline{\xi})=e^{i\langle(x, \underline{\xi}\rangle}$ to $\mathbf{R}_{1}^{m} \times \mathbf{R}^{m}$, it is easy to verify that, for any fixed $\underline{\xi}$, $e(x, \xi)$ is two-sided-monogenic in $x \in \mathbf{R}_{1}^{m}$. The above extension is the inhomogeneous co-dimension-1 CK extension of $e(\underline{x}, \underline{\xi})$ to \mathbf{R}_{1}^{m}. Replacing \mathbf{e}_{0} by ϵ_{0} in equation (2), where ϵ_{0} is a basis element added to the collection $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$, with $\epsilon_{0}^{2}=-1$ and anti-commutativity with the other $\mathbf{e}_{j}, j=1, \ldots, m$, one obtains the homogeneous co-dimension-1 CK extension $e\left(x_{0} \epsilon_{0}, \underline{x}, \xi\right)$ of $e^{i(\underline{x}, \underline{\xi}\rangle}$ in \mathbf{R}^{m+1}. This function $e\left(x_{0} \epsilon_{0}, \underline{x}, \underline{\xi}\right)$ is left-monogenic in $x \in \mathbf{R}^{m+1}$. Generalizations of the exponential function of these types can be first found in the work of Sommen [8], and then in Li et al. [7], where ξ is further extended to $\xi+i \underline{\xi} \in \mathbf{C}^{m}$.

In [6], the generalized $\mathbf{C} \overline{\mathrm{K}}$ extension tells us: If $A_{0}(\underline{y})$ is an analytic function in \mathbf{R}^{q}, for any k-homogeneous left-monogenic polynomial $P_{k}^{-}(\underline{x})$ in \mathbf{R}^{p}, there exists a unique sequence $\left(A_{l}(\underline{y})\right)_{l>0}$ of analytic functions such that the series

$$
\begin{align*}
f_{P_{k}}(\underline{x}, \underline{y}) & =\sum_{l=0}^{\infty} \underline{x}^{l} P_{k}(\underline{x}) A_{l}(\underline{y}) \\
& =\Gamma\left(k+\frac{p}{2}\right)\left(\frac{r \sqrt{\Delta_{\underline{y}}}}{2}\right)^{-(k+(p / 2))}\left[\frac{r \sqrt{\Delta_{\underline{y}}}}{2} J_{k+\frac{p}{2}-1}\left(r \sqrt{\Delta_{\underline{y}}}\right)+\frac{\underline{x} \partial_{\underline{y}}}{2} J_{k+(p / 2}\left(r \sqrt{\Delta_{\underline{y}}}\right)\right]\left(P_{k}(\underline{x}) A_{0}(\underline{y})\right), \tag{3}
\end{align*}
$$

is convergent and its sum $f_{P_{k}}$ is left-monogenic in any compact set belongs to $\mathbf{R}^{p} \oplus \mathbf{R}^{q}$. Where $\left(\sqrt{\Delta_{\underline{y}}}\right)^{2}=\Delta_{\underline{y}}$, the Laplacian in \underline{y}, and J_{v} the Bessel function

$$
J_{v}(u)=\sum_{l=0}^{\infty} \frac{(-1)^{l}}{2^{2 l+v}!\Gamma(l+v+1)} u^{2 l+v} .
$$

We call $f_{P_{k}}(\underline{x}, \underline{y})$ the generalized $C K$ extension in relation to P_{k} of $A_{0}(\underline{y})$ and $A_{0}(\underline{y})$ the initial value of $f_{P_{k}}(\underline{x}, \underline{y})$. In particular, when $k=0, P_{k}=1$, we get $A_{0}(\underline{y})=f_{P_{k}} \mid \mathbf{R}^{q}$.

Denote $\mathcal{T}_{P_{k}}\left(\mathbf{R}^{q}\right)$ the space of all functions of the form (3).

Furthermore, for any left-monogenic function $f\left(\underline{x, y)}\right.$ in \tilde{U} belongs to $\mathbf{R}^{m}=\mathbf{R}^{p} \oplus \mathbf{R}^{q}$, where $\underline{x}=r \underline{\omega} \in \mathbf{R}^{p}, \underline{y} \in \mathbf{R}^{q}$, denote $T_{k}(f)(\underline{\omega}, \underline{y})=\lim _{r \rightarrow 0} 1 / r^{k} P(k) f(r, \underline{\omega}, \underline{y})$, where $P(k)$ being the projection onto $M_{\ell}^{+}\left(p, k, \mathbf{C}^{(p)}\right)$. $\overline{\text { It }}$ can be decomposed in variable x. By using a basis $P_{k, \alpha}(\underline{\omega})$ for $\mathcal{M}_{\ell}^{+}\left(p, k, \mathbf{C}^{(p)}\right)$,

$$
T_{k}(f)(\underline{\omega}, \underline{y})=\sum_{\alpha \in A_{k}} P_{k, \alpha}(\underline{\omega}) T_{k, \alpha}(f)(\underline{y}),
$$

where $T_{k, \alpha}(f)(\underline{y})$ are real analytic functions.
Denote the generalized CK extension of $T_{k, \alpha}(f)(\underline{y})$ with $P_{k, \alpha}(\underline{x})$ by $T_{k, \alpha}(\underline{x}, \underline{y})$, then f can be written in a uniquely way as

$$
\begin{equation*}
f(\underline{x}, \underline{y})=\sum_{k} \sum_{\alpha \in A_{k}} T_{k, \alpha}(\underline{x}, \underline{y}), \tag{4}
\end{equation*}
$$

where $T_{k, \alpha}(\underline{x}, \underline{y})=\sum_{l} \underline{x}^{l} \tilde{\tilde{U}}_{k, \alpha}(\underline{x}) T_{k, \alpha}^{(l)}(f)(\underline{y})$ and the series (4) converging uniformly on any compact set in \tilde{U}. The series ($\overline{4}$) is called the generalized Taylor series and $T_{k, \alpha}^{(0)}(f)(\underline{y})=T_{k, \alpha}(f)(\underline{y})$ are called the initial values of f.

To extend the domain of Fourier transforms to $\mathbf{R}^{p} \oplus \mathbf{R}^{q}$, we also need to extend the exponential function $e^{i(\underline{y y}, t\rangle}$. In [4], for a given k-homogeneous left-monogenic polynomial $P_{k}(\underline{x})$, we get the generalized CK extension of $e^{i(\underline{y}, \underline{t}\rangle}$ in $\mathcal{T}_{P_{k}}\left(\mathbf{R}^{q}\right)$, $\underline{x}=r \underline{\omega} \in \mathbf{R}^{p}, \underline{y}, \underline{t} \in \mathbf{R}^{q}$, denoted by

$$
\begin{equation*}
\varepsilon_{P_{k}}^{p}(\underline{x}, \underline{y}, \underline{t})=\Gamma\left(k+\frac{p}{2}\right) r^{k} e^{i(\underline{y}, \underline{t})}\left(\frac{r|\underline{t}|}{2}\right)^{-k-(p / 2)+1}\left[I_{k+(p / 2)-1}(r|\underline{t}|)+i I_{k+(p / 2)}(r|\underline{t}|) \underline{\omega} \frac{\underline{t}}{|\underline{t}|}\right] P_{k}(\underline{\omega}), \tag{5}
\end{equation*}
$$

where

$$
I_{v}(u)=i^{-v} J_{v}(i u)=\sum_{k=0}^{\infty} \frac{1}{k!\Gamma(v+k-1)}\left(\frac{u}{2}\right)^{u+2 k},
$$

being a kind of Bessel functions. Then $\varepsilon_{P_{k}}^{p}(\underline{x}, \underline{y}, \underline{t})$ is left-monogenic in $\mathbf{R}^{p} \oplus \mathbf{R}^{q}$.
In particular, when $P_{k}=1, k=0$, we have

$$
\varepsilon_{1}^{p}(\underline{x}, \underline{y}, \underline{t})=\Gamma\left(\frac{p}{2}\right) e^{i(\underline{y}, \underline{t} \mid}\left(\frac{r|\underline{t}|}{2}\right)^{-(p / 2)+1}\left[I_{(p / 2)-1}(r|\underline{t}|)+i I_{p / 2}(r|\underline{t}|) \underline{\omega} \frac{\underline{t}}{|\underline{t}|}\right] .
$$

We in particular denote

$$
\varepsilon_{1}^{1}\left(x_{1} \mathbf{e}_{1}, \underline{y}, \underline{t}\right)=e\left(x_{1} \mathbf{e}_{1}, \underline{y}, \underline{t}\right) .
$$

From [4], we have, for any $u>0$,

$$
\begin{equation*}
\left(\frac{u}{2}\right)^{-v} I_{v}(u)=\sum_{k=0}^{\infty} \frac{1}{k!\Gamma(v+k+1)}\left(\frac{u}{2}\right)^{2 k} \leq C \sum_{k=0}^{\infty} \frac{u^{2 k}}{(2 k)!} \leq C e^{u} . \tag{6}
\end{equation*}
$$

When $|\underline{t}| \leq \Omega$, we have

$$
\begin{align*}
\left|\varepsilon_{P_{k}}^{p}(\underline{x}, \underline{y}, \underline{t})\right| & \leq C\left(\frac{2}{\Omega}\right)^{k}\left(\frac{r \Omega}{2}\right)^{-(p / 2)+1}\left[I_{k+\frac{p}{2}-1}(r \Omega)+I_{k+\frac{p}{2}}(r \Omega)\right] \\
& \leq C\left[I_{k}(r \Omega)+I_{k+1}(r \Omega)\right] \\
& \leq C e^{r \Omega} \tag{7}
\end{align*}
$$

3. Exact interpolation with Shannon sampling in $\mathbf{R}^{m}=\mathbf{R}^{p} \oplus \mathbf{R}^{q}$

Based on the extension of the exponential function given by (5), the generalized co-dimension-p sinc function in relation to $P_{k}(\underline{x}) \in M_{\ell}^{+}\left(p, k, \mathbf{C}^{(p)}\right)$ is defined by

$$
\begin{equation*}
\operatorname{sinc}_{P_{k}}^{p}(\underline{x}, \underline{y})=\frac{1}{(2 \pi)^{q}} \int_{\mathbf{R}^{q}} \varepsilon_{P_{k}}^{p}(\underline{x}, \underline{y}, \underline{t}) \chi_{[-\pi, \pi]^{q}}(\underline{t}) \mathrm{d} \underline{t} . \tag{8}
\end{equation*}
$$

For $h>0$ fixed, define the cardinal function of f to be

$$
C(f, h)(\underline{x}, \underline{y}) \equiv \sum_{\underline{k} \in \mathbf{Z}^{q}} \operatorname{sinc}_{P_{k}}^{p}\left(\frac{\underline{x}}{\bar{h}}, \frac{\underline{y}-h \underline{k}}{h}\right) f(h \underline{k}),
$$

from equation (8), we have

$$
\begin{equation*}
\operatorname{sinc}_{P_{k}}^{p}\left(\frac{x}{h}, \frac{\underline{y}-h \underline{k}}{h}\right)=\frac{h^{q}}{(2 \pi)^{q}} \int_{\left[-\left(\pi / h,(\pi / h]^{q}\right.\right.} \varepsilon_{P_{k}}^{p}(\underline{x}, \underline{y}-h \underline{k}, \underline{t}) \mathrm{d} \underline{t} . \tag{9}
\end{equation*}
$$

Next, we shall consider the generalized co-dimension- p interpolation via the cardinal function corresponding to the generalized co-dimension- $p \mathrm{P}-\mathrm{W}$ theorem proved in [4]:
Lemma 1 [4] (Generalized co-dimension- $p \mathrm{P}-\mathrm{W}$ theorem) Let $P_{k} \in M_{\ell}^{+}\left(p, k ; \mathbf{C}^{(p)}\right)$ be given, F analytic, defined in \mathbf{R}^{q}, taking values in $\mathbf{C}^{(q)}$, which is the complex Clifford algebra generated by $\mathbf{e}_{\mathbf{p}+\mathbf{1}}, \ldots, \mathbf{e}_{\mathbf{p}+\mathbf{q}}$, and $F \in L^{2}\left(\mathbf{R}^{q}\right), \Omega$ be a positive real number. Then the following two assertions are equivalent:
1^{0} F has a homogeneous co-dimensional-p generalized CK extension to \mathbf{R}^{p+q}, denoted by $f_{P_{k}}$, and there exists a constant C such that

$$
\left|f_{P_{k}}(\underline{x}, \underline{y})\right| \leq C e^{\Omega|\underline{|x|}|}, \text { for any } \underline{x} \in \mathbf{R}^{p}, \underline{y} \in \mathbf{R}^{q} .
$$

$2^{0} \operatorname{supp}(\hat{F}) \subset \bar{B}(0, \Omega)$.
Moreover, if one of the above conditions holds, then we have

$$
f_{P_{k}}(\underline{x}, \underline{y})=\frac{1}{(2 \pi)^{q}} \int_{\mathbf{R}^{q}} \varepsilon_{P_{k}}^{p}(\underline{x}, \underline{y}, \underline{\xi}) \hat{F}(\underline{\xi}) \mathrm{d} \underline{\xi}, \text { for any } \underline{x} \in \mathbf{R}^{p}, \underline{y} \in \mathbf{R}^{q} \text {. }
$$

A function f in $\mathbf{R}^{p} \oplus \mathbf{R}^{q}$ is said to be of exponential type Ω if

$$
|f(\underline{x}, \underline{y})| \leq C e^{\Omega|\underline{x}|}, \text { for any } \underline{x} \in \mathbf{R}^{p}, \underline{y} \in \mathbf{R}^{q}
$$

holds.

For any $h>0$, denote
$P W_{\mathcal{T}_{P_{k}}\left(\mathbf{R}^{q}\right)}(\pi / h)=\left\{f \mid f \in \mathcal{T}_{P_{k}}\left(\mathbf{R}^{q}\right)\right.$ and of exponential type π / h, the initial value $F \in L^{2}\left(\mathbf{R}^{q}\right)$ and taking values in $\left.\mathbf{C}^{(q)}\right\}$.

Particularly, taking $k=0, P_{k}=1$ and $p=1$, we have
$P W_{\mathbf{R}^{q+1}}(\pi / h)=\left\{f \mid f\right.$ is left-monogenic in \mathbf{R}^{q+1} and of exponential type $\pi / h,\left.f\right|_{\mathbf{R}^{q}} \in L^{2}\left(\mathbf{R}^{q}\right)$, and $\left.f\right|_{\mathbf{R}^{g}}$ taking values in $\left.\mathbf{C}^{(q)}\right\}$.

The following theorems characterize the functions in the $\mathrm{P}-\mathrm{W}$ class $P W_{\mathcal{T}_{P_{k}}\left(\mathbf{R}^{q}\right)}(\pi / h)$. Theorem 1 If $f \in P_{\mathcal{T}_{P_{k}\left(\mathbf{R}^{q}\right)}}(\pi / h)$, then for any $\underline{x} \in \mathbf{R}^{p}, \underline{y} \in \mathbf{R}^{q}$, we have 1^{0}

$$
f(\underline{x}, \underline{y})=\frac{1}{h^{q}} \int_{\mathbf{R}^{q}} \operatorname{sinc}_{P_{k}}^{p}\left(\frac{\underline{x}}{h}, \frac{\underline{y}-\underline{\xi}}{h}\right) F(\underline{\xi}) \mathrm{d} \underline{\xi} .
$$

2^{0}

$$
\begin{equation*}
\frac{1}{(2 \pi)^{q}} \int_{[-\pi / h, \pi / h]^{q}}|\hat{F}(\underline{y})|^{2} \mathrm{~d} \underline{y}=\int_{\mathbf{R}^{q}}|F(\underline{t})|^{2} \mathrm{~d} \underline{t}=\sum_{\underline{k} \in \mathbf{Z}^{q}}|F(h \underline{k})|^{2} \tag{10}
\end{equation*}
$$

where F is the initial value of f.
Proof 1^{0} : Since $f \in P W_{\mathcal{T}_{P_{k}}\left(\mathbf{R}^{q}\right)}(\pi / h)$, according to Lemma 1, we have

$$
\begin{aligned}
f(\underline{x}, \underline{y}) & =\frac{1}{(2 \pi)^{q}} \int_{\bar{B}(0, \pi / h)} \varepsilon_{P_{k}}^{p}(\underline{x}, \underline{y}, \underline{t}) \hat{F}(\underline{t}) \mathrm{d} \underline{t} \\
& =\frac{1}{(2 \pi)^{q}} \int_{[-\pi / h, \pi / h]^{q}} \varepsilon_{P_{k}}^{p}(\underline{x}, \underline{y}, \underline{t}) \hat{F}(\underline{t}) \mathrm{d} \underline{t} \\
& =\frac{1}{(2 \pi)^{q}} \int_{\mathbf{R}^{q}} \varepsilon_{P_{k}}^{p}(\underline{x}, \underline{y}, \underline{t}) \chi_{[-\pi / h, \pi / h]^{q}}(t) \hat{F}(\underline{t}) \mathrm{d} \underline{t} .
\end{aligned}
$$

By Parseval's theorem and (9), the above is equal to

$$
\begin{aligned}
& \frac{1}{(2 \pi)^{q}} \int_{\mathbf{R}^{q}}\left[\varepsilon_{P_{k}}^{p}(\underline{x}, \underline{y}, \underline{t}) \chi_{[-\pi / h, \pi / h]^{q}}(\underline{t})\right](\underline{\xi}) F(\underline{\xi}) \mathrm{d} \underline{\xi} \\
& =\frac{1}{h^{q}} \int_{\mathbf{R}^{q}}\left(\int_{[-\pi / h, \pi / h]^{q}} \varepsilon_{P_{k}}^{p}(\underline{x}, \underline{y}-\underline{\xi}, \underline{t}) \mathrm{d} \underline{t}\right) F(\underline{\xi}) \mathrm{d} \underline{\xi} \\
& =\frac{1}{h^{q}} \int_{\mathbf{R}^{q}} \operatorname{sinc}_{P_{k}}^{p}\left(\frac{x}{h}, \frac{y-\underline{\xi}}{h}\right) F(\underline{\xi}) \mathrm{d} \underline{\xi} .
\end{aligned}
$$

2^{0} : From Lemma 1, we have

$$
F(\underline{t})=\frac{1}{(2 \pi)^{q}} \int_{B(0, \pi / h)} e^{i(\underline{y}, \underline{t})} \hat{F}(\underline{y}) \mathrm{d} \underline{y}=\frac{1}{(2 \pi)^{q}} \int_{[-\pi / h, \pi / h]^{q}} e^{i(\underline{y}, \underline{t})} \hat{F}(\underline{y}) \mathrm{d} \underline{y} .
$$

Considering the Fourier expansion of \hat{F} in the cube $[-\pi / h, \pi / h]^{q}$, we have

$$
h^{q} F(h \underline{k})=\frac{1}{(2 R)^{q}} \int_{[-R, R]^{q}} e^{i \pi(\underline{x}, \underline{k}) / R} \hat{F}(\underline{y}) \mathrm{d} \underline{y}=c_{k},
$$

where $R=\frac{\pi}{h}$, and c_{k} are the Fourier coefficients of \hat{F}. The Plancherel theorem of Fourier series is

$$
\int_{[-R, R]^{q}}|\hat{F}(\underline{y})|^{2} \mathrm{~d} \underline{y}=(2 R)^{q} \sum_{\underline{k} \in \mathbf{Z}^{q}}\left|c_{k}\right|^{2}
$$

and the Plancherel theorem on L^{2}-functions in \mathbf{R}^{q} reads

$$
\int_{\mathbf{R}^{q}}|\hat{F}(\underline{y})|^{2} \mathrm{~d} \underline{y}=\int_{[-R, R]^{q}}|\hat{F}(\underline{y})|^{2} \mathrm{~d} \underline{y}=(2 \pi)^{q} \int_{\mathbf{R}^{q}}|F(\underline{t})|^{2} \mathrm{~d} \underline{t} .
$$

So we have

$$
\frac{1}{(2 \pi)^{q}} \int_{[-\pi / h, \pi / h]^{q}}|\hat{F}(\underline{y})|^{2} \mathrm{~d} \underline{y}=\int_{\mathbf{R}^{q}}|F(\underline{t})|^{2} \mathrm{~d} \underline{t}=\sum_{\underline{k} \in \mathbf{Z}^{q}}|F(h \underline{k})|^{2} .
$$

Corollary 1 If $f \in P W_{\mathcal{T}_{1}\left(\mathbf{R}^{q}\right)}(\pi / h)$, then for any $\underline{x} \in \mathbf{R}^{p}, \underline{y} \in \mathbf{R}^{q}$, we have

$$
\begin{gathered}
f(\underline{x}, \underline{y})=\frac{1}{h^{q}} \int_{\mathbf{R}^{q}} \operatorname{sinc}_{1}^{p}\left(\frac{\underline{x}}{h}, \frac{\underline{y}-\underline{\xi}}{h}\right) f(\underline{\xi}) \mathrm{d} \underline{\xi} . \\
\frac{1}{(2 \pi)^{q}} \int_{[-\pi / h, \pi / h]^{q}}|\hat{f}(\underline{y})|^{2} \mathrm{~d} \underline{y}=\int_{\mathbf{R}^{q}}|f(\underline{t})|^{2} \mathrm{~d} \underline{t}=\sum_{\underline{k} \in \mathbf{Z}^{q}}|f(h \underline{k})|^{2} .
\end{gathered}
$$

From (8) and the co-dimension- $p \mathrm{P}-\mathrm{W}$ theorem, we can obtain that $\operatorname{sinc}_{P_{p_{k}}}^{p}(\underline{x} / h, \underline{y} / h)$ belongs to $P W_{\mathcal{T}_{P_{k}}\left(\mathbf{R}^{q}\right)}(\sqrt{q} \pi / h)$. Furthermore, we can construct functions ${ }^{-}$in $P W_{\mathcal{T}_{P_{k}}\left(\mathbf{R}^{q}\right)}(\sqrt{q} \pi / h)$ using the following Theorem.
Theorem 2 Let $P_{k} \in M_{\ell}^{+}\left(p, k ; \mathbf{C}^{(p)}\right)$ be given, $F \in L^{2}\left(\mathbf{R}^{q}\right)$ and take values in $\mathbf{C}^{(q)}$. Then $f \in P W_{\mathcal{T}_{P_{k}}\left(\mathbf{R}^{q}\right)}(\sqrt{q} \pi / h)$, where

$$
\begin{equation*}
f(\underline{x}, \underline{y})=h^{q} \int_{\mathbf{R}^{q}} \operatorname{sinc}_{P_{k}}^{p}\left(\frac{x}{h}, \frac{\underline{y}-\underline{\xi}}{h}\right) F(\underline{\xi}) \mathrm{d} \underline{\xi} . \tag{11}
\end{equation*}
$$

Proof Applying the Parseval's theorem to the right-hand side of equation (11), owing to equation (9), we have

$$
\begin{aligned}
f(\underline{x}, \underline{y}) & =\frac{h^{q}}{(2 \pi)^{q}} \int_{\mathbf{R}^{q}}\left[\operatorname{sinc}_{P_{k}}^{p}\left(\underline{\underline{x}}, \frac{\underline{y}-\underline{\xi}}{h}\right)\right](-\underline{t}) \hat{F}(\underline{t}) \mathrm{d} \underline{t} \\
& =\frac{h^{q}}{(2 \pi)^{q}} \int_{\mathbf{R}^{q}} h^{-q} \varepsilon_{P_{k}}^{p}(\underline{x}, \underline{y}, \underline{t}) \chi_{[-\pi / h, \pi / h]^{q}}(\underline{t}) \hat{F}(\underline{t}) \mathrm{d} \underline{t} \\
& =\frac{1}{(2 \pi)^{q}} \int_{\mathbf{R}^{q}} \varepsilon_{P_{k}}^{p}(\underline{x}, \underline{y}, \underline{t}) \chi_{[-\pi / h, \pi / h]^{q}}(\underline{t}) \hat{F}(\underline{t}) \mathrm{d} \underline{t} \\
& =\frac{1}{(2 \pi)^{q}} \int_{[-\pi / h, \pi / h]^{q}} \varepsilon_{P_{k}}^{p}(\underline{x}, \underline{y}, \underline{t}) \hat{F}(\underline{t}) \mathrm{d} \underline{t} .
\end{aligned}
$$

According to the evaluation (7) of $\varepsilon_{P_{k}}^{p}$, we have

$$
|f(\underline{x}, \underline{y})| \leq C e^{\sqrt{q} \pi / h|\underline{x}|} \text {, for any } \underline{x} \in \mathbf{R}^{p}, \underline{y} \in \mathbf{R}^{q}
$$

By Lemma 1, we get $f(\underline{x}, \underline{y}) \in P W_{\mathcal{T}_{P_{k}}\left(\mathbf{R}^{q}\right)}(\sqrt{q} \pi / h)$.
Next, the exact $\operatorname{sinc}_{P_{k}}$ interpolation of functions in $P W_{\mathcal{T}_{P_{k}}\left(\mathbf{R}^{q}\right)}(\pi / h)$ is given.
Theorem 3 If $f \in P W_{\mathcal{T}_{P_{k}}\left(\mathbf{R}^{q}\right)}(\pi / h)$, then for any $\underline{x} \in \mathbf{R}^{p}, \underline{y} \in \mathbf{R}^{q}$,

$$
\begin{equation*}
f(\underline{x}, \underline{y})=C(f, h)(\underline{x}, \underline{y})=\sum_{\underline{k} \in \mathbf{Z}^{q}} \operatorname{sinc}_{P_{k}}^{p}\left(\frac{\underline{x}}{h}, \frac{\underline{y}-h \underline{k}}{h}\right) F(h \underline{k}), \tag{12}
\end{equation*}
$$

where F is the initial value of f and the series on the right-hand side is absolutely and uniformly convergent for any $\underline{y} \in \mathbf{R}^{q}$ and \underline{x} belongs to any bounded set in \mathbf{R}^{p}.
Proof Since $f(\underline{x}, \underline{y}) \in P W_{\mathcal{T}_{P_{k}}\left(\mathbf{R}^{q}\right)}(\pi / h)$, Lemma 1 gives

$$
\begin{equation*}
f(\underline{x}, \underline{y})=\frac{1}{(2 \pi)^{q}} \int_{[-\pi / h, \pi / h]^{q}} \varepsilon_{P_{k}}^{p}(\underline{x}, \underline{y}, \underline{t}) \hat{F}(\underline{t}) \mathrm{d} \underline{t} . \tag{13}
\end{equation*}
$$

Expanding $\varepsilon_{P_{k}}^{p}(\underline{x}, \underline{y}, \underline{t})$ on the cube $[-\pi / h, \pi / h]^{q}$ into its multiple Fourier series in q-variables, we have

$$
\begin{equation*}
\varepsilon_{P_{k}}^{p}(\underline{x}, \underline{y}, \underline{t})=\sum_{\underline{k} \in \mathbf{Z}^{q}} e^{i\langle h \underline{k}, \underline{t}\rangle} a_{\underline{k}}(\underline{x}, \underline{y}), \tag{14}
\end{equation*}
$$

where

$$
\begin{aligned}
a_{\underline{k}}(\underline{x}, \underline{y}) & =\frac{h^{q}}{(2 \pi)^{q}} \int_{[-\pi / h, \pi / h]^{q}} \varepsilon_{P_{k}}^{p}(\underline{x}, \underline{y}, \underline{t}) e^{-i\langle h \underline{k}, \underline{t}} \mathrm{d} \underline{t} \\
& =\frac{h^{q}}{(2 \pi)^{q}} \int_{[-\pi / h, \pi / h]^{q}} \varepsilon_{P_{k}}^{p}(\underline{x}, \underline{y}-h \underline{k}, \underline{t}) \mathrm{d} \underline{t} \\
& =\operatorname{sinc}_{P_{k}}^{p}\left(\frac{x}{h}, \frac{y-h \underline{k}}{h}\right)
\end{aligned}
$$

are the Fourier coefficients of $\varepsilon_{P_{k}}^{p}(\underline{x}, \underline{y}, \underline{t})$.

Substituting the series expansion (14) in the integral (13) and interchanging the order of the summation and the integration due to the L^{2}-convergence, we have

$$
\begin{aligned}
f(\underline{x}, \underline{y}) & =\frac{1}{(2 \pi)^{q}} \int_{[-\pi / h, \pi / h]^{q}} \sum_{\underline{k} \in \mathbf{Z}^{q}} e^{i(h \underline{k}, \underline{t})} \operatorname{sinc}_{P_{k}}^{p}\left(\frac{\underline{x}}{h}, \frac{\underline{y}-h \underline{k}}{h}\right) \hat{F}(t) \mathrm{d} \underline{t} \\
& =\sum_{\underline{k} \in \mathbf{Z}^{q}} \operatorname{sinc}_{P_{k}}^{p}\left(\frac{x}{h}, \frac{\underline{y}-h \underline{k}}{h}\right)\left(\frac{1}{(2 \pi)^{q}} \int_{[-\pi / h, \pi / h]^{q}} e^{i(h \underline{k}, t)} \hat{F}(\underline{t}) \mathrm{d} \underline{t}\right) \\
& =\sum_{\underline{k} \in \mathbf{Z}^{q}} \operatorname{sinc}_{P_{k}}^{p}\left(\frac{\underline{x}}{h}, \frac{\underline{y}-h \underline{k}}{h}\right) F(h \underline{k}) .
\end{aligned}
$$

We next show the uniform convergence of the series on the right side.
In fact, for any positive number M, using the Cauchy-Schwarz inequality, we have

$$
\left|\sum_{|\underline{k}|\rangle M} \operatorname{sinc}_{P_{k}}^{p}\left(\frac{\underline{x}}{\bar{h}}, \frac{\underline{y}-h \underline{k}}{h}\right) F(h \underline{k})\right| \leq\left(\sum_{|\underline{k}|\rangle M}\left|\operatorname{sinc}_{P_{k}}^{p}\left(\frac{\underline{x}}{\bar{h}}, \frac{\underline{y}-h \underline{k}}{h}\right)\right|^{2}\right)^{1 / 2}\left(\sum_{|\underline{k}|\rangle M}|F(h \underline{k})|^{2}\right)^{1 / 2} .
$$

Note that the function $\varepsilon_{P_{k}}^{p}(\underline{x}, \underline{y}, \cdot) \in L^{2}\left([-\pi / h, \pi / h]^{q}\right)$. Using the Bessel inequality and equation (7), for any bounded set $U \in \mathbf{R}^{p}$, we have

$$
\begin{aligned}
\left(\sum_{|\underline{|k|}|\rangle M}\left|\operatorname{sinc}_{P_{k}}^{p}\left(\frac{\underline{\underline{x}}}{h}, \frac{\underline{y}-h \underline{\underline{k}}}{h}\right)\right|^{2}\right)^{1 / 2} & \leq\left(\frac{h}{2 \pi}\right)^{q / 2}\left\|\varepsilon_{P_{k}}^{p}(\underline{x}, \underline{y}, \cdot)\right\|_{L^{2}\left([-\pi / h, \pi / h]^{q}\right)} \\
& \leq\left(\frac{h}{2 \pi}\right)^{q / 2} e^{\sqrt{q}|\underline{x}| \pi / h} \leq C<\infty
\end{aligned}
$$

where $\underline{y} \in \mathbf{R}^{q}, \underline{x} \in U$. Owing to the estimate and equation (10), the series in equation (12) is convergent uniformly and absolutely in $U \oplus \mathbf{R}^{q}$.

The homogeneous co-dimension- $p \mathrm{P}-\mathrm{W}$ theorem is stated as:
Lemma 2 [4] (Homogeneous co-dimension- $p \mathrm{P}-\mathrm{W}$ theorem) Let F be analytic, defined in \mathbf{R}^{q}, taking values in $\mathbf{C}^{(q)}$, the complex Clifford algebra generated by $\mathbf{e}_{\mathbf{p}+\mathbf{1}}, \ldots, \mathbf{e}_{\mathbf{p}+\mathbf{q}}$, and $F \in L^{2}\left(\mathbf{R}^{q}\right) . \Omega$ is a positive real number. Then the following two assertions are equivalent:
$1^{0} F$ has a homogeneous co-dimensional-p CK extension to \mathbf{R}^{p+q}, denoted by f, and there exists a constant C such that

$$
|f(\underline{x}, \underline{y})| \leq C e^{\Omega|\underline{x}|}, \text { for any } \underline{x} \in \mathbf{R}^{p}, \underline{y} \in \mathbf{R}^{q} .
$$

$2^{0} \operatorname{supp}(\hat{F}) \subset \bar{B}(0, \Omega)$.
Moreover, if one of the above conditions holds, we have

$$
f(\underline{x}, \underline{y})=\frac{1}{(2 \pi)^{q}} \int_{\mathbf{R}^{q}} \varepsilon_{1}^{p}(\underline{x}, \underline{y}, \underline{\xi}) \hat{F}(\underline{\xi}) \mathrm{d} \underline{\xi}, \text { for any } \underline{x} \in \mathbf{R}^{p}, \underline{y} \in \mathbf{R}^{q} .
$$

Corresponding to the Lemma 2, we have the exact $\operatorname{sinc}_{1}^{p}$ interpolation of functions in $P W_{\mathcal{T}_{1}\left(\mathbf{R}^{q}\right)}(\pi / h)$.
Corollary 2 If $f \in P W_{\mathcal{T}_{1}\left(\mathbf{R}^{q}\right)}(\pi / h)$, then for any $\underline{x} \in \mathbf{R}^{p}, \underline{y} \in \mathbf{R}^{q}$,

$$
f(\underline{x}, \underline{y})=C(f, h)(\underline{x}, \underline{y})=\sum_{\underline{k} \in \mathbf{Z}^{q}} \operatorname{sinc}_{1}^{p}\left(\frac{x}{h}, \frac{\underline{y}-h \underline{k}}{h}\right) f(h \underline{k}),
$$

where

$$
\operatorname{sinc}_{1}^{p}(\underline{x}, \underline{y})=\frac{1}{(2 \pi)^{q}} \int_{\mathbf{R}^{q}} \varepsilon_{1}^{p}(\underline{x}, \underline{y}, \underline{t}) \chi_{[-\pi, \pi]^{q}}(\underline{t}) \mathrm{d} \underline{t},
$$

and the series on the right-hand side is absolutely and uniformly convergent for any $\underline{y} \in \mathbf{R}^{q}$ and \underline{x} belongs to any bounded set in \mathbf{R}^{p}.

Henceforth the article shall deal with the Shannon sampling theorem in relation to the generalized Taylor series.

In [4], the co-dimension- $p \mathrm{P}-\mathrm{W}$ theorem related to generalized Taylor series reads:
Lemma 3 Assume that $f(\underline{x}, \underline{y})$ is left-monogenic in $\mathbf{R}^{m}=\mathbf{R}^{p} \oplus \mathbf{R}^{q}$ with the form (4). For any $k \geq 0$ and $\alpha \in A_{k}$, let $T_{k, \alpha}(f)(y)=T_{k, \alpha}^{(0)}(f)(\underline{y})$ be analytic, defined in \mathbf{R}^{q}, taking values in $\mathbf{C}^{(q)}$, the complex Clifford algebra generated by $\mathbf{e}_{\mathbf{p}+\mathbf{1}}, \ldots, \mathbf{e}_{\mathbf{p}+\mathbf{q}}$, $T_{k, \alpha}(f)(\underline{y}) \in L^{2}\left(\mathbf{R}^{q}\right)$,

$$
\left|\sum_{k} \sum_{\alpha} P_{k, \alpha}(\underline{x}) \hat{T}_{k, \alpha}(f)(\underline{\xi})\right| \leq C e^{\Omega|\underline{x}|}, \text { for any } \underline{x} \in \mathbf{R}^{p}, \underline{\xi} \in \mathbf{R}^{q} \text {, }
$$

where Ω is a positive real number. Then the following two assertions are equivalent:
1^{0} There exists a constant C such that

$$
|f(\underline{x}, \underline{y})| \leq C e^{\Omega|\underline{x}|}, \text { for any } \underline{x} \in \mathbf{R}^{p}, \underline{y} \in \mathbf{R}^{q} .
$$

$2^{0} \operatorname{supp}\left(\hat{T}_{k, \alpha}(f)\right) \subset \bar{B}(0, \Omega)$, for any $k \geq 0$ and $\alpha \in A_{k}$.
Moreover, if one of the above conditions holds, we have

$$
\begin{equation*}
f(\underline{x}, \underline{y})=\sum_{k} \sum_{\alpha} T_{k, \alpha}(\underline{x}, \underline{y})=\frac{1}{(2 \pi)^{q}} \sum_{k} \sum_{\alpha} \int_{\mathbf{R}^{q}} \varepsilon_{P_{k, \alpha}}^{p}(\underline{x}, \underline{y}, \underline{\xi}) \hat{T}_{k, \alpha}(f)(\underline{\xi}) \mathrm{d} \underline{\xi}, \tag{15}
\end{equation*}
$$

for any $\underline{x} \in \mathbf{R}^{p}, \underline{y} \in \mathbf{R}^{q}$ and the series is converging uniformly on any compact set in $\mathbf{R}^{p} \oplus \mathbf{R}^{q}$.

Next, the Shannon sampling theorem corresponding to the $\mathrm{P}-\mathrm{W}$ theorem above is obtained. For any $h>0$, denote
$P W_{\mathbf{R}^{p} \oplus \mathbf{R}^{q}}(\pi / h)=\left\{f \mid f\right.$ is left-monogenic in $\mathbf{R}^{p} \oplus \mathbf{R}^{q}$ with the form (4) and of exponential type π / h, the initial values $T_{k, \alpha}(f)(\underline{y}) \in L^{2}\left(\mathbf{R}^{q}\right)$ and taking values in $\mathbf{C}^{(q)}$.\}

Theorem 4 If $f \in P W_{\mathbf{R}^{p} \oplus \mathbf{R}^{q}}(\pi / h)$, then for any $\underline{x} \in \mathbf{R}^{p}, \underline{y} \in \mathbf{R}^{q}$,

$$
\begin{equation*}
f(\underline{x}, \underline{y})=\sum_{k} \sum_{\alpha} C\left[T_{k, \alpha}(f), h\right](\underline{x}, \underline{y}), \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
C\left[T_{k, \alpha}(f), h\right](\underline{x}, \underline{y})=\sum_{\underline{k} \in \mathbf{Z}^{q}} \operatorname{sinc}_{P_{k, \alpha}}^{p}\left(\frac{\underline{x}}{h}, \frac{\underline{y}-h \underline{k}}{h}\right) T_{k, \alpha}(f)(h \underline{k}) \tag{17}
\end{equation*}
$$

and $T_{k, \alpha}(f)(\underline{y})$ are the initial values of f. The series (16) and (17) on the right-hand side are uniformly convergent on any compact set in $\mathbf{R}^{p} \oplus \mathbf{R}^{q}$.

Proof If $f \in P W_{\mathbf{R}^{p}} \oplus \mathbf{R}^{q}(\pi / h)$, then f has the form in (15). Using Theorem 3, we obtain

$$
T_{k, \alpha}(\underline{x}, \underline{y})=C\left[T_{k, \alpha}(f), h\right](\underline{x}, \underline{y})=\sum_{\underline{k} \in \mathbf{Z}^{q}} \operatorname{sinc}_{P_{k, \alpha}}^{p}\left(\frac{\underline{x}}{h}, \frac{\underline{y}-h \underline{k}}{h}\right) T_{k, \alpha}(f)(h \underline{k}) .
$$

Acknowledgement

This work was supported by Research Grant of the University of Macau No. RG024/ $03-04 \mathrm{~S} / \mathrm{QT} / \mathrm{FST}$.

References

[1] Lund, J. and Bowers, K., 1992, Sinc Methods for Quadrature and Differential Equations, SIAM.
[2] Kou, K. and Qian, T., 2005, Shannon sampling with the Clifford Analysis setting. Zeitschrift für Analysis und ihre Anwendungen, 24(4), 853-870.
[3] Kou, K. and Qian, T., 2002, The Paley-Wiener theorem in \mathbf{R}_{1}^{n} with the Clifford analysis setting. Journal of Functional Analysis, 189, 227-241.
[4] Yang, Y., Qian, T. and Sommen, F., Co-dimension-P Paley-Wiener Theorems (preprint: Singapore).
[5] Delanghe, R., Somman, F. and Souček, V., 1992, Clifford Algebra and Spinor-Valued Functions, Vol. 53, (Dorderecht, Boston, London: Kluwer Academic Publishers).
[6] Delanghe, R., Sommen, F. and Souček, V., 1992, Residues in Clifford analysis. Partial Differential Equations with Complex Analysis, Pitman Research Notes in Math., Vol. 262, pp. 61-92.
[7] Li, C., Mcintosh, A. and Qian, T., 1994, Clifford algebras, fourier transforms, and singular convolution operators on lipschitz surfaces. Rev. Mat. Iberoamericana, 10, 665-721.
[8] Sommen, F., 1982, Some connections between Clifford analysis and complex analysis. Complex Variables: Theory Appl., 1, 97-118.

Copyright of Complex Variables \& Elliptic Equations is the property of Taylor \& Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

[^0]: *Corresponding author. Email: ya27406@umac.mo

