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The aim of this paper is to discuss discrete-time analytic signals and to provide the
derivation of Bedrosian product theorem for discrete-time Hilbert transform. With the aid
of the continuous-time analytic signals we provide a new approach to produce the discrete-
time analytic signals.

© 2009 Published by Elsevier Inc.

. Introduction

Discrete-time signals are represented mathematically as sequences of numbers. A sequence of numbers x, in which the
th number in the sequence is denoted x[n], is formally written as

x = {
x[n]: n ∈ Z

}
,

here Z denotes the set of integers.
The instantaneous amplitude and phase are basic concepts in all the questions dealing with modulation of signals appear-

ng especially in communications or information processing [3,4,13]. A purely monochromatic signal such as a cos(ω0n +φ0)

annot transmit any information. For this purpose, a modulation is required. One of the simplest possible is to introduce
mplitude modulation [13]. Often, the wave is mathematically modeled as

x[n] = a[n] cos
(
φ[n]), (1.1)

here a[n] is then said to be the amplitude modulation of the wave, φ[n] is the phase. However, this representation is
learly not unique, for there are many pairs of sequences that can play the role as amplitude signal. Therefore we need to
epresent a signal x[n] in a determined way {a[n], φ[n]}. For this purpose, we associate with x[n] its analytic signal. We use
he discrete Hilbert transform [8,12] to generate the so-called analytic discrete-time signal according to

z[n] = x[n] + iHdx[n]. (1.2)

he Hdx[n] represents the discrete Hilbert transform of the sequence x defined as:

Hdx[n] =
∑
m∈Z

h[n − m]x[m], (1.3)
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where

h[n] =
{

2
π

sin2(π n
2 )

n , n �= 0,

0, n = 0.
(1.4)

In continuous-time signal theory, the associated signal z(t) can be shown to be the boundary value of an analytic function
in the upper half plane and thus is called an analytic signal. Although analyticity has no formal meaning for sequence, we
will nevertheless apply the same terminology to complex sequence whose imaginary part is the discrete Hilbert transform
of its real part [8,12].

Saying that z[n] = a[n]eiφ[n] is an analytic sequence is equivalent to saying that the discrete Hilbert transform of x[n] =
a[n] cos(φ[n]) is equal to y[n] = a[n] sin(φ[n]). It is therefore appropriate to make use of the so-called Bedrosian product
theorem dealing with the discrete Hilbert transform of a product of two real signals x1[n] and x2[n]. Under some suitable
conditions Bedrosian product theorem says that

Hd(x1x2)[n] = x1[n]Hd(x2)[n]. (1.5)

Under suitable conditions for a[n] and cos(φ[n]) one could have

Hd
(
a[·] cos

(
φ[·]))[n] = a[n]Hd

(
cos

(
φ[·]))[n]. (1.6)

If, in addition,

Hd
(
cos

(
φ[·]))[n] = sin

(
φ[·])[n] (1.7)

then we have the quadrature signal a[n]eiφ[n] coincides with its associated analytic signal x[n] + iHdx[n].
Discrete Hilbert transforms have played a useful role in signal analysis and have also been of practical importance in

various signal processing systems.
The purpose of this paper is twofold. The first is to discuss the notion of an analytic sequence and its use in providing a

unified approach to the derivation of Bedrosian product theorems for discrete Hilbert transform. The second is to exhibit a
method to deduce analytic sequences through the continuous-time analytic signals. For this purpose we discuss the relations
of Hilbert transform and discrete Hilbert transform for band-limited signals.

The writing plan of the paper is as follows. Section 2 is devoted to survey the discrete-time Fourier and discrete
Hilbert transform. The analytic sequence is introduced as a complex sequence if its spectrum is zero on the unit circle
for −π < ω < 0. In Section 3 we establish the Bedrosian product theorems for analytic sequences. A method of producing
analytic sequences is presented in Section 4. We conclude that some analytic sequences can be obtained by the aid of the
continuous-time analytic signals.

2. Discrete-time Fourier and Hilbert transforms

A discrete-time Fourier transform converts an infinite sequence of data values into a periodic function. Let z[n] be a
sequence with n taking all integers. Its discrete-time Fourier transform is the complex-valued periodic function

Z
(
eiω) =

∞∑
n=−∞

z[n]e−iωn. (2.1)

The sequence can then be represented as (see, e.g. [12])

z[n] = 1

2π

π∫
−π

Z
(
eiω)

eiωn dω, n ∈ Z. (2.2)

Eqs. (2.1) and (2.2) together form a Fourier representation for the sequence. Eq. (2.2), the inverse Fourier transform, is
a synthesis formula. Eq. (2.1), discrete-time Fourier transform, is a series for computing Z(eiω) from the sequence z[n], i.e.,
for analyzing the sequence z[n] to determine how much of each frequency component is required to synthesis z[n] using
Eq. (2.2).

We consider sequences for which the Fourier transforms are zero on ω ∈ [−π,0). Thus, with z[n] denoting the sequence
and Z(eiω) its Fourier transform, we require that

Z
(
eiω) = 0, −π � ω < 0.

The sequence z[n] corresponding to Z(eiω) must be complex. Therefore, we express z[n] as

z[n] = zR [n] + izI [n],
where zR [n] and zI [n] are real sequences. If Z R(eiω) and Z I (eiω) denote the Fourier transform of the real sequence zR [n]
and zI [n], respectively, then

Z
(
eiω) = Z R

(
eiω) + i Z I

(
eiω)

.
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lternatively, we can relate Z R(eiω) and Z I (eiω) directly by

Z I
(
eiω) = −i sgn(ω)Z R

(
eiω) = H

(
eiω)

Z R
(
eiω)

, (2.3)

here

H
(
eiω) = −i sgn(ω) (2.4)

nd

sgn(ω) =
⎧⎨⎩

1, for 0 < ω < π,

0, for ω = 0,

−1, for − π < ω < 0

(2.5)

s the signum function.
According to Eq. (2.3), zI [n] can be obtained by processing zR [n] with a linear time-invariant discrete-time system with

requency response H(eiω), as given by Eq. (2.4). This frequency response has unity magnitude, a phase angle of −π/2 for
< ω < π , and a phase angle of +π/2 for −π < ω < 0. Such a system is called an ideal 90-degree phase shifter. The

mpulse response h[n] of 90-degree phase shifter, corresponding to the frequency response H(eiω) given in Eq. (2.4), is

h[n] = 1

2π

0∫
−π

ieiωndω − 1

2π

π∫
0

ieiωndω =
{

2
π

sin2(π n
2 )

n , n �= 0,

0, n = 0.

Alternatively, when it is clear that we are considering an operation on a sequence, the 90-degree phase shifter is the
iscrete Hilbert transform.

With z[n] denoting the sequence and Z(eiω) its discrete-time Fourier transform, we can rewrite the discrete Hilbert
ransform Hd , see (1.3), as follows

Hdz[n] = 1

2π

π∫
−π

H
(
eiω)

Z
(
eiω)

e−iωn dω, n ∈ Z. (2.6)

In a style similar to the analog signals, we see that a complex sequence is analytic if its spectrum is zero on the unit
ircle for −π < ω < 0.

Taking into account the fact that 2 sin2(π n
2 ) = 1 − cosπn, the discrete Hilbert transform Hdz of the sequence z can be

xpressed as

Hdz[n] =
∑
m∈Z

h[n − m]z[m]

= 1

π

∑
m∈Z

{
1 − cosπ(n − m)

n − m

}
z[m]

=
{

2
π

∑
m odd

z[m]
n−m , for even n,

2
π

∑
m even

z[m]
n−m , for odd n.

irect calculations show that the inverse relationship is given by

z[m] =
{− 2

π

∑
n odd

Hd z[n]
m−n , for even m,

− 2
π

∑
n even

Hd z[n]
m−n , for odd m.

herefore we deduce that H−1
d = −Hd , or H2

d = −I , where I denotes the identity operator.

. Bedrosian theorems for discrete Hilbert transform

Recall that a sequence of complex samples of the form

z[n] = x[n] + iy[n], n ∈ Z

s called an analytic sequence if y[n] is the discrete Hilbert transform of x[n]. This discrete signal does not represent an
nalytic signal in the sense of the definition of analytic function. The use of this name is justified by the spectral properties.

As trivial example of unit analytic sequences z[n] = eiω0n we have, for ω0 > 0,

Hd
(
cos[ω0k])[n] = sin[ω0n] and Hd

(
sin[ω0k])[n] = − cos[ω0n].
Please cite this article in press as: H. Li et al., Discrete-time analytic signals and Bedrosian product theorems, Digital Signal Process. (2009),
doi:10.1016/j.dsp.2009.11.002
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An alternative representation of an analytic sequence is in terms of magnitude and phase; i.e., z[n] can be expressed in
the specific way in relation to the Hilbert transform as

z[n] = a[n]eiφ[n],

where a[n] = (x2[n] + y2[n])1/2 and

φ[n] = arctan

(
y[n]
x[n]

)
.

By the definition of the discrete Hilbert transform, we have H2
d(z)[n] = −z[n]. On the other hand, for the analytic

sequence z[n], we have

Hdz[n] = Hdx[n] + iHd y[n] = y[n] − ix[n] = −iz[n].
Furthermore we can easily verify that any complex sequence z[n] satisfying the equation Hdz[n] = −iz[n] is an ana-
lytic sequence. It follows that analytic sequences can be regarded as the eigenfunctions of the discrete Hilbert transform
operator corresponding to the eigenvalue −i. This observation yields the spectrum characterization of the analytic se-
quences.

Lemma 3.1. Let Z(eiω) be the discrete-time Fourier transform of z[n]. Then, z[n] is an analytic sequence if and only if Z(eiω) = 0 for
−π < ω < 0.

Proof. Note that z[n] is an analytic sequence if and only if Hdz[n] = −iz[n]. By taking the discrete-time Fourier transforms
on both sides we have from (2.6)

H
(
eiω)

Z
(
eiω) = −i Z

(
eiω)

.

Thus Hdz[n] = −iz[n] if and only if Z(eiω) = 0 for −π < ω < 0. �
Next, we note that if z1[n] and z2[n] are analytic sequences and α, β are complex scalars, then αz1[n] + βz2[n] is

analytic. Moreover, it is clear from Lemma 3.1 that the convolution of z1[n] and z2[n]:
(z1 ∗ z2)[n] =

∑
k∈Z

z1[n − k]z2[k]

is also analytic. In particular, the discrete Hilbert transform Hdz[n] of analytic sequence z[n] is analytic.
We exhibit the Bedrosian product theorem for analytic sequences.

Theorem 3.2. Suppose that z1[n] and z2[n] are complex sequences with discrete-time Fourier transforms Z1(eiω) and Z2(eiω). Then

Hd(z1z2)[n] = z1[n]Hd(z2)[n]
if there exists a nonnegative number σ < π such that

Z1
(
eiω) = 0, for 0 < σ < |ω| < π, and Z2

(
eiμ) = 0, for 0 < |μ| � σ < π.

Proof. In terms of their discrete-time Fourier transform, the product z1[n]z2[n] can be rewritten as

z1[n]z2[n] = 1

(2π)2

π∫
−π

π∫
−π

Z1
(
eiω)

Z2
(
eiμ)

ei(ω+μ)n dωdμ, n ∈ Z. (3.1)

For the complex exponential sequence eω0 [n] = exp[iω0n], −π < ω0 � π , its discrete-time Fourier transform is the
periodic impulse train in the distribution sense (see, e.g., [12])

Eω0

(
eiω) =

∑
r∈Z

2πδ[ω − ω0 + 2πr]. (3.2)

Here we denote by δ[n] the discrete-time impulse sequence or Dirac delta impulse:

δ[n] =
{

1, n = 0,

0, n �= 0.
Please cite this article in press as: H. Li et al., Discrete-time analytic signals and Bedrosian product theorems, Digital Signal Process. (2009),
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onsequently we have

Hd(eω0)[n] = 1

2π

π∫
−π

H
(
eiω)

Eω0

(
eiω)

eiωn dω

= 1

2π

π∫
−π

(−i sgn(ω)
)

Eω0

(
eiω)

eiωn dω.

ecause the integration of Eω0 (eiω) extends only over one period, from −π < ω < π , we need include only the r = 0 term
rom Eq. (3.2). Thus we compute the discrete-time Hilbert transform of complex exponential sequence as

Hd(eω0)[n] = 1

2π

π∫
−π

(−i sgn(ω)
)

Eω0

(
eiω)

eiωn dω

= 1

2π

π∫
−π

(−i sgn(ω)
)
2πδ[ω − ω0]eiωn dω

= −i sgn(ω0)exp(iω0n). (3.3)

Taking the discrete Hilbert transform on both sides in (3.1) and using relation (3.3) we have, for n ∈ Z,

Hd(z1z2)[n] = 1

(2π)2

π∫
−π

π∫
−π

(−i sgn(ω + μ)
)

Z1
(
eiω)

Z2
(
eiμ)

ei(ω+μ)n dωdμ. (3.4)

ote that the supports of Z1(eiω) and Z2(eiμ) are 0 < |ω| < σ � π and 0 < σ < |μ| � π respectively. It follows that the
upport of Z1(eiω)Z2(eiμ) is

[−σ ,σ ] × [σ ,π ] ∪ [−σ ,σ ] × [−π,−σ ].
onsequently, it is clear that

−i sgn(ω + μ) = −i sgn(μ),

ver the regions of integration in which the integrand in (3.4) is nonvanishing. Thus, we conclude from (3.4) that

Hd(z1z2)[n] = 1

(2π)2

π∫
−π

π∫
−π

(−i sgn(μ)
)

Z1
(
eiω)

Z2
(
eiμ)

ei(ω+μ)n dωdμ

= z1[n] 1

2π

π∫
−π

(−i sgn(μ)
)

Z2
(
eiμ)

eiμn dμ

= z1[n]Hd z2[n], n ∈ Z.

he proof of the theorem is complete. �
The proof of Theorem 3.2 is in spirit of that of Bedrosian [1]. We can also follow the same line as that of Nuttall and

edrosian [11] to conclude the following Bedrosian type product theorem:

heorem 3.3. Suppose that z1[n] and z2[n] are complex sequences with discrete-time Fourier transforms Z1(eiω) and Z2(eiω). Then

Hd(z1z2)[n] = z1[n]Hd(z2)[n] (3.5)

f there exists a nonnegative number σ < π such that

Z1
(
eiω) = 0, for − π < ω < −σ , and Z2

(
eiμ) = 0, for − π < μ < σ < π.

Theorem 3.3 tells us that if z1[n] and z2[n] are analytic sequences then the Bedrosian identity (3.5) remains true.
Please cite this article in press as: H. Li et al., Discrete-time analytic signals and Bedrosian product theorems, Digital Signal Process. (2009),
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4. Discrete-time analytic signals

We would like to investigate sequences for which they are analytic. In order to do so we employ the continuous-time
analytic signals. A systematic study on analytic signals with nonlinear phase is carried out in Refs. [5,14–16]. We recall that
a complex signal f (t) is said to be analytic if its imaginary part is the Hilbert transform of its real part (see, e.g., [6,8,13]),
i.e.,

f (t) = f R(t) + i f I (t),

where f I (t) = H( f R)(t) and the Hilbert transform H is defined as

H( f R)(t) := 1

π
p.v.

∞∫
−∞

f R(s)

t − s
ds.

Let R be the field of real numbers and let C be the field of complex numbers. We denote the upper-half complex plane
by C

+ . We deal with Hardy spaces H p of the upper-half complex plane C
+ . For 0 < p < ∞, f ∈ H p means that f is analytic

in C
+ and that

‖ f ‖p
p = sup

0<y<∞

∫
R

∣∣ f (t + iy)
∣∣p

dt < ∞.

For p � 1, H p are Banach spaces. For p < 1, H p are complete metric spaces under the metric d( f , g) = ‖ f − g‖p
p , (see [7]).

Functions in H p have nontangential limits almost everywhere on the real line R and the norms just introduced coincide
with the L p(R) norms of these limits. Thus H p may be viewed as a closed subspace of the corresponding L p(R) space. We
will not distinguish between the analytic functions in H p and their boundary limit functions, and we will usually compute
norms by resorting to the L p(R) norms on the boundary.

Qian [14] explored connections between eigenfunctions of Hilbert transformation and functions in Hardy H p spaces.
A complex function f (t) = ρ(t)(cos θ(t) + i sin θ(t)), with ρ � 0 and ρ ∈ L p(R),1 � p � ∞, satisfies H(ρ(·) cos θ(·)) =
ρ(t) sin θ(t) if and only if it is the boundary value of a function in Hardy space H p of the upper-half complex plane C

+ .
To fit to our need, we restate the characterization of analytic signal in terms of boundary values of the functions in the

Hardy space H2 of the upper-half complex plane C
+ .

We denote the Fourier transform of a function f by f̂

f̂ (ξ) :=
∞∫

−∞
f (t)e−itξ dt.

Therefore we have by the inverse Fourier transform

f (t) = 1

2π

∞∫
−∞

f̂ (ξ)eitξ dξ.

We obtain the multiplier form in frequency domain of the Hilbert transform H( f )(t) of function f

H( f )(t) := 1

2π

∞∫
−∞

(−i sgn ξ) f̂ (ξ)eiξt dξ.

If a complex function f (t) = f R(t) + i f I (t) is in L2(R) then f R ∈ L2(R). If H( f R)(t) = f I (t) then we get

f (t) = f R(t) + i f I (t) = f R(t) + iH( f R)(t) = 1

π

∞∫
0

f̂ R(ξ)eiξt dξ.

The function f can be analytically extended to the upper-half complex plane C
+ . We denote z the complex variable in the

rest of this section. Note that f R ∈ L2(R). If we let f (z) = 1
π

∫ ∞
0 f̂ R(ξ)eiξ z dξ , it is well known that f (z) is holomorphic in

the upper-half complex plane C
+ and f (t) is the boundary value of f (z) (see, e.g. [10,17]). That means f ∈ H2 and f (t) is

the boundary value of f .
Suppose that f (t) is the boundary value of an H2 function. Then supp( f̂ ) ⊂ (0,+∞) and we have the following repre-

sentation for f , see, e.g. [10,17],

f (t) = 1

2π

∞∫
f̂ (ξ)eitξ dξ.
Please cite this article in press as: H. Li et al., Discrete-time analytic signals and Bedrosian product theorems, Digital Signal Process. (2009),
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e may deduce that

f (t) = 1

2π

∞∫
0

f̂ (ξ)eitξ dξ

= 1

2

{
1

2π

∞∫
−∞

(1 + sgn ξ) f̂ (ξ)eitξ dξ

}

= 1

2

1

2π

∞∫
−∞

f̂ (ξ)eitξ dξ + 1

2

1

2π

∞∫
−∞

sgn ξ f̂ (ξ)eitξ dξ

= 1

2
f (t) + i

1

2
H( f )(t). (4.1)

urther we write f (t) = f R(t) + i f I (t) for an H2 function f . We may deduce from (4.1) that

f R(t) + i f I (t) = f R(t) + iH( f R)(t). (4.2)

omparing the real part with the imaginary in (4.2) yields H( f R)(t) = f I (t).
Summarizing up the discussion above we conclude that

emma 4.1. Let a complex function f (t) = f R(t) + i f I (t) be in L2(R). Then H( f R)(t) = f I (t) if and only if f is the boundary value of
function in Hardy space H2 of the upper-half complex plane C

+ .
In this case we have H f (t) = −i f (t).

We would like to explore connections between the discrete-time Hilbert transform and the continuous-time one. We
ntroduce the space E p

τ , p > 0, of entire functions f of exponential type τ for which

‖ f ‖p
p =

∫
R

∣∣ f (t)
∣∣p

dt < ∞.

p
τ , p > 0, is clearly a subspace of L p(R). Recall that an entire function f is of exponential type τ if f (z) = O(e(τ+ε)|z|) for
ll ε > 0. The totality of all entire functions of exponential type at most π that are square integrable on the real axis is
now as the Paley–Wiener space and will be designated by E2.

The celebrated theorem of Paley–Wiener for E2-functions says: For an entire function f to belong to E2, it is necessary
nd sufficient that there exist ψ ∈ L2(−π,π) such that

f (z) =
π∫

−π

ψ(t)eizt dt.

For f ∈ E p
τ we have Plancherel–Pólya inequality. Let p, τ > 0 and f ∈ E p

τ . For y ∈ R we have∫
R

∣∣ f (t + iy)
∣∣p

dt � epτ |y|
∫
R

∣∣ f (t)
∣∣p

dt. (4.3)

It follows that the Plancherel–Pólya inequality (4.3) implies that the map f → eiπ z f is an isometry from E p into H p .
For the sequel we essentially consider E2 and H2. The analogous discussion can be considered for the E p and H p for

< p < ∞. E2 is the isometric image of L2(−π,π) under the inverse Fourier transform. Central to the E2 theory is the
o-called sinc function

sinc(z) = sinπ z

π z
.

e denote by χ[−π,π ](t) the characteristic function on [−π,π ]. Since sinc(z − n) is the image of χ[−π,π ](t)e−int/
√

2π
nder inverse Fourier transform, the collection {sinc(z − n)}n∈Z is an orthonormal basis of E2. This observation yields the
ardinal series representation of a function f in E2

f (t) =
∑

f (n) sinc(t − n). (4.4)
Please cite this article in press as: H. Li et al., Discrete-time analytic signals and Bedrosian product theorems, Digital Signal Process. (2009),
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We note that the Hilbert transform of sinc function is

H sinc(t) = 1

π
p.v.

∫
R

sinc(s)

t − s
ds = 1 − cosπt

πt
.

From the cardinal series representation (4.4) of a function f in E2 we get

H f (t) =
∑
n∈Z

f (n)
1

π
p.v.

∫
R

sinc(s − n)

t − s
ds

=
∑
n∈Z

f (n)
1 − cosπ(t − n)

π(t − n)
.

Finally we arrive at

H f (k) =
∑
n∈Z

f (n)
1 − cosπ(k − n)

π(k − n)

=
∑
n∈Z

h[k − n] f [n]

= Hd f [k], k ∈ Z,

where h[n] is defined as in (1.4).
Summarizing up the statements above we form the following lemma (see [9]).

Lemma 4.2. Let H and Hd denote the Hilbert transforms of continuous-time and discrete-time signals respectively. For f in E2 we
have

H f (k) = Hd f [k], k ∈ Z. (4.5)

Relation (4.5) tells us that the Hilbert transform and the discrete Hilbert transform are analogous for E2 functions. That
is to say, for a band-limited signal f whose Fourier transform is supported in the interval [−π,π ], the sampling sequence
{H f (n)} at integer points of the Hilbert transform of f is completely determined by the discrete Hilbert transform of the
sequence { f [n]}.

Theorem 4.3. Let f be an entire function of exponential type π . Then, {x[n] = eiπ n
2 f ( n

2 )} is an analytic sequence.

Proof. It is known that the map f → eiπ z f is an isometry from E2 into H2, due to the Plancherel–Pólya’s inequality [2].
iπt
U
N

C
O

R
R
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Recall that for functions f (t) and g(t) = e f (t) their Fourier transforms F (ω) and G(ω) are related with G(ω) = F (ω−π).
If the support of F (ω) is contained in [−π,π ] then the support of G(ω) is contained in [0,2π ]. Therefore the support of
Fourier transform 2G(2ω) of g1(t) = g(t/2) is contained in [0,π ]. It follows that g1(t) = g(t/2) can be expanded to the
cardinal series

g1(t) =
∑
n∈Z

g1(n) sinc(t − n) =
∑
n∈Z

g1(n)
sinπ(t − n)

π(t − n)
. (4.6)

Taking the Hilbert transform on both sides in (4.6), we get

H g1(t) =
∑
n∈Z

g1(n)
1 − cosπ(t − n)

π(t − n)
. (4.7)

Noticing that H(g1) = −ig1 for the analytic signal g1 we have

−ig1(t) =
∑
n∈Z

g1(n)
1 − cosπ(t − n)

π(t − n)
. (4.8)

Setting t = k in (4.8) we have

−ig1(k) =
∑
n∈Z

g1(n)
1 − cosπ(k − n)

π(k − n)

=
∑
n∈Z

g1[n]h[k − n]

= Hd g1[k], k ∈ Z.
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Owing to g1[n] = eiπ n
2 f ( n

2 ), we have

Hd

{
eiπ n

2 f

(
n

2

)}
[k] = Hd g1[k] = −ig1(k) = −ieiπ k

2 f

(
k

2

)
, k ∈ Z.

This concludes that {x[n] = eiπ n
2 f ( n

2 )} is an analytic sequence. �
Theorem 4.3 exhibits a procedure how to obtain an analytic sequence. We first choose an entire function f of exponential

type π and modulate it by eiπt and then sample at n/2.
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