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0 Introduction

A function or signal f(x) ∈ L2(R) is said to be frequency band-limited if f̂(ω) ⊂ [−Ω,Ω].
By Shannon sampling theorem, f(x) is completely determined by its values at the points
tj = jπ

Ω , j = 0,±1,±2, . . . . Precisely, f(x) has the following series expansion

f(x) =
+∞∑

j=−∞
f(j

π

Ω
)
sin(Ωx− jπ)

Ωx− jπ
,

and the series on the right converges uniformly. The natural frequency ν = Ω
2π is called the

Nyquist frequency.
An entire function defined in the complex plane is said to be of exponential type-σ (σ > 0)

if there is a constant M > 0, such that |F (z)| ≤ Meσ|z|, ∀z ∈ C.
By the classical Paley-Wiener theorem, if F (x) ∈ L2(R), then F (x) is the restriction of

a exponential type-σ function F (x + iy) defined in real line if and only if supp F̂ ⊂ [−σ, σ].
Moreover, if one of the above conditions holds, then

F (z) =
1
2π

∫ σ

−σ
F̂ (ξ)ei(x+iy)dξ, z = x + iy.

† Corresponding author. This work was partially supported by the National 973 Project (No. 1999075105),
NNSF of China (No. 10471002) and Research Foundation for Doctoral Programm (No. 20050574002)
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The classical Paley-Wiener theorem deeply reveals the relations between the exponential
growth property for holomorphic function F (x+ iy) and the size of F̂ . It is the theoretical basis
of Shannon sampling theorem.

In 1957, by turning high-dimension case into one-dimension, E. M. Stein generalized the
classical Paley-Wiener theorem to one for holomorphic functions of several variables[1].

The classical Paley-Wiener theorem was also generalized to Paley-Wiener-Schwartz theo-
rem, which was used to characterize Schwartz test functions and distributions with compact
support, and by which Malgrang proved that the partial differential equation P (D)δ = u with
constant coefficients has a fundamental solution.

The proof of the classical Paley-Wiener theorem invokes the Phragmén-Lindelöf theorem,
which generalize the Maximum Modulus Theorem for complex analytic function from bounded
domain into unbounded domain. But the proof of the latter theorem makes use of the basic fact
that the product of two complex analytic functions is still analytic. This fails in quaternionic
analysis, octonionic analysis and Clifford analysis.

The study of quaternionic analysis was started from 1930s. With more and more applica-
tions, the quaternionic Fourier transform theory now is used in the color image processing.

As high-dimensional generalization of complex analysis and quaternionic analysis, based
on the associative Clifford algebras, Clifford analysis have been developed since 1970s. By
imbedding Rn into Clifford algebra, Rn then have algebraic and complex structures. Such a
Clifford method has been wildly used in mathematics and physics and many other respects.

In 2002, in the Clifford algebra setting, K. I. Kou and T, Qian generalized the classical
Paley-Wiener theorem to Clifford monogenic functions and gave some applications[2].

As the largest normed division algebra among the real numbers, complex numbers, quater-
nions and octonions, octonions are neither commutative nor associative, the analysis theory in
octonions then should have a wild-ranging applicable space. But, it is the non-commutativity
and the non-associativity that obstruct the progress of the octonion analysis for a long time.

However, some applications of octonions in mathematics and physics were observed fairly
earlier. In 1925, Élie Cartan discovered the the symmetry between vectors and spinors in 8-
dimensional Euclidean space when describing triality[3]. In 1934, Jordan, Newmann, Wigner
noticed its relevance to physics on the foundations of quantum mechanics[4].

Besides their possible role in physics, the octonions are important because they tie together
some algebraic structure that otherwise appear as isolated and inexplicable exceptions. Simple
Lie algebras are a nice example of this phenomenon. There are 5 exceptional simple Lie algebras,
these were discovered by Killing and Cartan in the late 1800s. The 4 of them come from the
isometry group of the projective planes over O,O ⊗ C,O ⊗ H and O ⊗ O[5]. The remaining
one is the automorphism group of the octonions. Another good example is the classification of
simple formally real Jordan algebras. The 3× 3 hermitian octonionic matrices algebra H3(O)
consists of the exceptional Jordan algebra. Further more, by using the combination property
of octonions, a solution can be given for the ancient sphere packing problem when n = 8[6].

The achievements of Clifford analysis make it possible to develop the octonion analysis.
In 1995, we began to study octonion analysis systematically, and the basic frame of octonion
analysis was formulated[7−15].

Now, people pay more attentions to octonion analysis and its applications. In a 2001
paper[5], J. C. Baez pointed out that, octonions stand at the crossroads of many interesting
fields of mathematics. He described their relations to Clifford algebras and spinors, Bott
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periodicity, projective and Lorentzian geometry, Jordan algebras, and the exceptional Lie
groups. he also considered the applications of octonions in quantum logic, special relativ-
ity and supersymmetry[6]. At the end of [5], the author posed 14 questions that should be
exploited. The first one is to set up an octonionic analogue of the theory of complex analytic
functions.

Since Paley-Wiener theorem plays an important role in mathematics and information the-
ory, and it holds for Clifford monogenic functions, it is natural to ask wether it holds for the
non-commutative and non-associative octonion analytic functions.

In order to describe the octonionic Paley-Wiener, first of all, we must select a suitable
definition of octonionic exponential function: the function itself is left (right) octonion analytic,
and also, the Fourier transform defined by this exponential function is also left (right) octonion
analytic. The octonion Taylor expansion formula in [11] can not be directly applied to the
proof of the theorem, we therefore need to set up another octonion Taylor expansion formula
with integral terms. Also, the functions considered in [2] are all defined in Rn with Clifford-
values, they depend on the associativity of Clifford algebras in many circumstances, such as
(fg)h = f(gh), ((fg)h)k = (fg)(hk) = f((gh)k) etc. But these fail to hold for octonion-
valued functions. The proof in this paper follows the same line as in [2] with necessary and
non-trivial changes overcoming the difficulties arising from the non-associativity. The main
effort is devoted to deal with associator by newly developed method in octonion analysis.
Such method appears to be particularly for the non-associativity and have never occurred for
associative analysis. In the end of the paper, we present a simple application of the octonionic
Paley-Wiener theorem.

1 Preliminaries

There are only four normed division algebras: the real numbers R, complex numbers
C, quaternions H and octonions O, satisfying the relations R j C j H j O. In
other words, for any x, y ∈ Rn, if we define a product x · y such that x · y ∈ Rn, and
||x ·y|| = ||x||||y||, and also, for any non-zero vector, its inverse exists, then the only four

values of n are 1, 2, 4, 8, where ||x|| =
√∑n

1 x2
i .

Quaternions H are not commutative, while the octonions O are neither commuta-
tive nor associative, and, unlike R, C and H, the non-associative octonions can not be
embedded into the associative Clifford algebras.

Let e0, e1, . . . , e6, e7 be the basis elements of octonions O, and

W = {(1, 2, 3), (1, 4, 5), (2, 4, 6), (3, 4, 7), (2, 5, 7), (6, 1, 7, ), (5, 3, 6)}.

Then
e2
0 = e0, eαe0 = e0eα = eα, e2

α = −1, α = 1, 2, . . . , 7,

and for any triple of (α, β, γ) ∈ W,

eαeβ = eγ = −eβeα, eβeγ = eα = −eγeβ, eγeα = eβ = −eαeγ.

Octonions are also called Cayley numbers. For each x ∈ O, x is of the form x =∑7
0 xkek, xk ∈ R. Octonion algebra is an alternative algebra, this means that the subal-

gebra generated by any two elements is associative.
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Call the object [x, y, z] = (xy)z − x(yz) to be a associator of x, y, z, then for any
x, y, z ∈ O,

[x, y, z] = [y, z, x] = [z, x, y],
[x, x, y] = 0,

[x, y, z] = −[y, x, z].

Let a = a0e0 + a1e1 + . . . + a7e7, b = b0e0 + b1e1 + . . . + b7e7, where ak, bk ∈ R, k =
0, 1, . . . , 7, and let a = a0 + ~A, b = b0 + ~B, then ab = a0b0 + a0

~B + b0
~A + ~A~B. Putting

for i, j = 1, 2, . . . , 7,

Aij = det

(
ai aj

bi bj

)
.

Then

~A~B = − ~A · ~B + e1(A2,3 + A4,5 − A6,7) + e2(−A1,3 + A4,6 + A5,7)

+ e3(A1,2 + A4,7 − A5,6) + e4(−A1,5 − A2,6 − A3,7)

+ e5(A1,4 − A2,7 + A3,6) + e6(A1,7 + A2,4 − A3,5)

+ e7(−A1,6 + A2,5 + A3,4).

Using the symbol in [15], we have ~A~B = − ~A · ~B + ~A× ~B, and

( ~A× ~B) · ~A = 0, ( ~A× ~B) · ~B = 0, ~A// ~B ⇐⇒ ~A× ~B = 0, ~A× ~B = − ~B × ~A.

The conjugate of x ∈ O is defined by x =
∑7

0 xkek, where e0 = e0, ej = −ej, j =

1, 2, . . . , 7. We have eiej = ej ei, i, j = 1, 2, . . . , 7, and xy = y x, xx = xx =
∑7

0 x2
i =: |x|2.

So, if O 3 x 6= 0, then x−1 = x
|x|2 .

Although octonions do not obey associative law, they still obey some weakened as-
sociative laws, including the so-called R. Moufang identities

(uvu)x = u(v(ux)), x(uvu) = ((xu)v)u, u(xy)u = (ux)(yu).

Suppose Ω is an open and connected set in R8, f : Ω −→ O, f(x) =
∑7

0 ekfk(x),

where fk(x) are all real-valued functions. The Dirac operator D and its conjugate D are
the first-order systems of differential operators on C∞(Ω, O), defined, respectively, by

D =
∑7

0 ek
∂

∂xk
, D =

∑7
0 ek

∂
∂xk

.

A function f in C∞(Ω, O) is said to be left (right) octonion analytic on Ω, if

Df =
∑7

0 ek
∂f
∂xk

= 0 (fD =
∑7

0
∂f
∂xk

ek = 0).
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Since DD = DD = 48 =
∑7

0
∂2

∂x2
k
, all the components of any left (right) octonion

analytic function are harmonic functions.
Let M be an 8-dimensional, compact, oriented C∞–manifold with boundary ∂M

contained in some open connected subset Ω of R8. For each x ∈ ∂M, let n(x) =
∑7

0 njej

be the outer unit normal to ∂M at x, dS(x) is the scalar element of surface area on ∂M,
and dσ = ndS, ω = n(x)f(x)dS(x). Let Φ(x − z) = x−z

ω7|x−z|8 =:
∑7

0 Φses, with ω7 the

surface area of the unit sphere in R8.

Theorem A[9,12]. Let M be an 8-dimensional, compact, oriented C∞–manifold with
boundary ∂M contained in some open connected subset Ω of R8. Then∫

∂M
ω =

∫
∂M

n(x)f(x)dS(x) = 0

for any function f which is left octonion analytic in Ω.

Theorem B[9,12]. M, Ω are as above, Df = 0, x ∈ Ω. Then for any interior point z
of M,

f(z) =

∫
∂M

Φ(x− z) (dσ(x)f(x))

=

∫
∂M

(Φ(x− z)dσ(x)) f(x)−
∫

M

Σ7
t=0[ Φ(x− z), Dft(x), et ]dV,

and for any z ∈ Ω\M, ∫
∂M

Φ(x− z) (dσ(x)f(x)) = 0,

where dV (x) = dx0 ∧ · · · ∧ dx7.

Remarks

[1] The Clifford algebras An are real 2n dimensional associative algebras, satisfying
that A0 = R, A1 = C, A2 = H. But A3 6= O, and there are a lot of essential differences
between Clifford algebras and octonions. Octonions are non-associative and divisible,
while Clifford algebras are not divisible but associative; The set of left Clifford monogenic
functions becomes a right Clifford module, while the set of left octonion analytic functions
can not become a right octonion module. For more references on the Clifford analysis,
see [16-18];

[2] Denote the complexification of O by Oc, then x ∈ Oc ⇐⇒ x =
∑7

k=0 xkek, xk ∈
C. Note that Oc is no longer a division algebra. We claim that the properties of the
associator, the R. Moufang identities, the definition for left (right) octonion analytic
functions and the theorems stated above can all be generalized to Oc;

[3] Hereafter we make no differences from x = (x0, . . . , x7) ∈ R8 and x =
∑7

k=0 xkek ∈
O, x = (x0, . . . , x7) ∈ C8 and x =

∑7
k=0 xkek ∈ Oc.

2 Octonionic exponential function and Taylor expansion formula
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Similar to [16], the octonionic exponential function is defined as follows. For x =
x0 + x ∈ C8, ξ = ξ1e1 + · · ·+ ξ7e7 ∈ C7, denote

e(x, ξ) = ei<x, ξ>e−x0|ξ|χ+(ξ) + ei<x, ξ>ex0|ξ|χ−(ξ),

where

χ±(ξ) =
1

2
(1± i

ξ

|ξ|
).

It is easy to very that

χ−χ+ = χ+χ− = 0, χ2
± = χ±, χ+ + χ− = 1.

Remark The definition of octonionic exponential function is a generalization of our
usual exponential function. For further generalization of exponential function see [16].

The following assertion may be proved by a direct computation.

Proposition 2.1. Octonionic exponential functions e(x, ξ) satisfy the following
properties

e(x, ξ)e(y, ξ) = e(y, ξ)e(x, ξ) = e(x + y, ξ),

e(x,−ξ) = e(−x, ξ), e(x, ξ) = exp i(< x, ξ > −x0ξ) =
∑

k=0
1
k!

(i(< x, ξ > −x0ξ))
k.

Proposition 2.2. For any ξ ∈ C7, e(x, ξ) is both left and right octonion analytic on
x ∈ Oc.

Proof. By direct calculating, we get

Dxe
i<x, ξ>e−x0|ξ|χ+(ξ) = ei<x, ξ>e−x0|ξ|χ+(ξ)Dx = 0,

Dxe
i<x, ξ > ex0|ξ|χ−(ξ) = ei<x, ξ > ex0|ξ|χ−(ξ)Dx = 0.

So Dxe(x, ξ) = e(x, ξ)Dx = 0. Hence e(x, ξ) is both left and right octonion analytic
on x ∈ Oc.

By direct calculating we also get

Proposition 2.3. For any positive integer k, (i(< x, ξ > −x0ξ))
k is both left and

right octonion analytic on x ∈ Oc.

Note that the functions xk, x ∈ O are neither left nor right octonion analytic func-
tions. Therefore, the functions (i(< x, ξ > −x0ξ))

k are suitable institutions of zk for
z ∈ C.

There was an example showed that[7]: f(x) is a left octonion analytic function, a is
an octonion constant, f(x)a is no longer a left octonion analytic function. But, when
f(x) is the exponential function, we have the following result
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Proposition 2.4. For any Oc-valued function g(ξ), the function e(x, ξ)g(ξ) is a left
octonion analytic function on x ∈ Oc.

Proof. Since [χ+(ξ), χ−(ξ), g(ξ)] = 0,

Dx(e(x, ξ)g(ξ))

= Dx(e
i<x, ξ>e−x0|ξ|χ+(ξ)g(ξ)) + Dx(e

i<x,ξ>ex0|ξ|χ−(ξ)g(ξ))

= Dxe
i<x, ξ>e−x0|ξ|(χ+(ξ)g(ξ)) + Dxe

i<x,ξ>ex0|ξ|(χ−(ξ)g(ξ))

=
1

2
(− | ξ |)ei<x, ξ>e−x0|ξ|χ−(ξ)(χ+(ξ)g(ξ)) +

1

2
(| ξ |)ei<x, ξ>ex0|ξ|χ+(ξ)(χ−(ξ)g(ξ))

=
1

2
(− | ξ |)ei<x, ξ>e−x0|ξ|(χ−(ξ)χ+(ξ))g(ξ) +

1

2
(| ξ |)ei<x, ξ>ex0|ξ|(χ+(ξ)χ−(ξ))g(ξ) = 0,

the result now follows.

Similarly we can prove that for any Oc-valued function g(ξ), the function g(ξ)e(x, ξ)
is a right octonion analytic function on x ∈ Oc.

The kernel of the Dirac operator D =
∑7

0 ek
∂

∂xk
is given by

Φ(y − x) =
1

ω7

y − x

|y − x|8
=

1

6ω7

Dx
1

|y − x|6
=

1

6ω7

Dy
1

|y − x|6
.

For any ν ∈ C, Reν > −1
2
, (1− 2tx + x2)−ν =

∑∞
k=0 Cν

k (t)xk, ∀x, t ∈ R. Where Cν
k is

the Genenbaurer polynomial of degree k associated with ν [18].

For any x, y ∈ R8, let x = |x|ξ, y = |y|ω, r = |x|
|y| , t =< ξ, ω >, then

1

|x− y|6
=

1

|y|6(1− 2tr + r2)3
=

∞∑
k=0

|x|k

|y|6+k
C3

k(t).

Since the calculation does not involve associativity, similar to [18] we get

y − x

|y − x|8
=

1

6ω7

∞∑
k=0

1

|y|k+7
Dx(C

3
k+1(t)|x|k+1) =

∞∑
k=0

|x|k

|y|k+7
C−

8,k(ω),

where C−
8,k(ω, ξ) = 1

6ω7
[(k + 1)C3

k+1(t)− 6C4
k(t)(< ω, ξ > −ωξ)]. Similarly, we get

y − x

|y − x|8
=

1

6ω7

∞∑
k=0

|x|kDy(C
3
k(t)

1

|y|k+6
) =

∞∑
k=0

|x|k

|y|k+7
C+

8,k(ξ, ω)ω,

where C+
8,k(ω, ξ) = − 1

6ω7
[−(k+6)C3

k(t)−6C4
k−1(t)(< ξ, ω > −ξω)]. Note that, if |x| < |y|,

then

y − x

|y − x|8
= Σ∞

0

(−1)k

k!
(< x, ∂y >)k y

|y|8
,
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where < x, ∂y >=
∑7

0 xi∂yi
. We thus obtain that for each non-negative integer k and

x ∈ R8, if |y| > |x|, then

|x|k

|y|k+7
C−

8,k(ω, ξ)ξ =
|x|k

|y|k+7
C+

8,k(ξ, ω)ω =
(−1)k

k!
(< x, ∂y >)k y

|y|8
.

Since y
|y|8 (y 6= 0) is both left and right octonion analytic, we have

Proposition 2.5. For x ∈ R8 fixed, |x|k
|y|k+7 C

−
8,k(ω, ξ)ξ and |x|k

|y|k+7 C
+
8,k(ξ, ω)ω are all left

and right octonion analytic on y when |y| > |x|.
Compared with [11], we obtain the octonion Taylor expansion with integral terms

Proposition 2.6. Let f : O → Oc be a left octonion analytic function in a domain
containing B(0, r) = {x ∈ R8 : |x| < r}, then

f(x) =
∞∑

k=0

∫
∂B(0,r)

(P (k)(y−1x)Φ(y)) (n(y)f(y))dSy, x ∈ B(0, r)

where P (k)(y−1x) = |y−1x|kC+
8,k(ξ, ω), dSy is the area measure on ∂B(0, r).

Proof. By theorem B and the expansion of Cauchy kernel, we get

f(x) =

∫
∂B(0,r)

Φ(y − x) (dσyf(y))

=
1

ω7

∫
∂B(0,r)

(
∞∑

k=0

|x|k

|y|k+7
C+

8,k(ξ, ω)ω) (dσyf(y))

=
1

ω7

∫
∂B(0,r)

(
∞∑

k=0

|x|k

|y|k
C+

8,k(ξ, ω)
ω

|y|7
) (n(y)f(y))dSy

=
1

ω7

∫
∂B(0,r)

(
∞∑

k=0

|x|k

|y|k
(C+

8,k(ξ, ω)
y

|y|8
) (n(y)f(y))dSy

=

∫
∂B(0,r)

∞∑
k=0

(
|x|k

|y|k
C+

8,k(ξ, ω)Φ(y)) (n(y)f(y))dSy

=
∞∑

k=0

∫
∂B(0,r)

(P (k)(y−1x)Φ(y)) (n(y)f(y))dSy.

Remark Compared with Clifford analysis in [2], the expression of the integrand is
closely connected with associative orders. Similar to [18], we also have the basic fact:

P (k)(y−1x) is a polynomial of degree k on x, and |P (k)(y−1x)| ≤ Ck7( |x|
k

|y|k ).

3 Paley-Wiener theorem in octonions

The Fourier transform in Rn and the inverse Fourier transform are defined by
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F(ξ) = f̂(ξ) =

∫
Rn

e−i<x, ξ>f(x)dx,

F−1(x) = f∨(x) =
1

(2π)n

∫
Rn

ei<x, ξ>f(ξ)dξ.

We then have the following basic facts: T̂ (φ) = T (φ̂), φ ∈ S(Rn), where S(Rn) is the
Schwarz class of rapidly decreasing functions, T is the tempered distribution in S(Rn),
and

1̂ = (2π)nδ, (ξα1
1 · · · ξαn

n )∨ = i−|α|Dαδ,

where α = (α1, . . . , αn), Dα = ( ∂
∂x1

)α1 · · · ( ∂
∂xn

)αn .

Theorem. Let f : O → Oc be a left octonion analytic function, f |R7 ∈ L2(R7), and
R > 0 be a positive number. Then the following two assertions are equivalent:

(i) There exists a constant C such that |f(x)| ≤ CeR|x|, ∀x ∈ O.

(ii) supp F(f |R7) ⊂ B(0, R).

Moreover, if one of the above conditions holds, then we have

f(x) =
1

(2π)7

∫
R7

e(x, ξ)(̂f |R7)(ξ)dξ, x ∈ O.

Lemma (Plemelj formula in octonions)[19]. There exist bounded operators P+, P−
and Cγ in Lp(R

7) (1 < p < ∞) such that for any u ∈ Lp(R
7) and almost all x ∈ R7,

(P±u)(x) = ± lim
δ→0+

∫
R7

Φ(x± δ − y) (n(y)u(y))dSy,

(Cγu)(x) = 2p.v.

∫
R7

Φ(x− y) (n(y)u(y))dSy,

and P± = 1
2
(±Cγ + I), I = P+ + P−, Cγ = P+ − P−.

Remarks

The lemma is the special case of the main result in [19] when the Lipschitz surface is
Rn, and the kernel function is Cauchy kernel.

Proof of the theorem. (ii) ⇒ (i) Let F (x) = 1
2π)7

∫
R7 e(x, ξ)(̂f |R7)(ξ)dξ, then

|F (x)| = | 1
(2π)7

∫
R7 e(x, ξ)χB(0,R)(ξ)(̂f |R7)(ξ)dξ| ≤ CeR|x0|‖χB(0,R)‖2‖(̂f |R7)‖2 ≤ CeR|x|,

where C denotes the constants, and may be deferent at each appearance.
In what follows, let us prove f(x) = F (x). It is enough to prove that F (x) is a

left octonion analytic function. Such a fact is obvious in Clifford analysis, but now, it
involves associativity. Denote

e(x, ξ) = ei<x, ξ>e−x0|ξ|χ+(ξ) + ei<x, ξ>ex0|ξ|χ−(ξ) =: f1 + f2,
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then

F (x) =
1

(2π)7

∫
R7

e(x, ξ)f̂ |R7(ξ)dξ =: F1(x) + F2(x).

DxF1 =
1

(2π)7

∫
R7

Dx(f1(x, ξ)f̂ |R7(ξ))dξ =
1

2π)7

∫
R7

Dx(e
i<x, ξ>e−x0|ξ|χ+(ξ)f̂ |R7(ξ))dξ.

Note that ei<x, ξ>e−x0|ξ| are complex numbers, by calculating, we get

Dx(e
i<x, ξ>e−x0|ξ|χ+(ξ)f̂ |R7(ξ)) = Dx(e

i<x, ξ>e−x0|ξ|(χ+(ξ)f̂ |R7(ξ)))

= ei<x, ξ>e−x0|ξ|(−2|ξ|)χ−(ξ) (χ+(ξ)f̂ |R7(ξ)).

Since χ−(ξ)(χ+(ξ)f̂ |R7) = (χ−(ξ)χ+(ξ))f̂ |R7 = 0, we have DxF1 = 0.

Similarly, we have DxF2 = 0. We thus show that F (x) is a left octonion analytic
function.

(i) ⇒ (ii) Consider

G+(x) =
1

(2π)7

∫
R7

ei<x, ξ>e−x0|ξ|χ+(ξ)f(ξ)dξ, x0 > 0,

which is well defined as f ∈ L2(R7). Similarly, we can show that G+(x) is left octonion
analytic for x0 > 0. Substituting f(ξ) with its Taylor expansion, the identity may be
rewritten as

G+(x) =
1

(2π)7

∫
R7

(ei<x, ξ>e−x0|ξ|χ+(ξ))

×(
∞∑
0

∫
∂B(0,r)

(P (k)(y−1ξ)Φ(y)) (n(y)f(y))dSy)dξ

= lim
N→∞

1

(2π)7

∫
R7

(ei<x, ξ>e−x0|ξ|χ+(ξ)χB(0,N))

×(
∞∑
0

∫
∂B(0,r)

(P (k)(y−1ξ)Φ(y)) (n(y)f(y))dSy)dξ,

where r is a positive number. Owing to the uniform convergence property of the series
for |ξ| ≤ N , and dSy, dξ are all real-valued functions, we have

G+(x) = lim
N→∞

1

(2π)7

∞∑
0

∫
∂B(0,r)

∫
R7

(ei<x, ξ>e−x0|ξ|χ+(ξ)χB(0,N))

×((P (k)(y−1ξ)Φ(y)) (n(y)f(y))) dSydξ.

Deferent form [2], the integrand here depends heavily on the associative orders. By
using the formula x(yz) = (xy)z − [x, y, z] twice, we have
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(ei<x, ξ>e−x0|ξ|χ+(ξ)χB(0,N)) ((P (k)(y−1ξ)Φ(y))(n(y)f(y)))

= (ei<x, ξ>e−x0|ξ|χ+(ξ)χB(0,N)(P
(k)(y−1ξ)Φ(y))) (n(y)f(y))

−[ei<x, ξ>e−x0|ξ|χ+(ξ)χB(0,N), P (k)(y−1ξ)Φ(y), n(y)f(y)]

= ((ei<x, ξ>e−x0|ξ|χ+(ξ)χB(0,N)P
(k)(y−1ξ)) Φ(y)

−[ei<x, ξ>e−x0|ξ|χ+(ξ)χB(0,N), P (k)(y−1ξ), Φ(y)]) (n(y)f(y))

−[ei<x, ξ>e−x0|ξ|χ+(ξ)χB(0,N), P (k)(y−1ξ)Φ(y), n(y)f(y)].

Now we must consider these two associators

[ei<x, ξ>e−x0|ξ|χ+(ξ)χB(0,N), P (k)(y−1ξ), Φ(y)],

[ei<x, ξ>e−x0|ξ|χ+(ξ)χB(0,N), P (k)(y−1ξ)Φ(y), n(y)f(y)].

We claim that the first associator is equal to zero. Since ei<x, ξ>e−x0|ξ| is a com-
plex number, by using the expressions of χ+(ξ) and P (k)(y−1ξ), it is enough to prove

[ξ, ξη, Φ(y)] = 0. Note that η = y
|y| , Φ(y) = y

ω7|y|8 , and y ∈ ∂B(0, r). Using the cal-

culating property of octonions and the R. Moufang identities, it is easy to verify that
[ξ, ξy, y] = [ξ, ξ y, y] = 0. So we get [ξ, ξη, Φ(y)] = 0.

But, the second associator is not zero. Therefore,

G+(x) = lim
N→∞

1

(2π)7

∞∑
0

∫
∂B(0,r)

∫
R7

(((ei<x, ξ>e−x0|ξ|χ+(ξ)χB(0,N)P
(k)(y−1ξ)) Φ(y)) (n(y)f(y))(y)

−[ei<x, ξ>e−x0|ξ|χ+(ξ)χB(0,N), P (k)(y−1ξ)Φ(y), n(y)f(y)]) dSydξ.

Compared with [2], the associator appears in the integrand here. Let

G̃+(x) = lim
N→∞

1

(2π)7

∞∑
0

∫
∂B(0,r)

∫
R7

((ei<x, ξ>e−x0|ξ|χ+(ξ)χB(0,N)P
(k)(y−1ξ))Φ(y)) (n(y)f(y))(y) dSydξ,

similar to [2], we can exchange the limit procedure and the summation for x0 > R. Thus
for x0 > R, we have

G̃+(x) =
∞∑
0

1

(2π)7

∫
∂B(0,r)

(

∫
R7

((ei<x, ξ>e−x0|ξ|χ+(ξ)P (k)(y−1ξ)dξ) Φ(y)) (n(y)f(y)))dSy.

Let ϕm(ξ) be a sequence of functions in C∞
0 (R7) such that ϕm(ξ) = 0 if |ξ| ≤ 1

m
;

ϕm(ξ) = 1 if |ξ| ≥ 2
m

, and 0 ≤ ϕm(ξ) ≤ 1 otherwise.

Obviously, ϕm → 1 distributionally . We rewrite G̃+(x) as x0 > R,



12

G̃+(x) =
∞∑
0

1

(2π)7

∫
∂B(0,r)

( lim
m→∞

∫
R7

((ei<x, ξ>e−x0|ξ|χ+(ξ)ϕm(ξ)P (k)(y−1ξ)dξ)Φ(y))) (n(y)f(y))(y)dSy.

Since e<x,·>e−x0|·|χ+(·)ϕm(·) ∈ S(R7), in the notation of distribution,

ei<x, ξ>e−x0|ξ|χ+(ξ)ϕm(ξ)P (k)(y−1ξ)

can be rewritten as

P (k)(y−1(·)) ((ei<x,·>e−x0|·|χ+(·)ϕm(·))
= F−1(P (k)(y−1(·)) (F(ei<x,·>e−x0|·|χ+(·)ϕm(·))))
= i−k(P (k)(y−1D)δ)(F(ei<x,·>e−x0|·|χ+(·)) ∗ F(ϕm)).

Now F(ei<x,·>e−x0|·|χ+(·)) = 1
2
F(ei<x,·>e−x0|·|) + 1

2
F(ei<x,·>e−x0|·| i(·)

|·| ), where

1

2
F(ei<x,·>e−x0|·|)(ζ) = c̃

x0

(x2
0 + |ζ − x|2)4

,

with c̃ = 26π3Γ(4). Thus

1

2
F(ei<x,·>e−x0|·| i(·)

| · |
)

=
1

2

∫ ∞

x0

DxF(ei<x,·>e−t|·|)(ζ)dt

= c̃

∫ ∞

x0

Dx(
t

(t2 + |ζ − x|2)4
)dt

= c̃
ξ − x

(x2
0 + |ζ − x|2)4

.

Hence

F(ei<x,·>e−x0|·|χ+(·)) = c̃
x− ζ

|x− ζ|8
= −c̃Φ(ζ − x).

Therefore

P (k)(y−1(·))(ei<x,·>e−x0|·|χ+(·)ϕm(·))
= i−k(P (k)(y−1D)δ)(F(ei<x,·>e−x0|·|χ+(·)) ∗ F(ϕm))

= −c̃i−k(P (k)(y−1D)δ)(Φ(· − x) ∗ F(ϕm))

= −c̃i−k(−1)kδ(P (k)(y−1D)Φ(· − x) ∗ F(ϕm))

= −c̃ik((P (k)(y−1D)Φ(· − x) ∗ F(ϕm))(0).
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Since F(ϕm)) → (2π)7δ, we conclude that∫
R7

(ei<x, ξ>e−x0|ξ|χ+(ξ)P (k)(y−1ξ)dξ = −(2π)7c̃ik(P (k)(y−1D)Φ)(−x).

Thus for x0 > R, we get

G̃+(x) = −c̃
∞∑
0

ik
∫

∂B(0,r)

(((P (k)(y−1D)Φ)(−x))Φ(y)) (n(y)f(y))dS(y).

So, for x0 > R, we have

G+(x) = −c̃

∞∑
0

ik
∫

∂B(0,r)

(((P (k)(y−1D)Φ)(−x))Φ(y)) (n(y)f(y))dSy

−
∞∑
0

1

(2π)7

∫
∂B(0,r)

∫
R7

[ei<x, ξ>e−x0|ξ|χ+(ξ), P (k)(y−1ξ)Φ(y), n(y)f(y)]dξdSy.

Similar to [2], by showing the series to converge uniformly in any compact set in the
region |x| > R, G+(x) can be extended to be a left octonion analytic function in |x| > R.

Now we define

G−(x) =
1

(2π)7

∫
R7

ei<x, ξ>ex0|ξ|χ−f(ξ)dξ, x0 < 0.

Similarly, we can prove that G−(x) is octonion analytic in x0 < −R, and

G−(x) = c̃
∞∑
0

ik
∫

∂B(0,r)

((((P (k)(y−1D)Φ)(−x))Φ(y))(n(y)f(y))dSy

−
∞∑
0

1

(2π)7

∫
∂B(0,r)

(

∫
R7

[ei<x, ξ>ex0|ξ|χ−(ξ), P (k)(y−1ξ)Φ(y), n(y)f(y)])dξdSy,

and G−(x) can be extended to be a left octoinon analytic function in |x| > R.

Since ei<x, ξ>e−x0|ξ|χ+(ξ) + ei<x, ξ>e−x0|ξ|χ−(ξ) ∈ C, we have

[ei<x, ξ>e−x0|ξ|χ+(ξ), P (k)(y−1ξ)Φ(y), n(y)f(y)]

+ [ei<x, ξ>e−x0|ξ|χ−(ξ), P (k)(y−1ξ)Φ(y), n(y)f(y)] = 0.

Hence
G+(x0 + x) + G−(−x0 + x) = 0, |x| > R.

Now, applying the Parseval’s identity to G+(x) and G−(x), we obtain that, for x0 >
R, G+ and G− have the alternative forms

G+(x0 + x) =

∫
R7

Φ((x0 + x)− ξ)F(f |R7)(−ξ)dξ,

G−(−x0 + x) =

∫
R7

Φ((−x0 + x)− ξ)F (f |R7)(−ξ)dζ.
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From the lemma, if |x| > R, then

lim
x0→0+

(G+(x0 + x) + G−(−x0 + x)) = F(f |R7)(ξ).

This gives F(f |R7)(ξ) = 0 for |x| > R. Therefore supp F(f |R7)(ξ) ⊂ B(0, R).

We notice that f(x) and 1
(2π)7

∫
R7 e(x, ξ)(̂f |R7)(ξ)dξ are all left octonion analytic in

R8 and coincident in R7, they have to be equal. Thus

f(x) =
1

(2π)7

∫
R7

e(x, ξ)(̂f |R7)(ξ)dξ, x ∈ R8.

This finishes the proof.

In the end of the paper, we present an application of the theorem. We know that
the conjugate harmonic systems are the main studying object in the high dimensional
Hardy space. Suppose F = (u1, . . . , un) is a vector-valued function defined in a domain
of Rn, if F is gradient of some real harmonic function, then F is called the Stein-
Weiss conjugate harmonic system. In [10], we showed that: If (f0, . . . , f7) is Stein-Weiss
conjugate harmonic system in R8, then F = −f0e0 + f1e1 + . . . + f7e7 is both left and
right octonion analytic. We thus have the following result

Corollary. Let (f0, . . . , f7) be a Stein-Weiss conjugate harmonic system in R8,
F |R7 ∈ L2(R7). Then |F (x)| ≤ CeR|x| if and only if supp F(F |R7) ⊂ B(0, R).

Moreover, if one of the above conditions holds, then

F (x) =
1

(2π)7

∫
R7

e(x, ξ)(̂F |R7)(ξ)dξ, x ∈ O.
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Bull. Sce. Math., 49: 361–374 (1925)

4 P. Jordan, J. von Neumann, E. Wiger, On an algebraic generalization of the quantum
mechanical formalism, Ann. Math., 35: 29–64 (1934)

5 John C. Baez, The Octonions, Bull. Amer. Math. Soc., 39: 145–205 (2002)

6 John C. Baez, On quaternions and octonions: Their geometry, arithmetic, and sym-
metry, Bull. Amer. Math. Soc., 42: 229–243 (2005)

7 Xingmin Li, On two questions in Clifford analysis and octonion analysis, Lecture Notes
in Pure and Applied mathematics, Finite or infinite dimensional complex analysis.
Edited by Joji Kajiwara, Zhong li, Kwang Ho Shon, 214: 293–299 (2000), Marcel
Dekker.

8 Xingmin Li, Lizhong Peng, Three-line theorems on the octonions, Acta Math. Sinica,
English Series, 3: 483–490 (2004)



15

9 Xingmin Li, Lizhong Peng, The Cauchy integral formulas on the octonions, Bull.
Belg. Math. Soc., Simon Stevin, 9: 47–64 (2002)

10 Xingmin Li and Lizhong Peng, On Stein-Weiss conjugate harmonic function and
octonion analytic function, Approx. Theory and its Appl., 16: 28–36 (2000)

11 Xingmin Li and Lizhong Peng, Taylor series and orthogonality of the octonion analytic
functions, Acta Mathematica Scientia, 21: Ser. B, 323–330 (2001)

12 Xingmin Li, Octonion analysis, Ph.D. Thesis, Peking University, 1998.

13 Xingmin Li, Zhao Kai and Lizhong Peng, Characterization of octonionic analytic
functions, Complex Variables, 50(13): 1031–1040 (2005)

14 Xingmin Li, Zhao Kai and Lizhong Peng, The Laurent series on the octonions, Ad-
vances in Applied Clifford Analysis, II: 205–217 (2001)

15 Lizhong Peng and Lei Yang, The curl in 7 dimensional space and its applications,
Approximation theory and its applications, 15: 66–80 (1999)

16 Chun Li, A. McIntosh and T. Qian, Clifford algebras, Fourier transforms, and singu-
lar Convolution operators on Lipschitz surfaces, Revista Matematica Iberoamericana,
10(3): 665–695 (1994)

17 F. Brackx, R. Delanghe and F. Sommen, Clifford analysis, Res. Notes in Math., No.
76, Pitman Boston (1982)

18 R. Delanghe, and F. Sommen and V. Soucek, Clifford algebras and spinor valued
functions: A Function theory for Dirac operator, Kluwer Academic, Dordrecht (1992)

19 Xingmin Li, Lizhong Peng and T. Qian, Cauchy integrals on Lipschitz surfaces in
octonionic space, preprint in JMAA


