Zero-sets of Clifford Analytic Functions with Real Coefficients

Yan Yang and Tao Qian

School of Mathematics and Computational Science, Sun Yat-Sen University, and
Department of Mathematics, Faculty of Science and Technology, University of Macau
E-mail: mathyy@sina.com, fsttq@umac.mo

Abstract: In this note we prove that the zero set of any Clifford analytic function f with real coefficients is the disjoint union of real isolated zeroes and the spherical conjugate ones. What is more, we present a technique for computing the zeroes. We also find the preimages $f^{-1}(A)$ for any paravector A.

keywords: Clifford algebra, Zero sets

AMS subject classification: 30G35, 32A05

1. Introduction

There has been an ample amount of literature discussing zeroes of functions in quaternions and octonions. Niven in [3, 4] first studied zeroes of quaternionic polynomials which further led to the article by Eilenberg and Niven [5] where a fundamental theorem for quaternionic polynomials was established. In [6], they proved that any quaternionic polynomial of degree $n \geq 1$ has at least one zero and there should be two types of zeroes: They are either isolated or spherical ones. In [7], the authors extended the results in [6] to any quaternionic and octonionic analytic functions with real coefficients using geometrical method. In [8], roots of polynomials with bicomplex coefficients are studied. To the authors knowledge, in the higher dimensional cases, there are not so many deep results. In [12], we first studied the zero-sets of polynomials in higher dimensional cases under the structure of Clifford algebra and then extended the results in [6].

In this article, we study the zeroes of Clifford analytic functions with real coefficients. Using a technical method, we introduce a one-to-one correspondence between such a function and a complex function and then extend the results in [7]. We also find the preimages $f^{-1}(A)$ for any paravector A.

We first give some basic knowledge in relation to Clifford algebra ([1,2]). Let $\mathbf{e}_1, ..., \mathbf{e}_m$ be basic elements satisfying $\mathbf{e}_i \mathbf{e}_j + \mathbf{e}_j \mathbf{e}_i = -2\delta_{ij}$, where $\delta_{ij} = 1$ if i = j; and $\delta_{ij} = 0$ otherwise, $i, j = 1, 2, \dots, m$. Let

$$\mathbf{R}^m = \{ \underline{x} = x_1 \mathbf{e}_1 + \dots + x_m \mathbf{e}_m : x_j \in \mathbf{R}, j = 1, 2, \dots, m \}$$

¹This project sponsored by the Scientific Research Foundation for the Youth Scholars of Sun Yat-Sen University and by Research Grant of University of Macau on Applications of Hyper-Complex Analysis (cativo: 7560)

be identical with the usual Euclidean space \mathbb{R}^m , and

$$\mathbf{R}_{1}^{m} = \{x = x_{0}\mathbf{e}_{0} + \underline{x} : x_{0} \in \mathbf{R}, \underline{x} \in \mathbf{R}^{m}\}, \text{ where } \mathbf{e}_{0} = 1.$$

An element in \mathbf{R}_1^m is called a *paravector*. For $x \in \mathbf{R}_1^m$, it consists of a scalar part and a vector part. We use the dotations

$$x_0 = \operatorname{Sc}(x), \ \underline{x} = \operatorname{Vec}(x).$$

The real (or complex) Clifford algebra generated by $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_m$, denoted by $\mathbf{R}^{(m)}$ (or $\mathbf{C}^{(m)}$), is the associative algebra generated by $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_m$ over the real (or complex) field \mathbf{R} (or \mathbf{C}). A general element in $\mathbf{R}^{(m)}$ (or $\mathbf{C}^{(m)}$), therefore, is of the form $x = \sum_S x_S \mathbf{e}_S$, where $\mathbf{e}_S = \mathbf{e}_{i_1} \mathbf{e}_{i_2} \cdots \mathbf{e}_{i_l}, x_S \in \mathbf{R}$ (or \mathbf{C}), and S runs over all the ordered subsets of $\{1, 2, \dots, m\}$, namely

$$S = \{1 \le i_1 < i_2 < \dots < i_l \le m\}, \quad 1 \le l \le m.$$

We define the conjugation of \mathbf{e}_S to be $\overline{\mathbf{e}}_S = \overline{\mathbf{e}}_{i_l} \cdots \overline{\mathbf{e}}_{i_1}, \overline{\mathbf{e}}_j = -\mathbf{e}_j$. This induces the Clifford conjugate $\overline{x} = x_0 - \underline{x}$ of a paravector $x = x_0 + \underline{x}$.

The product between x and y in \mathbf{R}_1^m , denoted by xy is split into three parts: a scalar part, a vector part and a bivector part, that is

$$xy = (x_0y_0 + \underline{x} \cdot y) + (x_0y + y_o\underline{x}) + \underline{x} \wedge y,$$

where

$$\underline{x} \cdot \underline{y} = -\sum_{i=1}^{m} x_i y_i,$$

$$\underline{x} \wedge \underline{y} = \sum_{i=1}^{m} \sum_{j=i+1}^{m} (x_i y_j - x_j y_i) \mathbf{e}_i \mathbf{e}_j.$$

In particular,

$$xx = x_0^2 - \sum_{i=1}^m x_i^2 + 2x_0 \underline{x} = 2x_0 x - |x|^2,$$

where

$$|x|^2 = x\overline{x} = \sum_{i=0}^m x_i^2.$$

It is easy to see that $|x^n| = |x|^n$.

In the following, the so-called Clifford-Heaviside functions

$$P^{\pm}(\underline{x}) = \frac{1}{2} (1 \pm \mathbf{i} \frac{\underline{x}}{|\underline{x}|})$$

will play an important role, which were first introduced by Sommen in [9] and McIntosh in [10]. Introducing spherical coordinates in \mathbf{R}^m , we have $\underline{x} = r\underline{\omega}, r = |\underline{x}| \in [0, \infty), \ \underline{\omega} \in S^{m-1}$, where S^{m-1} is the unit sphere in \mathbf{R}^m . Thus,

$$P^{\pm}(\underline{\omega}) = \frac{1}{2}(1 \pm \mathbf{i}\underline{\omega}).$$

They are self adjoint mutually orthogonal primitive idempotents:

$$P^{+}(\underline{\omega}) + P^{-}(\underline{\omega}) = 1, \ P^{+}(\underline{\omega})P^{-}(\underline{\omega}) = P^{-}(\underline{\omega})P^{+}(\underline{\omega}) = 0, \ (P^{\pm}(\underline{\omega}))^{2} = P^{\pm}(\underline{\omega}).$$

Furthermore, we have

$$P^{\pm}(\underline{\omega})\underline{\omega} = \underline{\omega}P^{\pm}(\underline{\omega}) = \mp \mathbf{i}P^{\pm}(\underline{\omega}).$$

The properties of $P^{\pm}(\underline{\omega})$ are discussed in [11].

2. Zero-sets of Clifford analytic functions with real coefficients

In this section, we will consider the following Clifford analytic function with paravector variable $x \in \mathbf{R}_1^m$ and real coefficients,

$$f(x) = \sum_{n=0}^{\infty} a_n x^n + \sum_{n=1}^{\infty} b_n / x^n,$$

where $a_n, b_n \in \mathbf{R}$.

Definition 2.1 If f(z) has a Laurent expansion with real coefficients in r < |z| < R, that is

$$f(z) = \sum_{n=0}^{\infty} a_n z^n + \sum_{n=1}^{\infty} b_n / z^n,$$

then f(x) is defined as

$$f(x) = \sum_{n=0}^{\infty} a_n x^n + \sum_{n=1}^{\infty} b_n / x^n,$$

where $x \in \mathbf{R}_1^m$ and r < |x| < R. If f(x) can be written as this form, that we call it Clifford analytic function.

Note From the norm estimation for $|x^n|$ for Clifford paravectors the above definition is justified.

In [12], we have known that if $x = x_0 + \underline{x} \in \mathbf{R}_1^m$, then

$$x^{n} = A_{n}(x)x + B_{n}(x), n = 1, 2, \cdots$$

where A_n and B_n are real-valued functions of x defined by the recurrent formulas:

$$A_{n+1}(x) = 2\operatorname{Sc}(x)A_n(x) - |x|^2 A_{n-1}(x)$$

$$B_{n+1}(x) = -|x|^2 A_n(x),$$

where

$$A_1(x) = 1$$

 $A_2(x) = 2Sc(x)$
 $B_1(x) = 0$
 $B_2(x) = -|x|^2$.

Therefore,

$$f(x) = \sum_{n=0}^{\infty} a_n [A_n(x)x + B_n(x)] + \sum_{n=1}^{\infty} \frac{b_n [A_n(x)x + B_n(x)]}{|x|^{2n}}$$

$$= \left[\sum_{n=0}^{\infty} a_n A_n(x) + \sum_{n=1}^{\infty} \frac{b_n A_n(x)}{|x|^{2n}} \right] x + \left[\sum_{n=0}^{\infty} a_n B_n(x) + \sum_{n=1}^{\infty} \frac{b_n B_n(x)}{|x|^{2n}} \right]$$

$$= A(x)x + B(x),$$

denoting $A_0(x) = 0, B_0(x) = 1.$

Note As we have known in [12], given any $x \in \mathbf{R}_1^m$, $A_i(x)$ and $B_i(x)$ depend not on x but on its scalar part x_0 and the modulus of its vector part $|\underline{x}|$. Thus, we have

Lemma 2.1^[12] If two paravectors $x = x_0 + \underline{x}$, $y = y_0 + \underline{y}$ with $x_0 = y_0$, $|\underline{x}| = |\underline{y}|$, then $A_i(x) = A_i(y)$, $B_i(x) = B_i(y)$ and hence A(x) = A(y), B(x) = B(y).

Definition 2.2^[12] If $w_1 = \alpha + \text{Vec}(w_1)$ and $w_2 = \alpha + \text{Vec}(w_2)$ are two different paravectors with $|\text{Vec}(w_1)| = |\text{Vec}(w_2)|$, then they are said to be spherical conjugate to each other.

Proposition 2.1 Assume that $w_1 = \alpha + \text{Vec}(w_1)$ is a zero of f(x), then any paravector that is spherical conjugate to w_1 is also a zero of it.

Proof If $f(w_1) = 0$, then we have

$$f(w_1) = \sum_{n=0}^{\infty} a_n [A_n(w_1)w_1 + B_n(w_1)] + \sum_{n=1}^{\infty} \frac{b_n [A_n(w_1)w_1 + B_n(w_1)]}{|w_1|^{2n}}$$

= $A(w_1)w_1 + B(w_1) = 0$,

thus $A(w_1) = B(w_1) = 0$.

For any $w = \alpha + \text{Vec}(w)$ with $|\text{Vec}(w)| = |\text{Vec}(w_1)|$, using Lemma 2,1, we have $A(w) = A(w_1), B(w) = B(w_1)$.

Therefore, $f(w) = A(w)w + B(w) = A(w_1)w + B(w_1) = 0$. This completes the proof.

Definition 2.3^[12] Given f(x), then any of its zeroes generating a family of zeroes that are spherical conjugate to each other is called a spherical zero. A zero that is not spherical is called an isolated zero.

From Proposition 2,1, we know that

Corollary 2.1 f(x) has no isolated non-real zeroes.

Next, we will introduce a technique to solve the equation f(x) = 0.

Firstly, we need a Lemma.

Lemma 2.2 If f(z) has a Laurent expansion with real coefficients in r < |z| < R, that

is

$$f(z) = \sum_{n=0}^{\infty} a_n z^n + \sum_{m=1}^{\infty} b_m / z^m,$$

when r < |x| < R, we have

$$(1)P^{+}(\underline{\omega})f(x) = f(x)P^{+}(\underline{\omega}) = f(x_{0} - \mathbf{i}|x|)P^{+}(\underline{\omega})$$

$$(2)P^{-}(\underline{\omega})f(x) = f(x)P^{-}(\underline{\omega}) = f(x_{0} + \mathbf{i}|x|)P^{-}(\underline{\omega})$$

$$(3)f(x) = f(x_{0} - \mathbf{i}|x|)P^{+}(\omega) + f(x_{0} + \mathbf{i}|x|)P^{-}(\omega)$$

Proof (1) Using the properties of $P^+(\underline{\omega})$, we have

$$f(x)P^{+}(\underline{\omega}) = f(x_{0} + |\underline{x}|\underline{\omega})P^{+}(\underline{\omega})$$

$$= \left[\sum_{n=0}^{\infty} a_{n}x^{n} + \sum_{n=1}^{\infty} b_{n}/x^{n}\right]P^{+}(\underline{\omega})$$

$$= \sum_{n=0}^{\infty} a_{n}x^{n}P^{+}(\underline{\omega}) + \sum_{n=1}^{\infty} \frac{b_{n}\overline{x}^{n}P^{+}(\underline{\omega})}{|x|^{2n}}$$

$$= \sum_{n=0}^{\infty} a_{n}[xP^{+}(\underline{\omega})]^{n} + \sum_{n=1}^{\infty} \frac{b_{n}[\overline{x}P^{+}(\underline{\omega})]^{n}}{|x|^{2n}}$$

$$= \sum_{n=0}^{\infty} a_{n}(x_{0} - \mathbf{i}|\underline{x}|)^{n}P^{+}(\underline{\omega}) + \sum_{n=1}^{\infty} \frac{b_{n}(x_{0} + \mathbf{i}|\underline{x}|)^{n}P^{+}(\underline{\omega})}{|x|^{2n}}$$

$$= \left[\sum_{n=0}^{\infty} a_{n}(x_{0} - \mathbf{i}|\underline{x}|)^{n} + \sum_{n=1}^{\infty} b_{n}/(x_{0} - \mathbf{i}|\underline{x}|)^{n}\right]P^{+}(\underline{\omega})$$

$$= f(x_{0} - \mathbf{i}|\underline{x}|)P^{+}(\underline{\omega}).$$

(2) Similar to (1).

(3)

$$f(x) = f(x)[P^{+}(\underline{\omega}) + P^{-}(\underline{\omega})]$$

= $f(x)P^{+}(\underline{\omega}) + f(x)P^{-}(\underline{\omega})]$
= $f(x_{0} - \mathbf{i}|x|)P^{+}(\underline{\omega}) + f(x_{0} + \mathbf{i}|x|)P^{-}(\underline{\omega}).$

This completes the proof.

For
$$f(x) = \sum_{n=0}^{\infty} a_n x^n + \sum_{n=1}^{\infty} b_n / x^n$$
, where $r < |x| < R$. Using Lemma 2.2, we have $f(x) = 0 \iff f(x_0 - \mathbf{i}|\underline{x}|) P^+(\underline{\omega}) + f(x_0 + \mathbf{i}|\underline{x}|) P^-(\underline{\omega}) = 0$ $\iff f(x_0 - \mathbf{i}|\underline{x}|) P^+(\underline{\omega}) = 0$ and $f(x_0 + \mathbf{i}|\underline{x}|) P^-(\underline{\omega}) = 0$ $\iff f(x_0 - \mathbf{i}|\underline{x}|) = 0$ and $f(x_0 + \mathbf{i}|\underline{x}|) = 0$ $\iff f(z) = 0$.

Note Note that f(z) = 0 is an equation of real coefficients. It, therefore, has complex conjugate roots.

Corollary 2.2 If $\alpha \pm i\beta$, $\beta > 0$ are solutions of f(z) = 0, then $\alpha + \beta \underline{\omega}$ is a spherical zero of f(x).

From the above discussion, we can obtain the conclusion as follows:

Theorem 2.1 Let $f(x) = \sum_{n=0}^{\infty} a_n x^n + \sum_{n=1}^{\infty} b_n / x^n$, r < |x| < R be any Clifford analytic functions with real coefficients, then it has two types of zeroes. The zeroes are either isolated real roots or spherical zeroes. What is more, there exists a one-to-one correspondence between its real isolated zeroes and the real roots of f(z), as well as a one-to-one correspondence between the spherical zeroes of $Q_n(x)$ and the pairs of complex conjugate zeroes of f(z).

In particular, for polynomial $Q_n(x) = \sum_{j=0}^n a_n x^n$ with real coefficients, we have

Corollary 2.3 The zero-set of $Q_n(x)$ is

$$S = \{\alpha_1 + \beta_1 \underline{\omega}, \cdots, \alpha_s + \beta_s \underline{\omega}, \gamma_1, \cdots, \gamma_t\}$$

if

 $S = \{\alpha_1 \pm i\beta_1, \dots, \alpha_s \pm i\beta_s, \gamma_1, \dots, \gamma_t, \alpha_j, \beta_j, \gamma_k \text{ are reals }, \beta_j > 0, j = 1, \dots, s, k = 1, \dots, t\}$ is the zero-set of $Q_n(z)$. The multiplicity of the zero of $Q_n(x)$ is the same as that of $Q_n(z)$.

Corollary 2.4 If $Q_n(x)$ has spherical zeroes $\alpha_1 + \beta_1 \underline{\omega}, \dots, \alpha_s + \beta_s \underline{\omega}$ with multiplicity j_1, \dots, j_s and isolated real roots $\gamma_1, \dots, \gamma_t$ with multiplicity k_1, \dots, k_t , then

$$Q_n(x) = a_n[x^2 - 2\alpha_1 + (\alpha_1^2 + \beta_1^2)]^{j_1} \cdots [x^2 - 2\alpha_s + (\alpha_s^2 + \beta_s^2)]^{j_s} (x - \gamma_1)^{k_1} \cdots (x - \gamma_t)^{k_t}.$$

On the other hand, if $Q_n(x)$ can be written as above, then the zero-set of it is

$$S = \{\alpha_1 + \beta_1 \omega, \cdots, \alpha_s + \beta_s \omega, \gamma_1, \cdots, \gamma_t\}.$$

3. The root-set of f(x) = A

In this section, we will consider the roots of f(x) = A, where $A \in \mathbf{R}_1^m$ and $A \notin \mathbf{R}$. We note that f(x) = A has only isolated non-real roots. In fact, $f(\alpha) \in \mathbf{R}$, $f(\alpha) \neq A$ if $\alpha \in \mathbf{R}$ and if f(w) = A, then $f(\overline{w}) = \overline{A} \neq A$.

Next, we will find the roots of it. For f(x) = A, $A = A_0 + |\underline{A}|\underline{\omega_0}$, we have

$$f(x_{0} + y\underline{\omega_{0}}) = A \iff f(x_{0} + y\underline{\omega_{0}})[P^{+}(\underline{\omega_{0}}) + P^{-}(\underline{\omega_{0}})] = A[P^{+}(\underline{\omega_{0}}) + P^{-}(\underline{\omega_{0}})]$$

$$\iff f(x_{0} - \mathbf{i}y)P^{+}(\underline{\omega_{0}}) + f(x_{0} + \mathbf{i}y)P^{-}(\underline{\omega_{0}})$$

$$= (A_{0} - \mathbf{i}|\underline{A}|)P^{+}(\underline{\omega_{0}}) + (A_{0} + \mathbf{i}|\underline{A}|)P^{-}(\underline{\omega_{0}})$$

$$\iff f(x_{0} - \mathbf{i}y)P^{+}(\underline{\omega_{0}}) = (A_{0} - \mathbf{i}|\underline{A}|)P^{+}(\underline{\omega_{0}}) \text{ and }$$

$$f(x_{0} + \mathbf{i}y)P^{-}(\underline{\omega_{0}}) = (A_{0} + \mathbf{i}|\underline{A}|)P^{-}(\underline{\omega_{0}})$$

$$\iff f(x_{0} - \mathbf{i}y) = A_{0} - \mathbf{i}|\underline{A}| \text{ and } f(x_{0} + \mathbf{i}y) = A_{0} + \mathbf{i}|\underline{A}|$$

$$\iff f(z) = A_{0} + \mathbf{i}|\underline{A}|.$$

From the discussion above, we can obtain

Theorem 3.1 The root-set of f(x) = A, $A = A_0 + |\underline{A}|\omega_0$ is

$$S = \{ \alpha + \beta \underline{\omega_0} : \text{ if } \alpha + \mathbf{i}\beta \text{ is a root of } f(z) = A_0 + \mathbf{i} |\underline{A}| \}.$$

The multiplicity of $\alpha + \beta \omega_0$ is the same as that of $\alpha + \mathbf{i}\beta$ as a root of $f(z) = A_0 + \mathbf{i}|\underline{A}|$.

In particular, we have

Corollary 3.2 Let $A = A_0 + |\underline{A}|\underline{\omega_0}$ be a non zero element. For $m \in N - \{0\}$, the polynomial $P(x) = x^m - A$ has:

- (1) m distinct non-real isolated zeroes $\alpha_1 + \beta_1 \omega_0, \dots, \alpha_m + \beta_m \omega_0$, if A is non-real number.
- (2) s spherical zeroes, and an isolated real zero, if A is a real number and m = 2s + 1.
- (3) s-1 spherical zeroes, and two distinct isolated real zeroes, if A is a positive real number and m=2s.
- (4) s spherical zeroes, if A is a negative real number and m = 2s.

References

- [1] Brackx F, Delanghe R, Sommen F. Clifford Analysis. (Research Notes in Mathematics, Vol. 76), Boston, London, Melbourne: Pitman Advanced Publishing Company, 1982.
- [2] Delanghe R, Somman F, Soucek V. Clifford Algebra and Spinor-Valued Functions. Dorderecht, Boston, London: Kluwer Academic Publishers, 1992.
- [3] Niven I. Equations in quaternions. Amer. Math, Monthly, 1941, 48: 654-661
- [4] Niven I. The roots of quaternions. Amer. Math, Monthly, 1942, 49: 386-388
- [5] Eilenberg S, Niven I. The fundamental theorem of algebra for quaternions. Bull. Amer. Math. Soc, 1994, 50: 246-248
- [6] Pogorui A, Shapiro M. On the structure of the set of zeroes of quaternionic polynomials. Complex Variables, 2004, 49(6): 379-389
- [7] Datta B, Nag S. Zero-sets of quaternionic and octonionic analytic functions with central coefficients. Bulletin of the London Mathematical Society, 1987, 19(4): 329-336
- [8] Pogorui A A, Rodriguez-Dagnino R M. On the set of zeroes of bicomplex polynimials. Complex Variables and Elliptic Equations, 2006, 51(7): 725-730

- [9] Sommen F. Some connections between Clifford analysis and complex analysis. Complex Variables Theory Appl, 1982, 1(1): 97-118
- [10] McIntosh A. Clifford algebras, Fourier theory, singular integrals, and harmonic functions on Lipschitz domains. In: Clifford Algebras in Analysis and Related Topics (Fayetteville, Ark, 1993), Boca Raton, Florida: Stud. Adv. Math. CRC press, 1996. 33-87
- [11] Brackx F, Schepper N D, Sommen F. Clifford algebra-valued orthogonal polynomials in the unit ball of Euclidean spaces. International Journal of Mathematics and Mathematical Sciences, 2004, 52: 2761-2772
- [12] Yang Y, Qian T. On sets of zeroes of Clifford algebra-valued polynomials. to appear.