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1. Introduction

There has been an ample amount of literature discussing zeroes of functions in quater-

nions and octonions. Niven in [3, 4] first studied zeroes of quaternionic polynomials which

further led to the article by Eilenberg and Niven [5] where a fundamental theorem for

quaternionic polynomials was established. In [6], they proved that any quaternionic poly-

nomial of degree n ≥ 1 has at least one zero and there should be two types of zeroes:

They are either isolated or spherical ones. In [7], the authors extended the results in [6]

to any quaternionic and octonionic analytic functions with real coefficients using geomet-

rical method. In [8], roots of polynomials with bicomplex coefficients are studied. To the

authors knowledge, in the higher dimensional cases, there are not so many deep results.

In [12], we first studied the zero-sets of polynomials in higher dimensional cases under the

structure of Clifford algebra and then extended the results in [6].

In this article, we study the zeroes of Clifford analytic functions with real coefficients.

Using a technical method, we introduce a one-to-one correspondence between such a

function and a complex function and then extend the results in [7]. We also find the

preimages f−1(A) for any paravector A.

We first give some basic knowledge in relation to Clifford algebra ([1,2]). Let e1, ..., em

be basic elements satisfying eiej + ejei = −2δij, where δij = 1 if i = j; and δij = 0

otherwise, i, j = 1, 2, · · · , m. Let

Rm = {x = x1e1 + · · ·+ xmem : xj ∈ R, j = 1, 2, · · · , m}
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be identical with the usual Euclidean space Rm, and

Rm
1 = {x = x0e0 + x : x0 ∈ R, x ∈ Rm}, where e0 = 1.

An element in Rm
1 is called a paravector. For x ∈ Rm

1 , it consists of a scalar part and a

vector part. We use the dotations

x0 = Sc(x), x = Vec(x).

The real (or complex) Clifford algebra generated by e1, e2, · · · , em, denoted by R(m) (or

C(m)), is the associative algebra generated by e1, e2, · · · , em over the real (or complex)

field R (or C). A general element in R(m) (or C(m)), therefore, is of the form x =∑
S xSeS, where eS = ei1ei2 · · · eil , xS ∈ R(or C), and S runs over all the ordered subsets

of {1, 2, · · · , m}, namely

S = {1 ≤ i1 < i2 < · · · < il ≤ m}, 1 ≤ l ≤ m.

We define the conjugation of eS to be eS = eil · · · ei1 , ej = −ej. This induces the Clifford

conjugate x = x0 − x of a paravector x = x0 + x.

The product between x and y in Rm
1 , denoted by xy is split into three parts: a scalar

part, a vector part and a bivector part, that is

xy = (x0y0 + x · y) + (x0y + yox) + x ∧ y,

where

x · y = −
m∑

i=1

xiyi,

x ∧ y =
m∑

i=1

m∑
j=i+1

(xiyj − xjyi)eiej.

In particular,

xx = x0
2 −

m∑
i=1

xi
2 + 2x0x = 2x0x− |x|2,

where

|x|2 = xx =
m∑

i=0

xi
2.

It is easy to see that |xn| = |x|n.

In the following, the so-called Clifford-Heaviside functions

P±(x) =
1

2
(1± i

x

|x|
)

will play an important role, which were first introduced by Sommen in [9] and McIntosh

in [10]. Introducing spherical coordinates in Rm, we have x = rω, r = |x| ∈ [0,∞), ω ∈
Sm−1, where Sm−1 is the unit sphere in Rm. Thus,

P±(ω) =
1

2
(1± iω).
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They are self adjoint mutually orthogonal primitive idempotents:

P+(ω) + P−(ω) = 1, P+(ω)P−(ω) = P−(ω)P+(ω) = 0, (P±(ω))2 = P±(ω).

Furthermore, we have

P±(ω)ω = ωP±(ω) = ∓iP±(ω).

The properties of P±(ω) are discussed in [11].

2. Zero-sets of Clifford analytic functions with real
coefficients

In this section, we will consider the following Clifford analytic function with paravector

variable x ∈ Rm
1 and real coefficients,

f(x) =
∞∑

n=0

anx
n +

∞∑
n=1

bn/x
n,

where an, bn ∈ R.

Definition 2.1 If f(z) has a Laurent expansion with real coefficients in r < |z| < R, that

is

f(z) =
∞∑

n=0

anz
n +

∞∑
n=1

bn/z
n,

then f(x) is defined as

f(x) =
∞∑

n=0

anx
n +

∞∑
n=1

bn/x
n,

where x ∈ Rm
1 and r < |x| < R. If f(x) can be written as this form, that we call it

Clifford analytic function.

Note From the norm estimation for |xn| for Clifford paravectors the above definition is

justified.

In [12], we have known that if x = x0 + x ∈ Rm
1 , then

xn = An(x)x + Bn(x), n = 1, 2, · · ·

where An and Bn are real-valued functions of x defined by the recurrent formulas:

An+1(x) = 2Sc(x)An(x)− |x|2An−1(x)

Bn+1(x) = −|x|2An(x),

where

A1(x) = 1

A2(x) = 2Sc(x)

B1(x) = 0

B2(x) = −|x|2.
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Therefore,

f(x) =
∞∑

n=0

an[An(x)x + Bn(x)] +
∞∑

n=1

bn[An(x)x + Bn(x)]

|x|2n

=

[ ∞∑
n=0

anAn(x) +
∞∑

n=1

bnAn(x)

|x|2n

]
x +

[ ∞∑
n=0

anBn(x) +
∞∑

n=1

bnBn(x)

|x|2n

]
= A(x)x + B(x),

denoting A0(x) = 0, B0(x) = 1.

Note As we have known in [12], given any x ∈ Rm
1 , Ai(x) and Bi(x) depend not on x

but on its scalar part x0 and the modulus of its vector part |x|. Thus, we have

Lemma 2.1[12] If two paravectors x = x0 + x, y = y0 + y with x0 = y0, |x| = |y|, then

Ai(x) = Ai(y), Bi(x) = Bi(y) and hence A(x) = A(y), B(x) = B(y).

Definition 2.2[12] If w1 = α+Vec(w1) and w2 = α+Vec(w2) are two different paravectors

with |Vec(w1)| = |Vec(w2)|, then they are said to be spherical conjugate to each other.

Proposition 2.1 Assume that w1 = α + Vec(w1) is a zero of f(x), then any paravector

that is spherical conjugate to w1 is also a zero of it.

Proof If f(w1) = 0, then we have

f(w1) =
∞∑

n=0

an[An(w1)w1 + Bn(w1)] +
∞∑

n=1

bn[An(w1)w1 + Bn(w1)]

|w1|2n

= A(w1)w1 + B(w1) = 0,

thus A(w1) = B(w1) = 0.

For any w = α + Vec(w) with |Vec(w)| = |Vec(w1)|, using Lemma 2,1, we have

A(w) = A(w1), B(w) = B(w1).

Therefore, f(w) = A(w)w + B(w) = A(w1)w + B(w1) = 0. This completes the proof.

Definition 2.3[12] Given f(x), then any of its zeroes generating a family of zeroes that

are spherical conjugate to each other is called a spherical zero. A zero that is not spherical

is called an isolated zero.

From Proposition 2,1, we know that

Corollary 2.1 f(x) has no isolated non-real zeroes.

Next, we will introduce a technique to solve the equation f(x) = 0.

Firstly, we need a Lemma.

Lemma 2.2 If f(z) has a Laurent expansion with real coefficients in r < |z| < R, that

4



is

f(z) =
∞∑

n=0

anz
n +

∞∑
m=1

bm/zm,

when r < |x| < R, we have

(1)P+(ω)f(x) = f(x)P+(ω) = f(x0 − i|x|)P+(ω)

(2)P−(ω)f(x) = f(x)P−(ω) = f(x0 + i|x|)P−(ω)

(3)f(x) = f(x0 − i|x|)P+(ω) + f(x0 + i|x|)P−(ω)

Proof (1) Using the properties of P+(ω), we have

f(x)P+(ω) = f(x0 + |x|ω)P+(ω)

=

[ ∞∑
n=0

anx
n +

∞∑
n=1

bn/x
n

]
P+(ω)

=
∞∑

n=0

anx
nP+(ω) +

∞∑
n=1

bnx
nP+(ω)

|x|2n

=
∞∑

n=0

an[xP+(ω)]n +
∞∑

n=1

bn[xP+(ω)]n

|x|2n

=
∞∑

n=0

an(x0 − i|x|)nP+(ω) +
∞∑

n=1

bn(x0 + i|x|)nP+(ω)

|x|2n

=

[ ∞∑
n=0

an(x0 − i|x|)n +
∞∑

n=1

bn/(x0 − i|x|)n

]
P+(ω)

= f(x0 − i|x|)P+(ω).

(2) Similar to (1).

(3)

f(x) = f(x)[P+(ω) + P−(ω)]

= f(x)P+(ω) + f(x)P−(ω)]

= f(x0 − i|x|)P+(ω) + f(x0 + i|x|)P−(ω).

This completes the proof.

For f(x) =
∑∞

n=0 anx
n +

∑∞
n=1 bn/x

n, where r < |x| < R. Using Lemma 2.2, we have

f(x) = 0 ⇐⇒ f(x0 − i|x|)P+(ω) + f(x0 + i|x|)P−(ω) = 0

⇐⇒ f(x0 − i|x|)P+(ω) = 0 and f(x0 + i|x|)P−(ω) = 0

⇐⇒ f(x0 − i|x|) = 0 and f(x0 + i|x|) = 0

⇐⇒ f(z) = 0.

Note Note that f(z) = 0 is an equation of real coefficients. It, therefore, has complex

conjugate roots.
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Corollary 2.2 If α± iβ, β > 0 are solutions of f(z) = 0, then α+βω is a spherical zero

of f(x).

From the above discussion, we can obtain the conclusion as follows:

Theorem 2.1 Let f(x) =
∑∞

n=0 anx
n +

∑∞
n=1 bn/x

n, r < |x| < R be any Clifford ana-

lytic functions with real coefficients, then it has two types of zeroes. The zeroes are either

isolated real roots or spherical zeroes. What is more, there exists a one-to-one correspon-

dence between its real isolated zeroes and the real roots of f(z), as well as a one-to-one

correspondence between the spherical zeroes of Qn(x) and the pairs of complex conjugate

zeroes of f(z).

In particular, for polynomial Qn(x) =
∑n

j=0 anx
n with real coefficients, we have

Corollary 2.3 The zero-set of Qn(x) is

S = {α1 + β1ω, · · · , αs + βsω, γ1, · · · , γt}

if

S = {α1±iβ1, · · · , αs±iβs, γ1, · · · , γt, αj, βj, γk are reals , βj > 0, j = 1, · · · , s, k = 1, · · · , t}

is the zero-set of Qn(z). The multiplicity of the zero of Qn(x) is the same as that of Qn(z).

Corollary 2.4 If Qn(x) has spherical zeroes α1 + β1ω, · · · , αs + βsω with multiplicity

j1, · · · , js and isolated real roots γ1, · · · , γt with multiplicity k1, · · · , kt, then

Qn(x) = an[x2 − 2α1 + (α2
1 + β2

1)]
j1 · · · [x2 − 2αs + (α2

s + β2
s )]

js(x− γ1)
k1 · · · (x− γt)

kt .

On the other hand, if Qn(x) can be written as above, then the zero-set of it is

S = {α1 + β1ω, · · · , αs + βsω, γ1, · · · , γt}.

3. The root-set of f (x) = A

In this section, we will consider the roots of f(x) = A, where A ∈ Rm
1 and A /∈ R. We

note that f(x) = A has only isolated non-real roots. In fact, f(α) ∈ R, f(α) 6= A if α ∈ R

and if f(w) = A, then f(w) = A 6= A.

Next, we will find the roots of it. For f(x) = A, A = A0 + |A|ω0, we have

f(x0 + yω0) = A ⇐⇒ f(x0 + yω0)[P
+(ω0) + P−(ω0)] = A[P+(ω0) + P−(ω0)]

⇐⇒ f(x0 − iy)P+(ω0) + f(x0 + iy)P−(ω0)

= (A0 − i|A|)P+(ω0) + (A0 + i|A|)P−(ω0)

⇐⇒ f(x0 − iy)P+(ω0) = (A0 − i|A|)P+(ω0) and

f(x0 + iy)P−(ω0) = (A0 + i|A|)P−(ω0)

⇐⇒ f(x0 − iy) = A0 − i|A| and f(x0 + iy) = A0 + i|A|
⇐⇒ f(z) = A0 + i|A|.
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From the discussion above, we can obtain

Theorem 3.1 The root-set of f(x) = A, A = A0 + |A|ω0 is

S = {α + βω0 : if α + iβ is a root of f(z) = A0 + i|A|}.

The multiplicity of α + βω0 is the same as that of α + iβ as a root of f(z) = A0 + i|A|.

In particular, we have

Corollary 3.2 Let A = A0 + |A|ω0 be a non zero element. For m ∈ N − {0}, the

polynomial P (x) = xm − A has:

(1) m distinct non-real isolated zeroes α1 +β1ω0, · · · , αm +βmω0, if A is non-real number.

(2) s spherical zeroes, and an isolated real zero, if A is a real number and m = 2s + 1.

(3) s − 1 spherical zeroes, and two distinct isolated real zeroes, if A is a positive real

number and m = 2s.

(4) s spherical zeroes, if A is a negative real number and m = 2s.
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