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Abstract : In this note we prove that the zero set of any Clifford analytic function f with
real coefficients is the disjoint union of real isolated zeroes and the spherical conjugate ones.
What is more, we present a technique for computing the zeroes. We also find the preimages

f71(A) for any paravector A.
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1. Introduction

There has been an ample amount of literature discussing zeroes of functions in quater-
nions and octonions. Niven in [3, 4] first studied zeroes of quaternionic polynomials which
further led to the article by Eilenberg and Niven [5] where a fundamental theorem for
quaternionic polynomials was established. In [6], they proved that any quaternionic poly-
nomial of degree n > 1 has at least one zero and there should be two types of zeroes:
They are either isolated or spherical ones. In [7], the authors extended the results in [6]
to any quaternionic and octonionic analytic functions with real coefficients using geomet-
rical method. In [8], roots of polynomials with bicomplex coefficients are studied. To the
authors knowledge, in the higher dimensional cases, there are not so many deep results.
In [12], we first studied the zero-sets of polynomials in higher dimensional cases under the
structure of Clifford algebra and then extended the results in [6].

In this article, we study the zeroes of Clifford analytic functions with real coefficients.
Using a technical method, we introduce a one-to-one correspondence between such a
function and a complex function and then extend the results in [7]. We also find the
preimages f~!(A) for any paravector A.

We first give some basic knowledge in relation to Clifford algebra ([1,2]). Let ey, ..., e,
be basic elements satisfying e;e; + eje; = —20;;, where ¢;; = 1 if i = j; and 9;; = 0
otherwise, 7,5 =1,2,---,m. Let

R"={z=ze14+ - +zpe,:2,cR,7=1,2---,m}
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be identical with the usual Euclidean space R™, and
RY" = {z = 20e0 + 2 : 10 € R,z € R™}, where ey = 1.

An element in RY" is called a paravector. For x € RY", it consists of a scalar part and a
vector part. We use the dotations

xo = Sc(x), & = Vec(z).

The real (or complex) Clifford algebra generated by ei, ey, --,e,,, denoted by R™ (or
C(m)), is the associative algebra generated by ej,es, - -, e, over the real (or complex)
field R (or C). A general element in R(™ (or C™), therefore, is of the form z =
> s Tses, where eg = €;,€;, ---€;,, x5 € R(or C), and S runs over all the ordered subsets
of {1,2,---,m}, namely

S={1<i1<ig<---<iyy<m}, 1<I<m.

We define the conjugation of eg to be €5 =€;, - - - €;,,€; = —e;. This induces the Clifford
conjugate T = xo — x of a paravector r = xy + x.

The product between x and y in RY", denoted by zy is split into three parts: a scalar
part, a vector part and a bivector part, that is

ry = (Toyo + 2 - y) + (Toy + Yo) + T Ay,

where

x-y= _inyh
i=1

sAy = > (wy; — vjy)ee;.
i=1 j=it1

In particular,

T = 192 — me + 2z0z = 2707 — |T)?,
i=1

where
m
2> =27 =)z
i=0

It is easy to see that |z"| = |z|".

In the following, the so-called Clifford-Heaviside functions

1 x
Pz) = -(1+i—
(@) = 50 =i
will play an important role, which were first introduced by Sommen in [9] and McIntosh
in [10]. Introducing spherical coordinates in R™, we have z = rw,r = |z|] € [0,00), w €
S™=1 where S™! is the unit sphere in R™. Thus,

PE(w) = ;(1:|:iw).



They are self adjoint mutually orthogonal primitive idempotents:
Pr(w)+ P (w) =1, PH(w)P(w) = P~ (w)P"(w) =0, (P*(w))’ = P*(w).

Furthermore, we have

P (w)w = wP*(w) = FiP*(w).

The properties of P£(w) are discussed in [11].

2. Zero-sets of Clifford analytic functions with real
coefficients

In this section, we will consider the following Clifford analytic function with paravector
variable x € RY" and real coefficients,

fz) = Z a,z" + Z b, /x",
n=0 n=1
where a,,b, € R.

Definition 2.1 If f(z) has a Laurent expansion with real coefficients in r < |z| < R, that
18

f(z) = Z a, 2" + Z b, /2",
n=0 n=1
then f(z) is defined as
flx) = Z a,x" + Z b,/x",

where v € R andr < |z| < R. If f(z) can be written as this form, that we call it
Clifford analytic function.

Note From the norm estimation for |2"| for Clifford paravectors the above definition is
justified.

In [12], we have known that if z = zy + 2 € R}", then
" = A,(z)x + Bp(z),n=1,2,---
where A,, and B,, are real-valued functions of x defined by the recurrent formulas:

Anii(z) = 28c()An(z) — |2[*An ()

Bua(e) = —|oPAu(e),
where
Ai(z) = 1
Ay(x) 2Sc(x)
By (x) 0
By(z) = —[af



Therefore,

fl@) = §¥¢%<n+3 o 3 Bl D)
- R 2 R ]“[Z“” ”ZE”Z_:IbH\zTi@

— A(w)o+ B(),
denoting Ap(z) =0, By(z) =1

Note As we have known in [12], given any x € R}, A;(z) and B;(z) depend not on z
but on its scalar part xy and the modulus of its vector part |z|. Thus, we have

Lemma 2.1%% If two paravectors x = xo + x, y = yo + y with xo = yo, |z| = |y|, then

Ai(x) = Ai(y), Bi(z) = Bi(y) and hence A(x) = A(y), B(z) = B(y).

Definition 2.20'2 [fw, = a+Vec(w;) and wy = a+Vec(ws) are two different paravectors
with |Vec(wy)| = [Vec(wy)|, then they are said to be spherical conjugate to each other.

Proposition 2.1 Assume that wy = a+ Vec(w,) is a zero of f(x), then any paravector
that is spherical conjugate to wy is also a zero of it.

Proof If f(w;) =0, then we have

) = X el + B o) + 3 e Buln)
= nA:([zUl)m + B(wy) =0, =
thus A(w;) = B(w;) = 0.
For any w = a + Vec(w) with |Vec(w)| = |Vec(w;)|, using Lemma 2,1, we have

A(w) = A(un), B(w) = B(wr).

Therefore, f(w) = A(w)w + B(w) = A(w;)w + B(w;) = 0. This completes the proof.

Definition 2.3'2 Given f(x), then any of its zeroes generating a family of zeroes that
are spherical conjugate to each other is called a spherical zero. A zero that is not spherical
18 called an isolated zero.

From Proposition 2,1, we know that
Corollary 2.1 f(x) has no isolated non-real zeroes.
Next, we will introduce a technique to solve the equation f(x) = 0.

Firstly, we need a Lemma.
Lemma 2.2 [f f(z) has a Laurent expansion with real coefficients in r < |z| < R, that

4



18 - -
= Zanz" + Z b /2™,
n=0 m=1

when r < |z| < R, we have

(P (w)f(z) = f(2)PT(w) = f(zo — i|2]) PT(w)
(2)P~(w)f(x) = f(2) P~ (w) = f(zo +i[z]) P~ (w)
(3)f () = f(wo —ilz[) PT(w) + f (w0 +il2]) P~ (w)

Proof (1) Using the properties of P*(w), we have
f@)PH(w) = flao+|zlw)PT(w)
= | a.a"+ Z bo/2™| PT(w)
n=0 =

00 00 b —nP-i—
= Z ananJF Z - 2n< )

n=0 n=1 |LL’|

oo 00 b TPt n

= n=1 |x| "

> " (o + i|z])"PT(w
= Z (wo — ilz])" P (w) + Z |l«|z‘2 :

- ian (o — ila)" +;bn/<xo—im>n P (w)
oo i) P ()

(2) Similar to (1).
(3)

fle) = f@)[PT(w)+ P~ (w)]
= f@)PT(w) + f(2)P~ ()]
= flzo —ifz))PT(w) + f (2o +iz]) P (w).

This completes the proof.
For f(z) = 3%y apx™ + 300, b, /2™, where r < |z| < R. Using Lemma 2.2, we have

fl@) =0 < flzo—ilz))P"(w) + f(zo +ilz]) P~ (w) = 0

(
= flzo—ilz|)P"(w) =0 and f(zo +i[z]) P~ (w) =0
— f(xo— 1|:B|) =0and f(xg+ilz|) =0
= f(z) =

Note Note that f(z) = 0 is an equation of real coefficients. It, therefore, has complex
conjugate roots.



Corollary 2.2 Ifa+if,3 > 0 are solutions of f(z) =0, then a+ Bw is a spherical zero
of f(x).

From the above discussion, we can obtain the conclusion as follows:

Theorem 2.1 Let f(x) = X072, an2™ + 302 by /2™, 7 < |z| < R be any Clifford ana-
lytic functions with real coefficients, then it has two types of zeroes. The zeroes are either
1solated real roots or spherical zeroes. What is more, there exists a one-to-one correspon-
dence between its real isolated zeroes and the real roots of f(z), as well as a one-to-one
correspondence between the spherical zeroes of Qn(x) and the pairs of complex conjugate

zeroes of f(z).

In particular, for polynomial @, (r) = >7_; a,2™ with real coefficients, we have

Corollary 2.3 The zero-set of Qn(x) is
S={a 4w, -, s+ B, 1,00}
of
S ={oxipy, -, asxils, 11, W, oy, By, are reals B, >0, =1,---,s,k=1,---,t}
is the zero-set of Q,(2). The multiplicity of the zero of Qn(x) is the same as that of Q,(2).

Corollary 2.4 If Qu(x) has sphem'cal zeroes oy + w, -, a5 + Bsw with multiplicity
J1,° -, Js and isolated real roots vy, - - -,y with multiplicity ky,-- -, k¢, then

Qu(z) = anlo® = 201+ (03 + B -2 — 20, + (a2 + B (0 = 30)** -+ (2 = 30"

On the other hand, if Q,(x) can be written as above, then the zero-set of it is

S = {CYl+,61Q,‘",CKS—FﬁsQ,’Yl,"',’Yt}-

3. The root-set of f(x) =

In this section, we will consider the roots of f(x) = A, where A € R and A ¢ R. We
note that f(z) = A has only isolated non-real roots. In fact, f(a) € R, f(a) # Aifa € R
and if f(w) = A, then f(w) = A # A.

Next, we will find the roots of it. For f(z) = A, A = Ay + |A|wy, we have
T(w

fl@o+ywo) = A <= f(zo+ywo)[PF(wo) + P~ (wo)] = A[P" (wo) + P~ (wo)]
> flxo—iy)P"(wo) + f(xo + iy) P~ (wo)

)
= (Ao —i[A]) P¥(wo) + (Ao +1|A)) P (wo)
) =

< f(xg—iy)P"(wo) = (Ag — i|A|)P" (wp) and

flao + ly) “(wo) = (Ao +iA) P~ (wo)
< f(xg—1iy) = Ao —i|A| and f(xo + iy) = Ao + i| 4|
— f(z) = Ay +1ilA|.



From the discussion above, we can obtain
Theorem 3.1 The root-set of f(z) = A, A= Ag+ |Alwy is
S ={a+ fwy: if a+1if is a root of f(z) = Ay +1i|A|}.
The multiplicity of o + Pwy is the same as that of a +1if as a root of f(z) = Ao + i|A|.
In particular, we have

Corollary 3.2 Let A = Ay + |Alwy be a non zero element. For m € N — {0}, the
polynomial P(z) = 2™ — A has:

(1) m distinct non-real isolated zeroes ay + Biwy, - - -, Qum + Bmwo, if A is non-real number.
(2) s spherical zeroes, and an isolated real zero, if A is a real number and m = 2s + 1.
(3) s — 1 spherical zeroes, and two distinct isolated real zeroes, if A is a positive real
number and m = 2s.

(4) s spherical zeroes, if A is a negative real number and m = 2s.
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