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1. Introduction

There has been an ample amount of literature discussing zeros of polynomials. This

note concerns about polynomials of one hyper-complex-variable (hyper-complex valued

polynomials), while the coefficients may be real, or complex, or hyper-complex constants.

By hyper-complex numbers we mean quaternions, octonions, several complex variables

or Clifford numbers. Niven in [3, 4] first studied zeroes of hyper-complex polynomials

which further led to the article by Eilenberg and Niven [5] where a fundamental theorem

for quaternionic polynomials was established. In [6], they proved that any quaternionic

polynomial of degree n ≥ 1 has at least one zero and there should be two types of zeroes:

They are either isolated or spherical ones. In [7] zeroes of quaternionic and octonionic

polynomials with real coefficients are also studied. In that paper, the authors found that

the root-set of such a polynomial is a union of a finite number of codimension 2 Euclidean

spheres together with a finite number of real points. In [8], roots of polynomials with

bicomplex coefficients are studied. To the authors knowledge, in the higher dimensional

cases under the structure of Clifford algebra, there has been no such results.

In this article, we first study zeroes of Clifford algebra-valued polynomials. For the

special cases, we consider paravector-valued polynomials with real coefficients. Using a

technical method, we introduce a one-to-one correspondence between such a polynomial

and a complex polynomial and then extend the results in [6].

1This project sponsored by the Scientific Research Foundation for the Youth Scholars of Sun Yat-Sen
University and by Research Grant of University of Macau on Applications of Hyper-Complex Analysis
(cativo: 7560).
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We first give some basic knowledge in relation to Clifford algebra ([1,2]). Let e1, ..., em

be basic elements satisfying eiej + ejei = −2δij, where δij = 1 if i = j; and δij = 0

otherwise, i, j = 1, 2, · · · , m. Let

Rm = {x = x1e1 + · · ·+ xmem : xj ∈ R, j = 1, 2, · · · , m}

be identical with the usual Euclidean space Rm, and

Rm
1 = {x = x0e0 + x : x0 ∈ R, x ∈ Rm}, where e0 = 1.

An element in Rm
1 is called a paravector. For x ∈ Rm

1 , it consists of a scalar part and a

vector part. We use the dotations

x0 = Sc(x), x = Vec(x).

The real (or complex) Clifford algebra generated by e1, e2, · · · , em, denoted by R(m) (or

C(m)), is the associative algebra generated by e1, e2, · · · , em over the real (or complex)

field R (or C). A general element in R(m) (or C(m)), therefore, is of the form x =∑
S xSeS, where eS = ei1ei2 · · · eil , xS ∈ R (or C), and S runs over all the ordered subsets

of {1, 2, · · · , m}, namely

S = {1 ≤ i1 < i2 < · · · < il ≤ m}, 1 ≤ l ≤ m.

We define the conjugation of eS to be eS = eil · · · ei1 , ej = −ej. This induces the Clifford

conjugate x = x0 − x of a paravector x = x0 + x.

The product between x and y in Rm
1 , denoted by xy is split into three parts: a scalar

part, a vector part and a bivector part, that is

xy = (x0y0 + x · y) + (x0y + yox) + x ∧ y,

where

x · y = −
m∑

i=1

xiyi,

x ∧ y =
m∑

i=1

m∑
j=i+1

(xiyj − xjyi)eiej.

In particular,

xx = x0
2 −

m∑
i=1

xi
2 + 2x0x = 2x0x− |x|2,

where

|x|2 = xx =
m∑

i=0

xi
2.

In the following, the so-called Clifford-Heaviside functions

P±(x) =
1

2
(1± i

x

|x|
), i is the imaginary unit in C
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will play an important role, which were first introduced by Sommen in [9] and McIntosh

in [10]. Introducing spherical coordinates in Rm, we have x = rω, r = |x| ∈ [0,∞), ω ∈
Sm−1, where Sm−1 is the unit sphere in Rm. Thus,

P±(ω) =
1

2
(1± iω).

They are self adjoint mutually orthogonal primitive idempotents:

P+(ω) + P−(ω) = 1, P+(ω)P−(ω) = P−(ω)P+(ω) = 0, (P±(ω))2 = P±(ω).

Furthermore, we have

P±(ω)ω = ωP±(ω) = ∓iP±(ω)

and thus

P±(ω)x = xP±(ω) = P±(x0 ∓ i|x|). (1)

2. The set of zeroes of a Clifford algbra-valued poly-
nomial

In this section, we will consider the following polynomials of degree n ≥ 1 with paravector

variable x ∈ Rm
1 and paravector coefficients,

Rn(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0, (2)

and

Ln(x) = xnan + xn−1an−1 + · · ·+ xa1 + a0, (3)

where {a0, a1, · · · , an} ⊆ Rm
1 and an 6= 0.

Since

Rn(x) = xnan + xn−1an−1 + · · ·+ xa1 + a0,

it is enough to consider only one of the two polynomials.

First, we show that every polynomial Rn has a special representation based on which

our study is carried out.

For x = x0 + x ∈ Rm
1 , we have

x2 = 2x0x− |x|2

= 2Sc(x)x− |x|2.

Then

x3 = x2x =
(
2Sc(x)x− |x|2

)
x

= 2Sc(x)x2 − |x|2x
=

[
(2Sc(x))2 − |x|2

]
x− 2Sc(x)|x|2

...
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Going like this, we obtain the bi-axial form formula:

xn = An(x)x + Bn(x),

where An and Bn are real-valued functions of x defined by the recurrent formulas:

An+1(x) = 2Sc(x)An(x)− |x|2An−1(x)

Bn+1(x) = −|x|2An(x),

where

A1(x) = 1

A2(x) = 2Sc(x)

B1(x) = 0

B2(x) = −|x|2.

Therefore,

Rn(x) = an[An(x)x + Bn(x)] + an−1[An−1(x)x + Bn−1(x)] + · · ·+ a1x + a0

= A(x)x + B(x),

where

A(x) =
∑

aiAi(x), B(x) =
∑

aiBi(x).

Note that, like the coefficients, A(x) and B(x) are paravector-valued.

Remark 2.1 As a matter of fact, given any x ∈ Rm
1 , Ai(x) and Bi(x) depend not on x

but on its scalar part x0 and the modulus of its vector part |x|.
Thus, we have

Lemma 2.1 If two paravectors x = x0 + x, y = y0 + y with x0 = y0, |x| = |y|, then

Ai(x) = Ai(y), Bi(x) = Bi(y) and hence A(x) = A(y), B(x) = B(y). In particular,

A(x) = A(x), B(x) = B(x).

We are interested in the properties of the zeroes of both polynomials (2). Let us see

the following examples:

Example 1 For x2 + 1 = 0, the zeroes in Rm
1 are all the vectors of modulus 1 in Rm.

Thus its solutions are all the points on the unit sphere.

Example 2 Equation x2 + e2 = 0 has two isolated zeroes in Rm
1 ,

x1,2 = ±
√

2

2
(1− e2).

Example 3 Equation x2 + e3x + e2 = 0 has no zeroes in Rm
1 .

4



Remark 2.2 In [6], we know that any quaternionic polynomials of degree n ≥ 1 has at

least one zero. While, in higher dimensional cases under the structure of Clifford algebra,

when n ≥ 1, none of the polynomials (2) and (3) have zeroes.

Next, we will consider structure of the set of zeroes of a polynomial of the form (2)

when it has zeroes.

Definition 2.1 If w0 = α + Vec(w0) and w1 = α + Vec(w1) are two different paravectors

with |Vec(w0)| = |Vec(w1)|, then they are said to be spherical conjugate to each other.

Proposition 2.1 Assume that w0 = α + Vec(w0) and w1 = α + Vec(w1) are spherical

conjugate to each other, and they both are zeroes of the polynomial (2), then any paravector

that is spherical conjugate to w0 is also a zero of (2).

Proof For w0 and w1, we have

Rn(w0) = 0 = A(w0)w0 + B(w0)

Rn(w1) = 0 = A(w1)w1 + B(w1)

and

A(w0) = A(w1), B(w0) = B(w1).

Hence A(w0)w0 + B(w0) = A(w0)w1 + B(w0), which implies that

A(w0) [Vec(w0)− Vec(w1)] = 0.

Since w0 and w1 are two different zeroes, the above means that A(w0) = 0 and then, from

the recurrent formula, B(w0) = 0.

For any w = α + Vec(w) with |Vec(w)| = |Vec(w0)|, using Lemma 2.1 we obtain

A(w) = A(w0), B(w) = B(w0).

Therefore, Rn(w) = A(w)w + B(w) = A(w0)w + B(w0) = 0. This completes the proof.

Corollary 2.1 Let w0 be a zero of the polynomial (2) such that Vec(w0) 6= 0 and that w0

is also a zero of it, then any spherical conjugate paravector to w0 is also a zero of it.

Definition 2.2 Given a polynomial Rn(x), then any of its zeroes generating a family of

zeroes that are spherical conjugate to each other is called a spherical zero. A zero that is

not spherical is called an isolated zero.

Proposition 2.2 The number of the isolated non-scalar zeroes of the polynomial (2) is

less or equal to n.

Proof Let w1, w2, · · · , wn+1 be different non-scalar isolated zeroes of Rn. Considering the

polynomial

Ln(x) = Rn(x) = xnan + xn−1an−1 + · · ·+ xa1 + a0 =
n∑

k=0

xkak,
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using the properties (1) of P+(ω), we have

P+(ω)Ln(x) =
n∑

k=0

P+(ω)xkak

=
n∑

k=0

P+(ω)(x0 − i|x|)kak

= P+(ω)Ln(x0 − i|x|).

Similarly,

Rn(x)P+(ω) = Rn(x0 − i|x|)P+(ω).

Hence

P+(ω)Ln(x)Rn(x)P+(ω) = P+(ω)Ln(x0 − i|x|)Rn(x0 − i|x|)P+(ω)

= P+(ω)F2n(x0 − i|x|)P+(ω),

where

F2n(x0 − i|x|) = Ln(x0 − i|x|)Rn(x0 − i|x|)

=

[
n∑

k=0

(x0 − i|x|)kak

] [
n∑

k=0

ak(x0 − i|x|)k

]
= a0a0 + (a0a1 + a1a0)(x0 − i|x|) + · · ·+ anan(x0 − i|x|)2n

=
2n∑

k=0

(
k∑

i=0

aiak−i)(x0 − i|x|)2k

is a polynomial of x0 − i|x| of order 2n with real coefficients.

Similar computation gives

P−(ω)Ln(x)Rn(x)P−(ω) = P−(ω)F2n(x0 + i|x|)P−(ω).

If Rn(wi) = 0 (i = 1, 2, · · · , n + 1), then

0 = P+(wi)Ln(wi)Rn(wi)P
+(wi)

= P+(wi)F2n [Sc(wi)− i|Vec(wi)|] P+(wi)

= F2n [Sc(wi)− i|Vec(wi)|] (P+(wi))
2

= F2n [Sc(wi)− i|Vec(wi)|] P+(wi).

Since F2n is a complex-valued polynomial and P+(wi) 6= 0, we have

F2n [Sc(wi)− i|Vec(wi)|] = 0.

Likewise, F2n [Sc(wi) + i|Vec(wi)|] = 0. Therefore, F2n(z) has 2n + 2 zeroes, which is a

contradiction. This completes the proof.

We further have
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Proposition 2.3 The number of the isolated zeroes of the polynomial (2) is less or equal

to n.

Proof Let w1, w2, · · · , wp(1 ≤ p ≤ n + 1) be different scalar zeroes and wp+1, · · · , wn+1

be different non-scalar isolated zeroes of Rn. Then the polynomial can be written as

Rn(x) = Rn−p(x)(x− w1) · · · (x− wp).

If Rn(wi) = 0, p + 1 ≤ i ≤ n + 1, note that wi − wj have inverse paravectors, where

p + 1 ≤ i ≤ n + 1, 1 ≤ j ≤ p, then Rn−p(wi) = 0. That means equation Rn−p(x) = 0

has n− p + 1 non-scalar isolated zeroes, which is a contradiction to Proposition 2.2. This

completes the proof.

Theorem 2.1 The number of the isolated zeroes together with the double number of the

spherical zeroes of polynomial (2) does not exceed the degree of the polynomial.

We will prove it in next section.

Next section, as a special cases, we will study sets of zeroes of polynomials with real

coefficients.

3. Sets of zeroes of polynomials with real coefficients

Consider the polynomial

Qn(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0, (4)

with ai ∈ R.

Using Corollary 2.1, we can obtain the following conclusion:

Proposition 3.1 Any zero of (4) with the form w0 = α + Vec(w0), Vec(w0) 6= 0, is a

spherical zero.

Proof According to Corollary 2.1, it will suffice to show that w0 is also a zero of (4).

In fact, based on the previous discussion, Qn(x) has the representation

Qn(x) = A(x)x + B(x),

where, based on the real-coefficients assumption, A(x) and B(x) are real numbers.

If Qn(w0) = 0, then

A(w0)α + B(w0) = 0, A(w0)Vec(w0) = 0,

which implies A(w0) = B(w0) = 0.
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From Lemma 2.1, we have

A(w0) = A(w0), B(w0) = B(w0).

Therefore, Qn(w0) = A(w0)w0 + B(w0) = 0.

From Proposition 3.1, we obtain

Corollary 3.1 Qn(x) has no isolated non-scalar zeroes.

Next, we will introduce a method to solve the equation Qn(x) = 0.

For Qn(x) =
∑n

k=0 ak(x0 + x)k, ak ∈ R, we have

P+(ω)Qn(x) = Qn(x)P+(ω) = Qn(x0 − i|x|)P+(ω)

P−(ω)Qn(x) = Qn(x)P−(ω) = Qn(x0 + i|x|)P−(ω).

Using the properties of P±(ω), we have

Qn(x) = Qn(x)[P+(ω) + P−(ω)] = Qn(x0 − i|x|)P+(ω) + Qn(x0 + i|x|)P−(ω).

Thus

Qn(x) = 0 ⇐⇒ Qn(x0 − i|x|)P+(ω) + Qn(x0 + i|x|)P−(ω) = 0

⇐⇒ Qn(x0 − i|x|)P+(ω) = 0 and Qn(x0 + i|x|)P−(ω) = 0

⇐⇒ Qn(x0 − i|x|) = 0 and Qn(x0 + i|x|) = 0

⇐⇒ Qn(z) = 0.

Note Note that Qn(z) = 0 is an equation of real coefficients. It, therefore, has complex

conjugate roots.

From the above discussion, we can obtain the conclusion as follows:

Corollary 3.2 If α ± iβ, β > 0, is a solution of Qn(z) = 0, then α + βω is a spherical

zero of Qn(x).

Proposition 3.2 Given a polynomial Qn(x) of real coefficients. Then there exists a

one-to-one correspondence between its real isolated zeroes and the real roots of Qn(z), as

well as a one-to-one correspondence between the spherical zeroes of Qn(x) and the pairs

of complex conjugate zeroes of Qn(z).

Using Proposition 3.2, we have

Theorem 3.1 Given a polynomial Qn(x) with real coefficients, it has at least one zero.

The zeroes are either isolated real ones or spherical zeroes. A pair of complex conjugate

roots of Qn(x) with multiplicity k, 2k ≤ n, corresponds to a single spherical zero. The
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number of the isolated real zeroes together with the double number does not exceed the

degree of the polynomial.

Examples 1 For x2 − px + q = 0, where p, q ∈ R, considering z2 − pz + q = 0, we have

z1,2 =
p±

√
p2 − 4q

2
.

If p2 − 4q ≥ 0, then x1,2 =
p±
√

p2−4q

2
are zeroes of x2 − px + q = 0. If p2 − 4q < 0, then

x = p
2

+

√
4q−p2

2
ω is a spherical zero of x2 − px + q = 0.

From Example 1, we obtain that

Corollary 3.3 There is a one-to-one correspondence between the spherical zero x = α+rω

and the equations of real coefficients [x2 − 2αx + (r2 + α2)]k = 0, k = 1, 2, · · ·.

Examples 2 For x3 + 2x2 + x + 2 = 0, considering z3 + 2z2 + z + 2 = 0, we have

z1,2 = ±i, z3 = −2.

Then zeroes of x3 + 2x2 + x + 2 = 0 are x1 = ω and x2 = −2.

Example 3 For x4 + x2 + 1 = 0, considering z4 + z2 + 1 = 0, we have

z1,2 =
1

2
(1±

√
3i)

z3,4 = −1

2
(1±

√
3i).

The zeroes of x4 + x2 + 1 = 0 are x1,2 = ±1
2
(1 +

√
3ω).

Before proving Theorem 2.1, we need a Lemma.

Lemma 3.1 If α1 + r1ω, α2 + r2ω, · · · , αp + rpω, (1 ≤ p ≤ [n
2
]) are different spherical

zeroes of Rn with multiplicity k1, · · · , kp, then the polynomial can be written as

Rn(x) = Rn−2kp(x)[x2 − 2α1x + (r2
1 + α2

1)]
k1 · · · [x2 − 2αpx + (r2

p + α2
p)]

kp .

Proof For Rn(x) = A(x)x + B(x). If w1 = α1 + r1ω is a spherical zero of Rn(x), then

w1 is also a zero of it. As the proof of Proposition 2.1, we have A(w1) = A(w1) = 0 and

B(w1) = B(w1) = 0. Using the properties of A(x) and B(x), we obtain that A(α1± ir1) =

0 and B(α1 ± ir1) = 0. Therefore, Rn(α1 ± ir1) = 0. We have

Rn(z) = Rn−2(z)[z − (α1 + ir1)][z − (α1 − ir1)] = Rn−2(z)[z2 − 2α1z + (r2
1 + α2

1)].

Hence Rn(x) = Rn−2(x)[x2− 2α1x+(r2
1 +α2

1)]. Using a finite number of iterations of this

procedure leads to the conclusion. This completes the proof.
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Proof of Theorem 2.1 Let α1 + r1ω, α2 + r2ω, · · · , αp + rpω, (1 ≤ p ≤ [n
2
]) be different

spherical zeroes and w2p+1, · · · , wn+1 be different isolated zeroes of Rn. From Lemma 3.1,

we know that the polynomial can be written as

Rn(x) = Rn−2kp(x)[x2 − 2α1x + (r2
1 + α2

1)]
k1 · · · [x2 − 2αpx + (r2

p + α2
p)]

kp

for some integers k1, k2, ..., kp, and thus the degree of Rn−2kp(x) is less than n− 2p + 1. If

Rn(wi) = 0, 2p+1 ≤ i ≤ n+1, note that w2
i−2αjwi+(r2

j +α2
j ), 2p+1 ≤ i ≤ n+1, 1 ≤ j ≤ p

have inverse vectors, then Rn−2kp(wi) = 0. That means equation Rn−2kp(x) = 0 has

n−2p+1 isolated zeroes, which is a contradiction to Proposition 2.3. This completes the

proof.
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