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Abstract. In recent study adaptive decomposition of functions into basic functions of analytic
instantaneous frequencies has been sought. Fourier series is a particular case of such decomposition.
Adaptivity addresses certain optimal property of the decomposition. The present paper presents
a fast decomposition of functions in the L2(∂D) spaces into a series of inner and weighted inner
functions of increasing frequencies.
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1 Introduction

In signal analysis instantaneous frequency of a given real-valued signal (function) s(t), t ∈ R, is
defined to be the function θ′(t), when it is defined, where the function θ(t) is defined through the
analytic signal associated with s, viz. s(t) + iHs(t) = ρ(t)eiθ(t), where Hs is the Hilbert transform
of s. From the physics view of point, if θ′(t) stands as a qualified instantaneous frequency function,
then necessarily it should satisfy θ′(t) ≥ 0, a.e. (or, alternatively, θ′(t) ≤ 0)(See [4], [6]).

A real-valued signal s(t) has many phase-amplitude representations of the form s(t) = ρ(t) cos θ(t), ρ ≥
0. If a pair of ρ and θ in such a representation is obtained from the associated analytic function
s+ iHs, then we say that s(t) = ρ(t) cos θ(t) is the analytic phase-amplitude representation of s(t).
A characteristic property of the pair (ρ, θ) from an analytic phase-amplitude representation is

H(ρ cos θ) = ρ sin θ, (1.1)

or, equivalently (by using the relation H2 = −I, where I denotes the Identity operator),

H(ρeiθ) = −iρeiθ, (1.2)
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when Hs is defined. Here we have in mind two types of signals in, respectively, Lp(R) and
Lp(∂D), 1 ≤ p ≤ ∞, where D denotes the unit disc in the complex plane C, and ∂D its boundary.
Note that if s ∈ L∞(R), then a normalization is needed in order to have the exact relation (1.1) and
(1.2). Or, otherwise, they hold modulo constants ([5]). As a basic property of Hilbert transform
we know that if s(t) = ρ(t) cos θ(t) is the analytic phase-amplitude representation of s, then the
associated analytic signal s + iHs = ρeiθ is of only non-negative Fourier spectrum. Fourier spec-
trum and θ′ have indirect relations. Examples show that signals with positive Fourier spectrum can
allow θ′(t) < 0 in a set of positive Lebesgue measure. In such case we say that s(t) does not have
(analytic) instantaneous frequency. In the present work our stand is that not all analytic signals
have well defined (analytic) instantaneous frequency. Instead, we seek for decomposition into the
form

s(t) =
N∑

k=1

ρk(t) cos θk(t) + rN (t), (1.3)

where for each k, the basic signal ρk cos θk has a well defined instantaneous frequency (function),
that is θ′k(t) ≥ 0, a.e., and thus a well defined instantaneous amplitude ρ(t), too. One can formulate
the counterpart notion on finite intervals that is the case equivalent to the unit circle ∂D, where
the Hilbert transformation on the line is replaced by the circular Hilbert transform on the circle,
viz. the principal value singular integral

HF (eit) =
1
2π

p.v.

∫ 2π

0
cot(

t− u

2
)F (eiu)du. (1.4)

Note that Fourier series expansion is a particular case of such decomposition. We formulate
what we want into the following definition.

Definition 1.1 (Mono-component) Let s(t) = ρ(t) cos θ(t) (or s(t) = ρ(t)eiθ(t)) be the analytic
phase-amplitude representation of s(t), that is

H(ρ cos θ) = ρ sin θ (or H(ρeiθ) = −iρeiθ),

where ρ ≥ 0. If, moreover, there holds θ′ ≥ 0, then s is said to be a real (or a complex) mono-
component on the line. Using the circular Hilbert transformation, still denoted H, to replace the
Hilbert transformation one defines mono-components on the unit circle.

For functions in Hardy spaces we the decomposition is of the form

s(t) + iHs(t) =
N∑

k=1

ρk(t)eiθk(t) + RN (t) (1.5)

where s is real-valued and s + iHs is the boundary value of a function in the Hardy space, and for
each k, ρk(t)eiθk(t) is a complex mono-component (See Corollary 2.6).

The totality of all the mono-components in each context, R or ∂D, is denoted by MC. The
notion of mono-components in relation to the question of adaptive decomposition is proposed in
([8]). There has been a series of work for finding various types of mono-components, including [6],
[7], [8], [17], [10], [11], [15], [17], [16], [13].

The set MC is not a basis, nor exists there orthogonality between its members. So far one finds
that it is a rather large set including Blaschke products of finite and infinite zeros and singular
inner functions ([9]), and their weighted forms ([10]) (called weighted unimodular forms below) and
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p-starlike functions ([8]), etc. The theory of mono-components has roots in complex Hardy spaces
and conformal mappings. Below we particularly note a stream finding weight forms of unimodular
mono-components that motivated recent study on the Bedrosian identity.

By unimodular mono-components we refer to the mono-components with ρ ≡ 1; or, equivalently,
all the functions s(t) = cos θ(t) for which

H cos θ = sin θ, and θ′ ≥ 0. (1.6)

Earlier observations along this line are restricted to the finite Blaschke products case ([6] and [7]).
Being aware of those basic unimodular mono-components, based on the engineers’ experience that
Fourier frequencies of the amplitude part should be lower than those of the phase signal part, one
naturally seeks for ways of constructing new and non-unimodular mono-components by using the
idea of the Bedrosian identity ([3]). In other words, having a function θ satisfying (1.6), one seeks
for ρ ≥ 0 such that

H(ρ cos θ) = ρH(cos θ). (1.7)

Should such ρ exists, then we have (1.1), as well as θ′(t) ≥ 0 a.e. ([15], [17], [16], [11], [12], [10])
and [14]. A recent result on inner functions [9] asserts that the relation (1.6), as a matter of fact,
implies θ′(t) ≥ 0 (see Theorem 1 below). So, the condition (1.1) alone characterizes the class of
unimodular mono-components.

The proposed decomposition (1.3) is a generalization of the Fourier expansions in the series and
the the integral forms in, respectively, the straight line and the unit circle contexts. Adaptivity
is application dependent. Thus the decomposition may not be unique. One branch of the stream
deals with the Walsh system and systems like the Walsh system, involving a sequence of weighted
finite Blaschke products ([10], [14])(See Remark ??). The Walsh and Walsh like systems consist of
mono-components. However, they are not adaptive. They are orthogonal bases determined by a
sequence of points {ak} in the unit disc. The choices of a1, a2, ... should obey the rule

∞∑

k=1

(1− |ak|) = ∞ (1.8)

in order to make the system an orthogonal basis. The Walsh system and its variations are all based
on a previously determined sequence of points {ak} irrelevant to the signal to be decomposed. For
adaptive decomposition the sequence {ak} determining the system must be adaptively chosen in
relation to the given signal, and thus it may not satisfy the condition (1.8), and the resulted system
may not be a basis of the whole space. The present study is one of this adaptive scheme involving
weighted inner functions. It offers high adaptivity and fast convergence.

To stress on the main idea we will work on the unit circle corresponding to periodic signals,
and on the square-integrable case. Below C denotes a general constant. Notation Cp stresses on
the dependence of the constant on the parameter p. The values of C and Cp may change from one
occurrence to another.

The first author would like to sincerely thank S.-Y. Chang for her kind invitation and encour-
agement, as well as technical advice at Princeton University in summer 2006.
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2 Adaptive Decomposition of Signals in H2(D)

Below we will briefly recall the necessary knowledge on Hardy spaces (See [5]). A function F (z)
holomorphic in the unit disk D is said to be in the Hardy space Hp(D) if it satisfies

‖F‖Hp := sup
0<r<1

{
1
2π

∫ π

−π
|F (reiθ)|pdθ

}1/p

< ∞, 1 ≤ p < ∞, (2.9)

and is said to be in the Hardy space H∞(D) (the space of bounded holomorphic functions) if it
satisfies

‖F‖H∞ := sup
z∈D

|F (z)| < ∞. (2.10)

For F (z) in Hp(D) or in H∞(D) there exists non-tangential boundary limit (or non-tangential
boundary value), denoted F (eit), where F (eit) ∈ Lp(∂D). The functions F (z) ∈ H∞(D) with the
property |F (eit)| = 1 a.e. are called inner functions. The two particular types of inner functions
are Blaschke products and singular inner functions.

A general Blaschke product is an inner function defined by an infinite product

B(z) = Czm
∏

|zn|6=0

−zn

|zn|
z − zn

1− znz
, (2.11)

where C is a unimodular constant, the zeros z1, z2, ... necessarily satisfy the condition

∞∑

n=1

(1− |zn|) < ∞ (2.12)

in order to make the infinite product convergent. The role of the constant unimodular factors −zn
|zn|

is to make the infinite product convergent in its argument. If there are only finite many non-zero
zeros, then those unimodular constant factors are not necessary. Each factor is a Möbius transform.

A general singular inner function is an inner function with the form

S(z) = exp
(
−

∫ 2π

0

eit + z

eit − z
dµ(t)

)
, (2.13)

where dµ is a finite positive Borel measure that is singular with respect to the Lebesgue measure
dt. A typical example is dµ = δ(t − t0)dt, the Dirac point mass measure at t0. A singular inner
function has no zero points in the unit disc, with non-tangential boundary values of module 1
almost everywhere on ∂D, and takes infinite many times of any value ζ ∈ D in any neighborhood
of any point at which the singular measure concentrates.

Another type of Hp(∂D) functions having no zeros in D is outer functions. They are of the
form

O(z) = Ce
∫ 2π
0

eit+z

eit−z
log h(t)dt

, (2.14)

where C is a unimodular constant, h ≥ 0 and log h ∈ L1(∂D). The function h ∈ Lp(∂D) if and only
if O ∈ Hp(D). In fact, the module of the boundary value |O| = h a.e.

Nevanlinna’s Factorization Theorem for Hp(D) functions asserts that F ∈ Hp(D) if and only if

F = OBS, (2.15)
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where O is an outer function with |O| = |F | on the boundary, B is a Blaschke product formed by
all the zeros of F, that automatically meet the requirement (2.12), S is a singular inner function
defined by dµ, where dµ has the characteristic property that

log |F (eit)|dt− dµ

is the least harmonic majorant of log |F (z)|. The product BS is called the inner function part of F.
We note that for a given function F in some Hardy space one can first determine its outer function
part by

O(z) = e
∫ 2π
0

eit+z

eit−z
log |F (eit)|dt

up to a unimodular constant. The inner function part I = BS is then determined by the Factor-
ization Theorem.

Now we turn to the connection with mono-components. It is well known that s(t) = ρ(t)eiθ(t)

is the boundary value of a holomorphic function in Hp(D) if and only if H(ρeiθ) = −iρeiθ([2]), or
equivalently, H(ρ cos θ) = ρ sin θ, where H stands for the circular Hilbert transformation. Thus,
boundary values of the Hp(D)-functions automatically satisfy the Hilbert transform condition in
Definition (1.1). The condition θ′(t) ≥ a.e. is not automatically satisfied, though. For instance,
conformal mappings are sense preserving. But mono-components require more than that: They
require that the phase θ(t) is an increasing function. It is a known fact that the phase of a Möbius
transform is a harmonic measure, and its derivative is the Poisson kernel, and thus positive ([5]).
This positivity can be easily generalized to the finite Blaschke product case. For singular inner
functions given by a point Dirac mass a direct computation shows θ′(t) ≥ 0 ([9]). For general inner
functions, including infinite Blaschke products and singular inner functions given by arbitrary
positive Borel measure perpendicular to the Lebesgue measure, [9] asserts that there always holds
θ′(t) ≥ 0, a.e. The meaning of the derivative, however, should be suitably interpreted. The non-
tangential boundary value of an inner function I satisfies |I(eit)| = 1 a.e. When we write this
as I(eit) = eiθ(t), the phase function θ(t) is not uniquely defined. Or, when we uniquely define
it by restricting its values to, for instance, [0, 2π), then the function may not be continuous. In
particular, the boundary value is defined only almost everywhere through non-tangential boundary
limit. It would then be difficult to talk about derivatives of the phase function on the boundary.
A notion of phase derivative should be suitably defined.

With an abuse of notation (as θ(t) is not defined) the phase derivative θ′(t) is defined to be the
limit of θ′r(t) as r → 1−, where F (reit) = ρr(t)eiθr(t). It is shown in [9] that for inner functions the
limits exist for almost all points on the unit circle. Moreover,

lim
r→1−

θ′r(t) = lim
r→1−

Re
reitF ′(reit)

F (reit)
≥ 0, a.e. (2.16)

Essentially, the existence of the limits and the positivity together are nothing more than the con-
tent of the classical Julia-Wolff-Carathéodory Theorem ([9]). If the inner function has analytic
continuation cross an interval on the boundary, then the above defined phase derivative coincides
with the traditional derivative θ′(t) on the interval. With this generalization of phase derivative we
have

Theorem 2.1 Assume that θ(t) is a measurable function. Then

H(cos θ) = sin θ (2.17)

if and only if eiθ(t) is the non-tangential boundary limit of an inner function. In the case, there
holds θ′(t) ≥ 0 a.e., where the derivative is defined through the limit given in (2.16).
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We will be working with the inner functions

Nn = In(z)zn−1
n−1∏

j=1

[(
z − aj

1− ajz

)dj

Ij(z)

]
, n = 1, 2, ..., (2.18)

and the weighted inner functions

Mn =
z

1− anz
Nn =

1
1− anz

In(z)zn
n−1∏

j=1

[(
z − aj

1− ajz

)dj

Ij(z)

]
, n = 1, 2, ..., (2.19)

where dj are non-negative integers, and an are complex numbers in the unit disc D. The sequence
{an} will be consecutively chosen according to some optimal principle specified later. We show that
the functions in the sequence N1,M1, N2,M2, ... are mono-components and they form an orthogonal
system.

Lemma 2.2 Functions in {Nn} and {Mn} are mono-components.

Proof This is in fact a consequence of Theorem 2.1. Functions in {Nn} are inner functions and
thus are mono-components. To show that Mn are mono-components we note that the class MC is
closed under certain multiplication. In fact, if F, G are mono-components and are boundary values
of functions in, respectively, Hp1(D) and Hp2(D), and their product FG is the boundary value of
some Hp(D), where 1 ≤ p, p1, p2 ≤ ∞, then FG is also a mono-component. For a fixed an ∈ D to
show that the bounded holomorphic function Mn = z

1−anzNn is a mono-component, it suffices to
show that the boundary value of the bounded holomorphic function

Gn(z) =
z

1− anz

has an increasing phase function. While this may be verified through computation ([10]), we recall
a geometric proof here. For an ∈ D the fractional linear transform Gn maps the closed unit disc
centered at the origin to a closed unit disc containing the origin. Since Gn is convex with G(0) = 0,
Gn is starlike. A starlike function has an increasing phase. Thus Gn is a mono-component. The
proof is complete.

Lemma 2.3 The two collections {Nn} and {Mn} together form an orthogonal system in H2(D).

The proof of Lemma (2.3) uses the fact that if F (eit) is the non-tangential boundary value of a
function F ∈ H1(D), then ∫

∂D
F (z)dz = 0.

This turns to be true for all Hp(D), 1 ≤ p ≤ ∞, as we have Hp(D) ⊂ H1(D). In the sequel we regard
this as Cauchy’s Theorem for Hp(D) functions, or Cauchy’s Theorem in short.

Proof First, within the collection {Nn} any two different functions are orthogonal. In fact,
for l ≥ 1, and z ∈ ∂D there holds

Nn+l(z)Nn(z) = zlI(z),

where I(z) is an inner function. Applying Cauchy’s theorem for Hp(D) functions, we have
∫ 2π

0
Nn+l(eit)Nn(eit)dt = −i

∫

∂D
zl−1I(z)dz = 0.
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Similarly, any two different functions in the collection {Mn} are orthogonal. For z ∈ ∂D,

Mn+l(z)Mn(z) =
z

1− an+lz
Nn+l

z

1− anz
Nn =

z

1− an+lz

1
z − an

zlI(z),

where the inner function I(z) has an as a zero. Thus the last expression is of the form z1+lF (z),
where F (z) is the boundary value of a function in H∞. By invoking Cauchy’s Theorem again, we
have ∫ 2π

0
Mn+l(eit)Mn(eit)dt = 0.

To exam the orthogonality between Mn and Nk we first have

MnNn =
z

1− anz
,

and obviously Mn and Nn are orthogonal. For Mn+l and Nn we have

Mn+l(z)Nn(z) =
z

1− an+lz
Nn+l(z)Nn(z).

The same reasoning for the orthogonality between Nn+l and Nn then implies the orthogonality
between Mn+l and Nn. Finally we check Mn and Nn+l. We have

Nn+l(z)Mn(z) =
1− an+lz

z
Mn+l(z)Mn(z).

From the proof of the orthogonality between Mn+l(z) and Mn(z) the right-hand-side of the last
equality is of the form zlF (z), where F (z) is the boundary value of a function in H∞(D) and again
we have the orthogonality. The proof is complete.

The mono-components Nn and Mn are resulted from the following process of decomposition
of functions in Hp(D). Any function F ∈ Hp(D), 1 ≤ p ≤ ∞, can be decomposed by recursively
employing Nevanlinna’s Factorization Theorem. In each of the recurrence steps below we subtract
a linear function from an outer function so that at least two factors z and z − ai, and hopefully
more inner function factors, and hopefully some non-trivial inner function factors as well, can be

7



factorized out, namely,

F (z) = O1(z)I1(z)

=
[
O1(z)− B1z

1− a1z
−A1

]
I1(z) +

[
B1z

1− a1z
+ A1

]
I1(z)

= O2(z)z
(

z − a1

1− a1z

)d1

I1(z)I2(z) +
[

B1z

1− a1z
+ A1

]
I1(z)

=
[
O2(z)− B2z

1− a2z
−A2

]
z

(
z − a1

1− a1z

)d1

I1(z)I2(z) +

+
[

B2z

1− a2z
+ A2

]
z

(
z − a1

1− a1z

)d1

I1(z)I2(z) +
[

B1z

1− a1z
+ A1

]
I1(z)

= O3(z)I3(z)z2
2∏

j=1

[(
(z − aj

1− ajz

)dj

Ij(z)

]
+

+
[
A2 +

B2z

1− a2z

]
z

(
z − a1

1− a1z

)d1

I1(z)I2(z) +
[

B1z

1− a1z
+ A1

]
I1(z)

= On+1(z)In+1(z)zn
n∏

j=1

[(
(z − aj

1− ajz

)dj

Ij(z)

]
+

+
[
An +

Bnz

1− anz

]
In(z)zn−1

n−1∏

j=1

[(
(z − aj

1− ajz

)dj

Ij(z)

]
+ . . .

+
[
A2 +

B2z

1− a2z

]
I2(z)z

(
z − a1

1− a1z

)d1

I1(z) +
[

B1z

1− a1z
+ A1

]
I1(z)

= Rn(z) + (AnNn + BnMn) + · · ·+ (A1N1 + B1M1)
= Rn(z) + Sn(z), (2.20)

where Rn(z) = On+1Nn+1, Oi are outer functions, Ii are inner functions, and Ni and Mi are,
respectively, the types of inner and weighted inner functions formed from Ii and ai defined in (2.18)
and (2.19), Sn stands for the n-th partial sum, Ai = Oi(0), Bi is chosen so that Oi(z)−Ai− Biz

1−aiz
has a zero at z = ai, that is

Bi =
{

O′
i(0), if ai = 0;

a−1
i (1− |ai|2)[Oi(ai)−Oi(0)], if ai 6= 0.

di =
{

0, if O′
i(0) = 0;

1, if ai 6= 0.
(2.21)

The above process is valid for all p. We, in this study, restrict ourselves to the case p = 2. For p = 2
there is an optimal selection criterion for ai. In fact, one can first show that there exists a point
ai ∈ D such that

∫ π

−π

∣∣∣∣Oi(eit)−Ai − Bie
it

1− aieit

∣∣∣∣
2

dt = min
a∈D

∫ π

−π

∣∣∣∣Oi(eit)−Ai − Bae
it

1− aeit

∣∣∣∣
2

dt, (2.22)

where the relation between Ba and a is the same as that between Bi and ai given in (2.21). Below
we will write both the Hp(D) norm and the Lp(∂D) norm by ‖ ‖p that causes no confusion.

Lemma 2.4 For any function F (z) ∈ H2(D) such that F (0) = 0, the value

min
a∈D

‖F −BaEa‖2 (2.23)
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can be attained at a point in D, where

B0 = F ′(0), Ba = (1− |a|2)F (a)
a

, a 6= 0,

and

Ea(eit) =
eit

1− aeit
.

Proof We first assume F (z) ∈ Hp(D), 2 < p ≤ ∞, and F (0) = 0. Then

〈F −BaEa, F −BaEa〉 = 〈F, F 〉 −Ba〈Ea, F 〉 −Ba〈F, Ea〉+ |Ba|2〈Ea, Ea〉,
where

〈F, Ea〉 =
∫ 2π

0
F (eit)

e−it

1− ae−it
dt

=
1
i

∫

∂D

F (z)
z

1
z − a

dz

= 2π
F (a)

a
.

Since the integral value of the Poisson kernel is identical to 1, we have

〈Ea, Ea〉 =
∫ 2π

0

dt

|eit − a|2 =
2π

1− |a|2 .

Therefore,

‖F −BaEa‖2
2 = ‖F‖2

2 − 2π(1− |a|2) |F (a)|2
|a|2 . (2.24)

For any F ∈ Hp(D), 0 < p ≤ ∞, there holds

|F (z)| ≤ Cp
1

(1− |z|)1/p
‖F‖p, (2.25)

where Cp is a constant. The result is referred to [5], page 89 (proved similarly as for the upper-half
plane case on page 18). Using the above inequality for 2 < p ≤ ∞, we have

(1− |a|2) |F (a)|2
|a|2 ≤ Cp(1− |a|)1−2/p‖F‖2

p → 0, as |a| → 1− 0.

This last estimate together with (2.24) shows that the continuous function ‖F − BaEa‖2
2 attains

its minimum at a point in D.
Now consider the case F (z) ∈ H2(D) and F (0) = 0. In that case for any ε > 0 there exists

F (1) ∈ H∞(D) such that ∥∥∥F − F (1)
∥∥∥

2
≤ ε, F (1)(0) = 0.

This is always possible as we can take F (1) to be the n-th partial sum of the power series expansion
of F with a sufficient large n. Then,

‖F −BaEa‖2 ≤
∥∥∥F − F (1)

∥∥∥
2
+

∥∥∥F (1) −B(1)
a Ea

∥∥∥
2
+

∥∥∥B(1)
a Ea −BaEa

∥∥∥
2

≤ ε +
∥∥∥F (1) −B(1)

a Ea

∥∥∥
2
+

∥∥∥B(1)
a Ea −BaEa

∥∥∥
2
, (2.26)
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where

B
(1)
0 = F (1)′(0), B(1)

a = (1− |a|2)F
(1)(a)
a

, a 6= 0.

Since F (1) ∈ H∞(D), in view of (2.24), for any a ∈ D,
∥∥∥F (1) −B(1)

a Ea

∥∥∥
2
≤

∥∥∥F (1)
∥∥∥

2
≤ ‖F‖2 + ε. (2.27)

The inequalities (2.26) and (2.27), together with the estimate
∥∥∥B(1)

a Ea −BaEa

∥∥∥
2

= |B(1)
a −Ba| ‖Ea‖2

= (1− |a|2)|F
(1)(a)− F (a)

a
|

√
2π√

1− |a|2

≤ C
√

1− |a|2|F
(1)(a)− F (a)

a
|

≤ C
∥∥∥F (1) − F

∥∥∥
2

≤ Cε,

where we used the estimate (2.25) for p = 2, give

‖F −BaEa‖2 ≤ ‖F‖2 + Cε. (2.28)

Note that this inequality is valid for all a ∈ D.

Exchanging the roles of F and F (1) and recalling that
∥∥∥F (1) −B

(1)
a Ea

∥∥∥
2

tends to
∥∥F (1)

∥∥
2

as |a|
tends to 1 (the proceeding case proved for 2 < p ≤ ∞), we have

‖F −BaEa‖2 ≥
∥∥∥F (1) −B(1)

a Ea

∥∥∥
2
−

∥∥∥F (1) − F
∥∥∥

2
−

∥∥∥B(1)
a Ea −BaEa

∥∥∥
2

≥ ‖F‖2 − Cε, (2.29)

From (2.28) and (2.29) we conclude

lim
|a|→1−

‖F −BaEa‖2 = ‖F‖2.

As consequence, the minimum in (2.23) may be attained at a point of D. The proof is complete.

Remark 2.1 From the above proof we can set the selection criterion for a : Choose a ∈ D so that
the value

2π(1− |a|2) |F (a)|2
|a|2

in (2.24) as large as possible.

The convergence of the series in (2.20) is independent of particular choices of {ak} as stated in the
following

Theorem 2.5 For any choice of the sequence {ak} in D, we have

lim
n→∞Sn = F

in the H2 convergence sense.
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Proof We note that Rn is orthogonal with all the inner and weighted inner functions Ni,Mi, i =
1, 2, ... Recall that Rn = On+1Nn+1. As in the proof of Lemma 2.3 Rn(z)

z Ni and Rn(z)
z Mi, i = 1, ..., n,

both are in H1(D). Then Cauchy’s Theorem for Hp(∂D) gives the orthogonality. As consequence,
Rn(z) and Sn(z) are orthogonal.

Write F into its power series expansion

F (z) =
∞∑

k=0

ckz
k.

One notices that all the terms c0, c1z, ..., cn−1z
n−1 are only contained in Sn(z) but not in Rn(z).

That is because of the increasing powers of z in Nk and Mk. Denote

Sn(z) =
n−1∑

k=0

ckz
k + Ln(z),

where Ln(z) collects all the constant multiples of zl, l ≥ n, in Sn(z). Obviously,
∑n−1

k=0 ckz
k and

Ln(z) are orthogonal. It follows that

‖F‖2
2 = ‖Rn‖2

2 + ‖Sn‖2
2 = ‖Rn‖2

2 + ‖Ln‖2
2 +

n−1∑

k=0

|ck|2.

Therefore,

‖F − Sn‖2
2 =

∞∑

k=n

|ck|2 − ‖Ln‖2
2 .

This shows that Sn converges to F even faster than that of the Fourier (n − 1)-th partial sum.
As a matter of fact, the terms ‖Ln‖2

2 can be large due to the adaptive choices of ai. The proof is
complete.

Corollary 2.6 For s ∈ L2(∂D), with the notation

ρ
(1)
k (t) cos θ

(1)
k (t) = ReAkNk(eit), ρ

(2)
k (t) cos θ

(2)
k (t) = ReBkMk(eit)

and

sn(eit) =
n∑

k=1

(ρ(1)
k (t) cos θ

(1)
k (t) + ρ

(2)
k (t) cos θ

(2)
k (t),

we have, under fast convergence,
lim

n→∞ sn = s

in L2(∂D).

Remark 2.2 We note that the decomposition given in Theorem 2.5 is highly adaptive, and fast
convergence is resumed. The convergence is even regardless the choices of the points an ∈ D in
the recurrence steps. A result in the same direction corresponding to the particular case F being
a polynomial and all Bi = 0 in our theorem 2.5 was announced by Daubechies in a conference
in December 2008 (http://home.sysu.edu.cn/sc/HHT/). The present study is independent with a
report in the same conference.
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Remark 2.3 The decomposition given in Theorem 2.5 is constructive. In fact, in order to get
the inner functions Ii+1, all we need is to compute the outer functions Oi+1 which are determined
recursively by the complex module of Oi(z)−Ai − Biz

1−aiz
.

Remark 2.4 In an inner function each irreducible factor, including Möbius transform with the
factor z as a particular case, is of the winding number one. This implies rapid increase of frequencies
of the terms AnNn and BnMn. Each function of the type zn is a Blaschke product and Fourier
series is a decomposition with terms of increasing frequencies. The proposed program in (2.20) is
far more effective in terms of increasing frequencies and fast convergence. In particular, set Bi = 0
and factorize only a single factor zl at each recurrence step in the process (2.20), then we obtain
Fourier series.

Remark 2.5 We finally make comparations between our decomposition with the Walsh and Walsh
like systems. The Walsh system is the orthogonal system

P0 = 1 and Pk(z) =
z

1− akz

k−1∏

l=1

z − al

1− alz
, k = 1, 2, ..., ak ∈ D,

where {ak} satisfies the condition (1.8). The Walsh system can be obtained through G-S orthogo-
nality process from

1 and
z

1− akz
, k = 1, 2, ... (2.30)

or from the Blaschke product sequence

B0 = 1 and Bk =
k∏

l=1

z − ak

1− akz
, k = 1, 2, ...

What we mean by Walsh like systems include the orthogonal systems studied in [10], [14] and
in [1] and the related papers. In [1] a close variation of the Walsh system is studied, namely

Dk(z) =
1

1− akz

k−1∏

l=1

z − al

1− alz
, ak ∈ D, k = 1, 2, ..., (2.31)

where {ak} also has to satisfy the condition (1.8). The system is the result of the G-S orthogonality
process from

1
1− akz

, k = 1, 2, ...

In [10], [14] more weighted forms of Blaschke products are considered. The trigonometric basis, La-
guerre basis and the “two-parameter Kautz” basis are particular cases of (2.31). The bases have long
been interested in many areas of applied mathematics, including control theory, signal processing
and system identification. All the basis functions in the mentioned systems are mono-components
or essentially mono-components. Those in (2.31) become mono-components after incorporating
the phase modulation factor eit. They, however, are not adaptive in the sense set in the introduc-
tion section. In relation to our decomposition process (2.20) we stress on the following facts: (i)
For any given sequence {ak}, not necessarily satisfying the condition (1.8), if at each recurrence
step in (2.20) we do not factorize out any other inner function factor except the factors z and
z−ak
1−akz , then we obtain, in the combined use of the sequences {Pk} and {Dk}, a decomposition into
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mono-components with faster convergence than that with the trigonometric basis. Indeed, in the
decomposition process and the proof of Theorem 2.5 we do not rely on Ok being outer functions:
They are not necessarily outer functions. (ii) For any given sequence {ak}, not necessarily satis-
fying the condition (1.8), if the corresponding sequences {Pk} and {Dk} are multiplied by certain
inner functions factorized out at each recurrence step, then the formed two new sequences {Nk} and
{Mk} with the right coefficients offer an adaptive and faster decomposition. (iii) If the sequence
{ak} is further chosen based on the selection criterion given in Remark 2.1, thus still not necessarily
satisfying (1.8), then more adaptivity and much faster convergence may be achieved.

References
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