Zero-sets of Clifford Analytic Functions with Real Coefficients

Yan Yang and Tao Qian
School of Mathematics and Computational Science, Sun Yat-Sen University, and Department of Mathematics, Faculty of Science and Technology, University of Macau
E-mail: mathyy@sina.com, fsttq@umac.mo

Abstract

In this note we prove that the zero set of any Clifford analytic function f with real coefficients is the disjoint union of real isolated zeroes and the spherical conjugate ones. What is more, we present a technique for computing the zeroes. We also find the preimages $f^{-1}(A)$ for any paravector A.

keywords : Clifford algebra, Zero sets
AMS subject classification : 30G35, 32A05

1. Introduction

There has been an ample amount of literature discussing zeroes of functions in quaternions and octonions. Niven in [3, 4] first studied zeroes of quaternionic polynomials which further led to the article by Eilenberg and Niven [5] where a fundamental theorem for quaternionic polynomials was established. In [6], they proved that any quaternionic polynomial of degree $n \geq 1$ has at least one zero and there should be two types of zeroes: They are either isolated or spherical ones. In [7], the authors extended the results in [6] to any quaternionic and octonionic analytic functions with real coefficients using geometrical method. In [8], roots of polynomials with bicomplex coefficients are studied. To the authors knowledge, in the higher dimensional cases, there are not so many deep results. In [12], we first studied the zero-sets of polynomials in higher dimensional cases under the structure of Clifford algebra and then extended the results in [6].

In this article, we study the zeroes of Clifford analytic functions with real coefficients. Using a technical method, we introduce a one-to-one correspondence between such a function and a complex function and then extend the results in [7]. We also find the preimages $f^{-1}(A)$ for any paravector A.

We first give some basic knowledge in relation to Clifford algebra ([1,2]). Let $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ be basic elements satisfying $\mathbf{e}_{i} \mathbf{e}_{j}+\mathbf{e}_{j} \mathbf{e}_{i}=-2 \delta_{i j}$, where $\delta_{i j}=1$ if $i=j$; and $\delta_{i j}=0$ otherwise, $i, j=1,2, \cdots, m$. Let

$$
\mathbf{R}^{m}=\left\{\underline{x}=x_{1} \mathbf{e}_{1}+\cdots+x_{m} \mathbf{e}_{m}: x_{j} \in \mathbf{R}, j=1,2, \cdots, m\right\}
$$

[^0]be identical with the usual Euclidean space \mathbf{R}^{m}, and
$$
\mathbf{R}_{1}^{m}=\left\{x=x_{0} \mathbf{e}_{0}+\underline{x}: x_{0} \in \mathbf{R}, \underline{x} \in \mathbf{R}^{m}\right\}, \text { where } \mathbf{e}_{0}=1 .
$$

An element in \mathbf{R}_{1}^{m} is called a paravector. For $x \in \mathbf{R}_{1}^{m}$, it consists of a scalar part and a vector part. We use the dotations

$$
x_{0}=\operatorname{Sc}(x), \underline{x}=\operatorname{Vec}(x)
$$

The real (or complex) Clifford algebra generated by $\mathbf{e}_{1}, \mathbf{e}_{2}, \cdots, \mathbf{e}_{m}$, denoted by $\mathbf{R}^{(m)}$ (or $\mathbf{C}^{(m)}$), is the associative algebra generated by $\mathbf{e}_{1}, \mathbf{e}_{2}, \cdots, \mathbf{e}_{m}$ over the real (or complex) field \mathbf{R} (or \mathbf{C}). A general element in $\mathbf{R}^{(m)}$ (or $\mathbf{C}^{(m)}$), therefore, is of the form $x=$ $\sum_{S} x_{S} \mathbf{e}_{S}$, where $\mathbf{e}_{S}=\mathbf{e}_{i_{1}} \mathbf{e}_{i_{2}} \cdots \mathbf{e}_{i_{l}}, x_{S} \in \mathbf{R}$ (or \mathbf{C}), and S runs over all the ordered subsets of $\{1,2, \cdots, m\}$, namely

$$
S=\left\{1 \leq i_{1}<i_{2}<\cdots<i_{l} \leq m\right\}, \quad 1 \leq l \leq m .
$$

We define the conjugation of \mathbf{e}_{S} to be $\overline{\mathbf{e}}_{S}=\overline{\mathbf{e}}_{i_{l}} \cdots \overline{\mathbf{e}}_{i_{1}}, \overline{\mathbf{e}}_{j}=-\mathbf{e}_{j}$. This induces the Clifford conjugate $\bar{x}=x_{0}-\underline{x}$ of a paravector $x=x_{0}+\underline{x}$.
The product between x and y in \mathbf{R}_{1}^{m}, denoted by $x y$ is split into three parts: a scalar part, a vector part and a bivector part, that is

$$
x y=\left(x_{0} y_{0}+\underline{x} \cdot \underline{y}\right)+\left(x_{0} \underline{y}+y_{0} \underline{x}\right)+\underline{x} \wedge \underline{y},
$$

where

$$
\begin{gathered}
\underline{x} \cdot \underline{y}=-\sum_{i=1}^{m} x_{i} y_{i}, \\
\underline{x} \wedge \underline{y}=\sum_{i=1}^{m} \sum_{j=i+1}^{m}\left(x_{i} y_{j}-x_{j} y_{i}\right) \mathbf{e}_{i} \mathbf{e}_{j} .
\end{gathered}
$$

In particular,

$$
x x=x_{0}^{2}-\sum_{i=1}^{m} x_{i}^{2}+2 x_{0} \underline{x}=2 x_{0} x-|x|^{2},
$$

where

$$
|x|^{2}=x \bar{x}=\sum_{i=0}^{m} x_{i}{ }^{2} .
$$

It is easy to see that $\left|x^{n}\right|=|x|^{n}$.
In the following, the so-called Clifford-Heaviside functions

$$
P^{ \pm}(\underline{x})=\frac{1}{2}\left(1 \pm \mathbf{i} \frac{\underline{x}}{|\underline{x}|}\right)
$$

will play an important role, which were first introduced by Sommen in [9] and McIntosh in [10]. Introducing spherical coordinates in \mathbf{R}^{m}, we have $\underline{x}=r \underline{\omega}, r=|\underline{x}| \in[0, \infty), \underline{\omega} \in$ S^{m-1}, where S^{m-1} is the unit sphere in \mathbf{R}^{m}. Thus,

$$
P^{ \pm}(\underline{\omega})=\frac{1}{2}(1 \pm \mathbf{i} \underline{\omega}) .
$$

They are self adjoint mutually orthogonal primitive idempotents:

$$
P^{+}(\underline{\omega})+P^{-}(\underline{\omega})=1, P^{+}(\underline{\omega}) P^{-}(\underline{\omega})=P^{-}(\underline{\omega}) P^{+}(\underline{\omega})=0,\left(P^{ \pm}(\underline{\omega})\right)^{2}=P^{ \pm}(\underline{\omega}) .
$$

Furthermore, we have

$$
P^{ \pm}(\underline{\omega}) \underline{\omega}=\underline{\omega} P^{ \pm}(\underline{\omega})=\mp \mathbf{i} P^{ \pm}(\underline{\omega}) .
$$

The properties of $P^{ \pm}(\underline{\omega})$ are discussed in [11].

2. Zero-sets of Clifford analytic functions with real coefficients

In this section, we will consider the following Clifford analytic function with paravector variable $x \in \mathbf{R}_{1}^{m}$ and real coefficients,

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}+\sum_{n=1}^{\infty} b_{n} / x^{n},
$$

where $a_{n}, b_{n} \in \mathbf{R}$.
Definition 2.1 If $f(z)$ has a Laurent expansion with real coefficients in $r<|z|<R$, that is

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}+\sum_{n=1}^{\infty} b_{n} / z^{n}
$$

then $f(x)$ is defined as

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}+\sum_{n=1}^{\infty} b_{n} / x^{n}
$$

where $x \in \mathbf{R}_{1}^{m}$ and $r<|x|<R$. If $f(x)$ can be written as this form, that we call it Clifford analytic function.

Note From the norm estimation for $\left|x^{n}\right|$ for Clifford paravectors the above definition is justified.

In [12], we have known that if $x=x_{0}+\underline{x} \in \mathbf{R}_{1}^{m}$, then

$$
x^{n}=A_{n}(x) x+B_{n}(x), n=1,2, \cdots
$$

where A_{n} and B_{n} are real-valued functions of x defined by the recurrent formulas:

$$
\begin{aligned}
& A_{n+1}(x)=2 \operatorname{Sc}(x) A_{n}(x)-|x|^{2} A_{n-1}(x) \\
& B_{n+1}(x)=-|x|^{2} A_{n}(x)
\end{aligned}
$$

where

$$
\begin{aligned}
A_{1}(x) & =1 \\
A_{2}(x) & =2 \mathrm{Sc}(x) \\
B_{1}(x) & =0 \\
B_{2}(x) & =-|x|^{2} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} a_{n}\left[A_{n}(x) x+B_{n}(x)\right]+\sum_{n=1}^{\infty} \frac{b_{n}\left[A_{n}(x) x+B_{n}(x)\right]}{|x|^{2 n}} \\
& =\left[\sum_{n=0}^{\infty} a_{n} A_{n}(x)+\sum_{n=1}^{\infty} \frac{b_{n} A_{n}(x)}{|x|^{2 n}}\right] x+\left[\sum_{n=0}^{\infty} a_{n} B_{n}(x)+\sum_{n=1}^{\infty} \frac{b_{n} B_{n}(x)}{|x|^{2 n}}\right] \\
& =A(x) x+B(x),
\end{aligned}
$$

denoting $A_{0}(x)=0, B_{0}(x)=1$.
Note As we have known in [12], given any $x \in \mathbf{R}_{1}^{m}, A_{i}(x)$ and $B_{i}(x)$ depend not on x but on its scalar part x_{0} and the modulus of its vector part $|\underline{x}|$. Thus, we have

Lemma 2.1 ${ }^{[12]}$ If two paravectors $x=x_{0}+\underline{x}, y=y_{0}+\underline{y}$ with $x_{0}=y_{0},|\underline{x}|=|\underline{y}|$, then $A_{i}(x)=A_{i}(y), B_{i}(x)=B_{i}(y)$ and hence $A(x)=A(y), B(x)=B(y)$.

Definition 2.2 ${ }^{[12]}$ If $w_{1}=\alpha+\operatorname{Vec}\left(w_{1}\right)$ and $w_{2}=\alpha+\operatorname{Vec}\left(w_{2}\right)$ are two different paravectors with $\left|\operatorname{Vec}\left(w_{1}\right)\right|=\left|\operatorname{Vec}\left(w_{2}\right)\right|$, then they are said to be spherical conjugate to each other.

Proposition 2.1 Assume that $w_{1}=\alpha+\operatorname{Vec}\left(w_{1}\right)$ is a zero of $f(x)$, then any paravector that is spherical conjugate to w_{1} is also a zero of it.

Proof If $f\left(w_{1}\right)=0$, then we have

$$
\begin{aligned}
f\left(w_{1}\right) & =\sum_{n=0}^{\infty} a_{n}\left[A_{n}\left(w_{1}\right) w_{1}+B_{n}\left(w_{1}\right)\right]+\sum_{n=1}^{\infty} \frac{b_{n}\left[A_{n}\left(w_{1}\right) w_{1}+B_{n}\left(w_{1}\right)\right]}{\left|w_{1}\right|^{2 n}} \\
& =A\left(w_{1}\right) w_{1}+B\left(w_{1}\right)=0,
\end{aligned}
$$

thus $A\left(w_{1}\right)=B\left(w_{1}\right)=0$.
For any $w=\alpha+\operatorname{Vec}(w)$ with $|\operatorname{Vec}(w)|=\left|\operatorname{Vec}\left(w_{1}\right)\right|$, using Lemma 2,1, we have $A(w)=A\left(w_{1}\right), B(w)=B\left(w_{1}\right)$.

Therefore, $f(w)=A(w) w+B(w)=A\left(w_{1}\right) w+B\left(w_{1}\right)=0$. This completes the proof.
Definition 2.3 ${ }^{[12]}$ Given $f(x)$, then any of its zeroes generating a family of zeroes that are spherical conjugate to each other is called a spherical zero. A zero that is not spherical is called an isolated zero.

From Proposition 2,1, we know that
Corollary 2.1 $f(x)$ has no isolated non-real zeroes.
Next, we will introduce a technique to solve the equation $f(x)=0$.
Firstly, we need a Lemma.
Lemma 2.2 If $f(z)$ has a Laurent expansion with real coefficients in $r<|z|<R$, that

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}+\sum_{m=1}^{\infty} b_{m} / z^{m}
$$

when $r<|x|<R$, we have
(1) $P^{+}(\underline{\omega}) f(x)=f(x) P^{+}(\underline{\omega})=f\left(x_{0}-\mathbf{i}|x|\right) P^{+}(\underline{\omega})$
(2) $P^{-}(\underline{\omega}) f(x)=f(x) P^{-}(\underline{\omega})=f\left(x_{0}+\mathbf{i}|x|\right) P^{-}(\underline{\omega})$
(3) $f(x)=f\left(x_{0}-\mathbf{i}|x|\right) P^{+}(\underline{\omega})+f\left(x_{0}+\mathbf{i}|x|\right) P^{-}(\underline{\omega})$

Proof (1) Using the properties of $P^{+}(\underline{\omega})$, we have

$$
\begin{aligned}
f(x) P^{+}(\underline{\omega}) & =f\left(x_{0}+|\underline{x}| \underline{\omega}\right) P^{+}(\underline{\omega}) \\
& =\left[\sum_{n=0}^{\infty} a_{n} x^{n}+\sum_{n=1}^{\infty} b_{n} / x^{n}\right] P^{+}(\underline{\omega}) \\
& =\sum_{n=0}^{\infty} a_{n} x^{n} P^{+}(\underline{\omega})+\sum_{n=1}^{\infty} \frac{b_{n} \bar{x}^{n} P^{+}(\underline{\omega})}{|x|^{2 n}} \\
& =\sum_{n=0}^{\infty} a_{n}\left[x P^{+}(\underline{\omega})\right]^{n}+\sum_{n=1}^{\infty} \frac{b_{n}\left[\bar{x} P^{+}(\underline{\omega})\right]^{n}}{|x| 2^{2 n}} \\
& =\sum_{n=0}^{\infty} a_{n}\left(x_{0}-\mathbf{i}|\underline{x}|\right)^{n} P^{+}(\underline{\omega})+\sum_{n=1}^{\infty} \frac{b_{n}\left(x_{0}+\mathbf{i}|\underline{x}|\right)^{n} P^{+}(\underline{\omega})}{|x|^{2 n}} \\
& =\left[\sum_{n=0}^{\infty} a_{n}\left(x_{0}-\mathbf{i}|\underline{x}|\right)^{n}+\sum_{n=1}^{\infty} b_{n} /\left(x_{0}-\mathbf{i}|\underline{x}|\right)^{n}\right] P^{+}(\underline{\omega}) \\
& =f\left(x_{0}-\mathbf{i}|\underline{x}|\right) P^{+}(\underline{\omega}) .
\end{aligned}
$$

(2) Similar to (1).
(3)

$$
\begin{aligned}
f(x) & =f(x)\left[P^{+}(\underline{\omega})+P^{-}(\underline{\omega})\right] \\
& \left.=f(x) P^{+}(\underline{\omega})+f(x) P^{-}(\underline{\omega})\right] \\
& =f\left(x_{0}-\mathbf{i}|x|\right) P^{+}(\underline{\omega})+f\left(x_{0}+\mathbf{i}|x|\right) P^{-}(\underline{\omega}) .
\end{aligned}
$$

This completes the proof.
For $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}+\sum_{n=1}^{\infty} b_{n} / x^{n}$, where $r<|x|<R$. Using Lemma 2.2, we have

$$
\begin{aligned}
f(x)=0 & \Longleftrightarrow f\left(x_{0}-\mathbf{i}|\underline{x}|\right) P^{+}(\underline{\omega})+f\left(x_{0}+\mathbf{i}|\underline{x}|\right) P^{-}(\underline{\omega})=0 \\
& \Longleftrightarrow f\left(x_{0}-\mathbf{i}|\underline{x}|\right) P^{+}(\underline{\omega})=0 \text { and } f\left(x_{0}+\mathbf{i}|\underline{x}|\right) P^{-}(\underline{\omega})=0 \\
& \Longleftrightarrow f\left(x_{0}-\mathbf{i}|\underline{x}|\right)=0 \text { and } f\left(x_{0}+\mathbf{i}|\underline{x}|\right)=0 \\
& \Longleftrightarrow f(z)=0 .
\end{aligned}
$$

Note Note that $f(z)=0$ is an equation of real coefficients. It, therefore, has complex conjugate roots.

Corollary 2.2 If $\alpha \pm \mathbf{i} \beta, \beta>0$ are solutions of $f(z)=0$, then $\alpha+\beta \underline{\omega}$ is a spherical zero of $f(x)$.

From the above discussion, we can obtain the conclusion as follows:
Theorem 2.1 Let $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}+\sum_{n=1}^{\infty} b_{n} / x^{n}, r<|x|<R$ be any Clifford analytic functions with real coefficients, then it has two types of zeroes. The zeroes are either isolated real roots or spherical zeroes. What is more, there exists a one-to-one correspondence between its real isolated zeroes and the real roots of $f(z)$, as well as a one-to-one correspondence between the spherical zeroes of $Q_{n}(x)$ and the pairs of complex conjugate zeroes of $f(z)$.

In particular, for polynomial $Q_{n}(x)=\sum_{j=0}^{n} a_{n} x^{n}$ with real coefficients, we have
Corollary 2.3 The zero-set of $Q_{n}(x)$ is

$$
S=\left\{\alpha_{1}+\beta_{1} \underline{\omega}, \cdots, \alpha_{s}+\beta_{s} \underline{\omega}, \gamma_{1}, \cdots, \gamma_{t}\right\}
$$

if
$S=\left\{\alpha_{1} \pm \mathbf{i} \beta_{1}, \cdots, \alpha_{s} \pm \mathbf{i} \beta_{s}, \gamma_{1}, \cdots, \gamma_{t}, \alpha_{j}, \beta_{j}, \gamma_{k}\right.$ are reals, $\left.\beta_{j}>0, j=1, \cdots, s, k=1, \cdots, t\right\}$ is the zero-set of $Q_{n}(z)$. The multiplicity of the zero of $Q_{n}(x)$ is the same as that of $Q_{n}(z)$.

Corollary 2.4 If $Q_{n}(x)$ has spherical zeroes $\alpha_{1}+\beta_{1} \underline{\omega}, \cdots, \alpha_{s}+\beta_{s} \underline{\omega}$ with multiplicity j_{1}, \cdots, j_{s} and isolated real roots $\gamma_{1}, \cdots, \gamma_{t}$ with multiplicity k_{1}, \cdots, k_{t}, then

$$
Q_{n}(x)=a_{n}\left[x^{2}-2 \alpha_{1}+\left(\alpha_{1}^{2}+\beta_{1}^{2}\right)\right]^{j_{1}} \cdots\left[x^{2}-2 \alpha_{s}+\left(\alpha_{s}^{2}+\beta_{s}^{2}\right)\right]^{j_{s}}\left(x-\gamma_{1}\right)^{k_{1}} \cdots\left(x-\gamma_{t}\right)^{k_{t}} .
$$

On the other hand, if $Q_{n}(x)$ can be written as above, then the zero-set of it is

$$
S=\left\{\alpha_{1}+\beta_{1} \underline{\omega}, \cdots, \alpha_{s}+\beta_{s} \underline{\omega}, \gamma_{1}, \cdots, \gamma_{t}\right\} .
$$

3. The root-set of $f(x)=A$

In this section, we will consider the roots of $f(x)=A$, where $A \in \mathbf{R}_{1}^{m}$ and $A \notin \mathbf{R}$. We note that $f(x)=A$ has only isolated non-real roots. In fact, $f(\alpha) \in \mathbf{R}, f(\alpha) \neq A$ if $\alpha \in \mathbf{R}$ and if $f(w)=A$, then $f(\bar{w})=\bar{A} \neq A$.

Next, we will find the roots of it. For $f(x)=A, A=A_{0}+|\underline{A}| \underline{\omega_{0}}$, we have

$$
\begin{aligned}
f\left(x_{0}+y \underline{\omega_{0}}\right)=A \Longleftrightarrow & f\left(x_{0}+y \underline{\omega_{0}}\right)\left[P^{+}\left(\underline{\omega_{0}}\right)+P^{-}\left(\underline{\omega_{0}}\right)\right]=A\left[P^{+}\left(\underline{\omega_{0}}\right)+P^{-}\left(\underline{\omega_{0}}\right)\right] \\
\Longleftrightarrow & f\left(x_{0}-\mathbf{i} y\right) P^{+}\left(\underline{\omega_{0}}\right)+f\left(x_{0}+\mathbf{i} y\right) P^{-}\left(\underline{\omega_{0}}\right) \\
& =\left(A_{0}-\mathbf{i}|\underline{A}|\right) P^{+}\left(\underline{\omega_{0}}\right)+\left(A_{0}+\mathbf{i}|\underline{A}|\right) P^{-}\left(\underline{\omega_{0}}\right) \\
\Longleftrightarrow & f\left(x_{0}-\mathbf{i} y\right) P^{+}\left(\underline{\omega_{0}}\right)=\left(A_{0}-\mathbf{i}|\underline{A}|\right) P^{+}\left(\underline{\omega_{0}}\right) \text { and } \\
& f\left(x_{0}+\mathbf{i} y\right) P^{-}\left(\underline{\omega_{0}}\right)=\left(A_{0}+\mathbf{i}|\underline{A}|\right) P^{-}\left(\underline{\omega_{0}}\right) \\
\Longleftrightarrow & f\left(x_{0}-\mathbf{i} y\right)=A_{0}-\mathbf{i}|\underline{A}| \text { and } f\left(x_{0}+\mathbf{i} y\right)=A_{0}+\mathbf{i}|\underline{A}| \\
\Longleftrightarrow & f(z)=A_{0}+\mathbf{i}|\underline{A}| .
\end{aligned}
$$

From the discussion above, we can obtain
Theorem 3.1 The root-set of $f(x)=A, A=A_{0}+|\underline{A}| \underline{\omega_{0}}$ is

$$
S=\left\{\alpha+\beta \underline{\omega_{0}}: \text { if } \alpha+\mathbf{i} \beta \text { is a root of } f(z)=A_{0}+\mathbf{i}|\underline{A}|\right\} .
$$

The multiplicity of $\alpha+\beta \underline{\omega_{0}}$ is the same as that of $\alpha+\mathbf{i} \beta$ as a root of $f(z)=A_{0}+\mathbf{i}|\underline{A}|$.
In particular, we have
Corollary 3.2 Let $A=A_{0}+|\underline{A}| \underline{\omega_{0}}$ be a non zero element. For $m \in N-\{0\}$, the polynomial $P(x)=x^{m}-A$ has:
(1) m distinct non-real isolated zeroes $\alpha_{1}+\beta_{1} \omega_{0}, \cdots, \alpha_{m}+\beta_{m} \underline{\omega_{0}}$, if A is non-real number.
(2) s spherical zeroes, and an isolated real zero, if A is a real number and $m=2 s+1$.
(3) $s-1$ spherical zeroes, and two distinct isolated real zeroes, if A is a positive real number and $m=2 s$.
(4) s spherical zeroes, if A is a negative real number and $m=2 s$.

References

[1] Brackx F, Delanghe R, Sommen F. Clifford Analysis. (Research Notes in Mathematics, Vol. 76), Boston, London, Melbourne: Pitman Advanced Publishing Company, 1982.
[2] Delanghe R, Somman F, Soucek V. Clifford Algebra and Spinor-Valued Functions. Dorderecht, Boston, London: Kluwer Academic Publishers, 1992.
[3] Niven I. Equations in quaternions. Amer. Math, Monthly, 1941, 48: 654-661
[4] Niven I. The roots of quaternions. Amer. Math, Monthly, 1942, 49: 386-388
[5] Eilenberg S, Niven I. The fundamental theorem of algebra for quaternions. Bull. Amer. Math. Soc, 1994, 50: 246-248
[6] Pogorui A, Shapiro M. On the structure of the set of zeroes of quaternionic polynomials. Complex Variables, 2004, 49(6): 379-389
[7] Datta B, Nag S. Zero-sets of quaternionic and octonionic analytic functions with central coefficients. Bulletin of the London Mathematical Society, 1987, 19(4): 329-336
[8] Pogorui A A, Rodriguez-Dagnino R M. On the set of zeroes of bicomplex polynimials. Complex Variables and Elliptic Equations, 2006, 51(7): 725-730
[9] Sommen F. Some connections between Clifford analysis and complex analysis. Complex Variables Theory Appl, 1982, 1(1): 97-118
[10] McIntosh A. Clifford algebras, Fourier theory, singular integrals, and harmonic functions on Lipschitz domains. In: Clifford Algebras in Analysis and Related Topics (Fayetteville, Ark, 1993), Boca Raton, Florida: Stud. Adv. Math. CRC press, 1996. 33-87
[11] Brackx F, Schepper N D, Sommen F. Clifford algebra-valued orthogonal polynomials in the unit ball of Euclidean spaces. International Journal of Mathematics and Mathematical Sciences, 2004, 52: 2761-2772
[12] Yang Y, Qian T. On sets of zeroes of Clifford algebra-valued polynomials. to appear.

[^0]: ${ }^{1}$ This project sponsored by the Scientific Research Foundation for the Youth Scholars of Sun Yat-Sen University and by Research Grant of University of Macau on Applications of Hyper-Complex Analysis (cativo: 7560)

