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Abstract. We study the Fourier-Laplace series on the unit sphere of higher dimensional Eu-
clidean spaces and obtain a condition for convergence of Fourier-Laplace series on the unit
sphere. The result generalizes Carleson’s Theorem to higher dimensional unit spheres.

§1. Introduction

We start with reviewing the basic notations and results. Let f ∈ L1([−π, π]), then the
Fourier coefficients ck are all well-defined by

ck =
1

2π

∫ π

−π
f(t)e−iktdt, k ∈ Z, (1)

where Z denotes the set of all integers.

By sN (f)(x) we denote the partial sum

sN (f)(x) =
∑

|k|≤N
cke

ikx, x ∈ [−π, π], N ∈ N0, (2)

of the Fourier series of f , where N0 denotes the set of all natural numbers.

Then we have,

sN (f)(x) =
1
π

∫ π

−π
f(t)DN (x− t)dt, (3)

where

DN (x) =





sin(N+ 1
2

)x

2 sin x
2

for x ∈ [−π, π]\{0},
N + 1

2 for x = 0,

is the N-th Dirichlet kernel.

Since L2([−π, π]) ⊂ L1([−π, π]), the Fourier coefficients of L2 functions are also well-defined.
The famous Carleson’s Theorem is stated as follows.

Theorem 1.[Ca] If f ∈ L2([−π, π]), then

sN (f)(x)→ f(x) a.e. x ∈ [−π, π], as N → +∞.

L. Carleson proved this theorem in 1966. The next year, R.A. Hunt[Hu] further extended
this result to f ∈ Lp([−π, π]), 1 < p <∞.
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One naturally asks what is the analogous result for the unit sphere Ωn in the n-dimensional
Euclidean space Rn? For any f ∈ L2(Ωn), there is an associated Fourier-Laplace series:

f ∼
∞∑

k=0

fk, (4)

where fk is the homogeneous spherical harmonics of degree k. There has been literature for the
study of convergence and summability of Fourier-Laplace series of various kinds on unit sphere
of higher dimensional Euclidean spaces(see [Ro],[Ka],[WL]). However, except for the very lowest
dimensional case, pointwise convergence, being the initial motivation of various summabilities,
could be said to be very little known. The case n = 2 seems to be the only well studied case([Zy],
[Ca]). Dirichlet ([Di]) gave the first detailed study on the case n = 3, on the so called Laplace
series. Koschmieder([Ko]) studied the case n = 4. Roetman([Ro]) and Kalf([Ka]) considered the
general cases, and, under certain conditions, reduced the convergence problem for n = 2k+ 2 to
n = 2; and n = 2k + 3 to n = 3. Among others, Meaney([Me]) addressed some related topics,
including the Lp cases. In this note, we further study convergence of the series (4) in view of the
classical Carleson’s Theorem and the fundamental properties of Legendre polynomials. Based
on the results obtained in [Ro] and [Ka], we further obtain a weaker condition that ensures the
pointwise convergence of the Fourier-Laplace series of functions in Sobolev spaces. The result is
a generalization of Carleson’s Theorem to higher dimensional Euclidean spaces.

§2. Preliminaries

Referring the reader to Erdélyi([Er]), Müller([Mu]) and Roetman([Ro]) for details, we recall
here some notations and main results for surface spherical harmonics that we shall need. Let
(x1, · · · , xn) be the coordinates of a point of Rn with norm

|x|2 = r2 = x2
1 + · · ·+ x2

n.

Then x = rξ, where ξ = (ξ1, · · · , ξn) is a point on the unit sphere Ωn in Rn. Denote by An
the total surface area of Ωn and by dωn the usual Hausdorff surface measure on the (n − 1)-
dimensional unit sphere,

An =
∫

Ωn
dωn.

If e1, · · · , en denote the orthonormal basis vectors in Rn, then we can represent the points of Ωn

by

ξ = ten + (1− t2)
1
2 ξ̃, (5)

where −1 ≤ t ≤ 1, t = ξ · en and ξ̃ is a vector in the subspace Rn−1 generated by e1, · · · , en−1.
In the coordinates (r, t, ξ̃) the surface measure has the form

dωn = (1− t2)λ−
1
2dtdωn−1, (6)

where λ = n−2
2 .

In accordance with (4), there associates a function f ∈ L2(Ωn) with a series of surface
harmonics

S(f ;n; ξ) ∼
∞∑

k=0

Yk(f ;n; ξ), (7)
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where

Yk(f ;n; ξ) = αk(n)
∫

Ωn
Pk(n; ξ · η)f(η)dωn(η), (8)

Pk(n; s) are Legendre polynomials[Mu] defined by the generating relation

(1 + x2 − 2xs)−λ =
∞∑

k=0

ck(n)xkPk(n; s),

where

ck(n) =
(n− 2)N(n, k)

2k + n− 2
, αk(n) =

N(n, k)
An

,

and

N(n, k) =

{
1 for k = 0,
(2k+n−2)Γ(k+n−2)

Γ(k+1)Γ(n−1) for k ≥ 1.

The Legendre polynomials of dimension n > 3 are related to the Gegenbauer polynomials by
Cλk (s) = ck(n)Pk(n; s).

In particular, we have

N(2, k) = 2; N(3, k) = 2k + 1, k ∈ N0 ∪ {0}; (9)

and

Pk(2; t) = cos(k cos−1 t), t ∈ [−1, 1], (10)

being the well-known Chebyshev polynomial; and

Pk(3; t) =
(−1)k

2kk!
(
d

dt
)k(1− t2)k (11)

being the ordinary Legendre polynomial. For n ≥ 3, Müller[Mu], p.15, gives that the Legendre
polynomials are orthogonal polynomials in the sense

∫ 1

−1
Pk(n; t)Pl(n; t)(1− t2)

n−3
2 dt =

An
An−1

· 1
N(n, k)

· δkl. (12)

Let SN (f ;n; ξ) denote the partial sum through the term with index N for the series (7). Then

SN (f ;n; ξ) =
∫

Ωn
f(η){

N∑

k=0

αkPk(n; ξ · η)}dωn(η). (13)

One is interested in the convergence properties of SN (f ;n; ξ) at ξ as N goes to infinity. Hold ξ

fixed and write η = tξ+ (1− t2)
1
2 η̃, where η̃ is orthogonal to ξ. Let Ω(ξ) denote the unit ball in

the (n− 1)-dimensional space orthogonal to ξ. Equation (13) then yields

SN (f ;n; ξ) =
∫ 1

−1
{
N∑

k=0

αkAn−1Pk(n; t)}Φξ(t)(1− t2)λ−
1
2dt, (14)

where

Φξ(t) =
1

An−1

∫

Ω(ξ)
f(tξ + (1− t2)

1
2 η̃)dωn−1(η̃) (15)
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is the average of f over the (n− 1)-sphere of radius (1− t2)
1
2 centered at tξ in the hyperplane

orthogonal to ξ.

By [Mu] and [Ro], we have

SN (f ; 2; ξ) =
∫ 1

−1
DN (t)Φξ(t)(1− t2)−

1
2dt, (16)

where

DN (t) =
sin((N + 1

2) cos−1 t)
π sin 1

2 cos−1 t
(17)

is a substitution of the Dirichlet kernel(see section 1 or [Zy]),

and if n = 2l + 2, l ∈ N0,

SN (f ; 2l + 2; ξ) =
2−l√

πΓ(l + 1
2)

·
∫ 1

−1

dl+1

dtl+1
[

1
N + l

PN+l(2; t) +
1

N + l + 1
PN+l+1(2; t)]Φξ(t)(1− t2)l−

1
2dt; (18)

SN (f ; 3; ξ) =
∫ 1

−1
KN (t)Φξ(t)dt, (19)

where

KN (t) =
1
2

(P
′
N (3; t) + P

′
N+1(3; t)), (20)

and if n = 2l + 3, l ∈ N0,

SN (f ; 2l + 3; ξ) =
2−l−1

Γ(l + 1)

·
∫ 1

−1

dl+1

dtl+1
[PN+l(3; t) + PN+l+1(3; t)]Φξ(t)(1− t2)ldt. (21)

§3. Main Results

Let n > 3. We use W [n−1
2

]([−1, 1]) for the Sobolev space

W [n−1
2

]([−1, 1]) = {g ∈ L2([−1, 1]; dµ(t))| d
l

dtl
g ∈ L2−µ([−1, 1]; dµ(t)), l = 1, 2, · · · , [n− 1

2
]},

where dµ(t) = (1− t2)−
µ
2 dt, µ is defined by the relation 1− µ = n mod 2, i.e., µ equals to 0 or

1. This definition is also valid when n is 2 or 3, (l = 0).

Then we have our main theorem,
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Theorem 2. Let Φξ(t) ∈W [n−1
2

]([−1, 1]), if Φξ(1) = limt→1 Φξ(t) exists, then

lim
N→∞

SN (f ;n; ξ) = Φξ(1).

If, in particular, f is continuous at ξ, then

lim
N→∞

SN (f ;n; ξ) = f(ξ).

Proof. Define on −1 ≤ t ≤ 1

Ψµ
ξ (t) =

(−1)lΓ(µ2 )2−l

Γ(l + 1− µ
2 )

(1− t2)
µ
2
dl

dtl
[Φξ(t)(1− t2)l−

µ
2 ], (22)

By integration by parts, the partial sums of (18) and (21) reduce to

SN (f ; 2l + 2; ξ) =
∫ 1

−1
DN+l(t)Ψ1

ξ(t)(1− t2)−
1
2dt (23)

and

SN (f ; 2l + 3; ξ) =
∫ 1

−1
KN+l(t)Ψ0

ξ(t)dt. (24)

Now we distinguish two cases.

a) n even. Let n = 2l + 2, l ∈ N0. From (22), we have

Ψ1
ξ(t) =

(−1)lΓ(1
2)

2lΓ(l + 1
2)

(1− t2)
1
2
dl

dtl
[Φξ(t)(1− t2)l−

1
2 ]

=
(−1)lΓ(1

2)
2lΓ(l + 1

2)
(1− t2)

1
2 {Φξ(t)

dl

dtl
(1− t2)l−

1
2 +

l∑

j=1

Cjl Φ
(j)
ξ (t)

dl−j

dtl−j
(1− t2)l−

1
2 }

= Φξ(t)tl + (1− t2)
1
2

l∑

j=1

Cjl Φ
(j)
ξ (t)(1− t2)j−

1
2Pl−j(t)

= Φξ(t)tl + (1− t2)
1
2

l∑

j=1

Φ(j)
ξ (t)(1− t2)j−

1
2Ql−j(t),

where Pl−j(t) and Ql−j(t) are polynomials of degree ≤ l − j.

Then (23) becomes

SN (f ; 2l + 2; ξ) =
∫ 1

−1
DN+l(t)Φξ(t)tl(1− t2)−

1
2dt

+
∫ 1

−1
DN+l(t)

l∑

j=1

Φ(j)
ξ (t)(1− t2)j−

1
2Ql−j(t)dt

=
1
π

∫ π

0

sin(N + l + 1
2)θ

sin 1
2θ

Φξ(cos θ)(cos θ)ldθ

+
2
π

l∑

j=1

∫ π

0
sin(N + l +

1
2

)θΦ(j)
ξ (cos θ)(sin θ)2j−1Ql−j(cos θ) cos

1
2
θdθ.
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Since Φξ(t) ∈W [n−1
2

]([−1, 1]), then

Φξ(cos θ) ∈ L2([0, π]) and Φ(j)
ξ (cos θ) ∈ L1([0, π]), j = 1, 2, · · · , l.

Further,

Φξ(cos θ)(cos θ)l ∈ L2([0, π])

and

Φ(j)
ξ (cos θ)(sin θ)2j−1Ql−j(cos θ) cos

1
2
θ ∈ L1([0, π]), j = 1, 2, · · · , l.

Therefore, using Carleson’s Theorem for the first part of the above expression and using Riemann-
Lebesgue Lemma for the second part, we have

lim
N→∞

SN (f ; 2l + 2; ξ) = Φξ(cos 0)(cos 0)l + 0

= Φξ(1).

b) n odd. Let n = 2l + 3, l ∈ N0. From (22), we have

Ψ0
ξ(t) =

(−1)l

2lΓ(l + 1)
dl

dtl
[Φξ(t)(1− t2)l].

Let Gξ(t) = Φξ(t)(1− t2)l, then (24) becomes

SN (f ; 2l + 3; ξ) =
(−1)l

2l+1Γ(l + 1)

∫ 1

−1
[P
′
N+l(3; t) + P

′
N+l+1(3; t)]G(l)

ξ (t)dt.

Since Φξ(t) ∈W [n−1
2

], i.e. dk

dtk
Φξ(t) ∈ L2([−1, 1]), k = 0, 1, · · · , l + 1.

Then

dk

dtk
Gξ(t) ∈ L2([−1, 1]), k = 0, 1, · · · , l + 1.

Thus, we can integrate the above integral by parts to obtain

SN (f ; 2l + 3; ξ) =
(−1)l

2l+1Γ(l + 1)
{[PN+l(3; t) + PN+l+1(3; t)]G(l)

ξ (t)|1−1

−
∫ 1

−1
[PN+l(3; t) + PN+l+1(3; t)]G(l+1)

ξ (t)dt}

= Φξ(1)− (−1)l

2l+1Γ(l + 1)

∫ 1

−1
[PN+l(3; t) + PN+l+1(3; t)]G(l+1)

ξ (t)dt.

So, the assertion of the theorem follows if we can show
∫ 1

−1
|Pm(3; t)G(l+1)

ξ (t)|dt→ 0, as m→∞.

From (12) we have
∫ 1

−1
|Pm(3; t)|2dt =

2
2m+ 1

, m ∈ N0.
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By Hölder’s inequality, we have
∫ 1

−1
|Pm(3; t)G(l+1)

ξ (t)|dt ≤ (
∫ 1

−1
|Pm(3; t)|2dt) 1

2 · (
∫ 1

−1
|G(l+1)

ξ (t)|2dt) 1
2

= ‖G(l+1)
ξ ‖L2 ·

√
2

2m+ 1
.

Owing to the assumption of Φξ(t), we have G(l+1)
ξ (t) ∈ L2([−1, 1]), then

lim
m→∞

∫ 1

−1
|Pm(3; t)G(l+1)

ξ (t)|dt = 0.

Thus,

lim
N→∞

SN (f ; 2l + 3; ξ) = Φξ(1). 2

Remark 1. The above proof of Theorem 2 is also valid for n = 2 and, in fact, directly
reduced to Carleson’s Theorem. It is observed that for n = 2, i.e., l = 0. In the first part
of Theorem 2, the average Φξ(t) becomes simply evaluation at two endpoints of the interval
(− cos−1 t, cos−1 t),

Φξ(t) =
1
2

[f(θξ + cos−1 t) + f(θξ − cos−1 t)],

where θξ is the angle between ξ and e1. The required Sobolev space reduces to L2 space. From
the condition of Theorem 2, let t = cos θ, the Dirichlet kernel is just the same as the one in
the complex plane, and Φξ ∈ L2([0, π]) if and only if 1

2 [f(θξ + θ) + f(θξ − θ)] ∈ L2([0, π]). In
particular, if ξ = 1, Theorem 2 reduces to the classical Carleson’s Theorem.

Remark 2. By the result of R.A. Hunt[Hu], we can obviously extend the first part of
Theorem 2, which n is an even number, to Lp cases, 1 < p <∞.

Remark 3. We prefer to impose the condition on the average of f , but not on f , since
the former is weaker than the latter. By the definition of Φξ(t) and the Whitney’s extension
theorem(see [Wh] or [Ro]), the continuity property of Φξ(t) can be inherited from f . But the
L2-bounded property can not. In general, f ∈ Lp(Ωn), p ≥ 1, implies Φξ(t) ∈ Lp([−1; 1]; (1 −
t2)λ−

1
2dt), in fact, by Jensen’s Inequality, since xp, p ≥ 1, is a convex function when x ≥ 0,

∫ 1

−1
|Φξ(t)|p(1− t2)λ−

1
2dt =

∫ 1

−1
|
∫

Ω(ξ)
f(tξ + (1− t2)

1
2 η̃)dωn−1(η̃)/An−1|p(1− t2)λ−

1
2dt

≤
∫ 1

−1
(
∫

Ω(ξ)
|f(tξ + (1− t2)

1
2 η̃)|dωn−1(η̃)/An−1)p(1− t2)λ−

1
2dt

≤
∫ 1

−1

∫

Ω(ξ)
|f(tξ + (1− t2)

1
2 η̃)|pdωn−1(η̃)/An−1)(1− t2)λ−

1
2dt

=
∫

Ωn
|f(η)|pdωn(η).

In particular, when n = 3, for any p ≥ 1, f ∈ Lp(Ωn) implies Φξ(t) ∈ Lp([−1; 1]) since λ− 1
2 = 0

in the case. Note that, Φξ(t) ∈ Lp([−1; 1]) implies Φξ(t) ∈ Lp([−1; 1]; (1 − t2)λ−
1
2dt) for any

p ≥ 1, but not vice versa.
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[Er] A. Erdélyi, Higher transcendental functions, vol.1, McGraw-Hill, 1953.

[Hu] R.A. Hunt, On the convergence of Fourier series, Orthogonal Expansions and Their
continuous Analogues, Proc. Conf. Edwardsville, I11.(1967), 235-255; Southern Illinois
Univ. Press, Carbondale, I11.(1968).

[Ka] H. Kalf, On the expasion of a function in terms of spherical harmonics in arbitray
dimensions, Bull. Bel. Math. Soc. 2(1995), 361-380.

[Ko] L. Koschmieder, Unmittelbarer Beweis der Konvergenz einiger Riehen, die von mehrern
Veränderlichen abhängen, Monatsh Math. Phys. 41(1934), 58-63.

[Mu] C. Müller, Spherical harmonics, Lecture notes in Mathematics 17, Berlin: Springer
1966.

[Ro] E.L. Roetman, Pointwise convergence for expansios in surface harmonics of arbitrary
dimension, J. Reine Angew. Math. 282 (1976), 1-10.

[Wh] H. Whitney, Differentiable functions defined in closed set. I, Trans. Amer. Math. Soc.
36(1934), 369-387.

[WL] K.Y. Wang and L.Q. Li, Harmonic analysis and approximation on the unit sphere,
Science Press, Beijing/New York, 2000.

[Zy] A. Zygmund, Trigonometric series (2nd edition), 2 vols., Cambridge, Eng. 1959.

Ming-gang Fei and Tao Qian
Faculty of Science and Technology
University of Macau
P. O. Box 3001
Macao (via Hong Kong)
E-mail: ya47402@umac.mo, fsttq@umac.mo

8


