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ABSTRACT. We study decompositions of functions in the Hardy spaces into linear com-
binations of the basic functions in the orthogonal rational systems {Bn(x)} which can be ob-
tained in the respective contexts through Gram-Schmidt orthogonalization process on shifted
Cauchy kernels. Those lead to adaptive decompositions of quaternionic-valued signals of finite
energy. This study is a generalization of the main result in [10, 11].
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1 Introduction

In [11] the authors studied adaptive decomposition of functions in the Hardy space H2(D)
(where D represents the unit disc in the complex plane) basing on the orthonormal rational
function system, or Takenaka-Malmquist (TM) system

Bn(z) =

√
1− |an|2
1− anz

n−1∏

k=1

z − ak

1− akz
, n = 1, 2, . . . , z ∈ D. (1)

The decomposition leads to an adaptive decomposition of a real-valued function (or signal)
f ∈ L2(∂D) into mono-components, where by definition, a mono-component is a signal that
possesses an increasing analytic phase function (see [9]). The algorithm guarantees fast con-
vergence and is considered as a realizable variation of greedy algorithm.

While in [10], the authors investigated intrinsic mono-component decomposition of functions
in the Hardy space H2(C+) (where C+ is the upper half complex plane) using the TM system
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in the upper half plane, it is

Dn(z) =

√
βn

π

1
z − an

n−1∏

k=1

z − ak

z − ak
, an = αn + iβn ∈ C+, n = 1, 2, . . . , z ∈ C+. (2)

This study is a counterpart corresponds to the case of unit disc in [11], which induces an
adaptive expansion of a real-valued signal along the whole line. Both of the methods proposed
by the authors in [10] and [11] are in some sense better than the using of the classic Fourier
system.

In this paper, basing on quaternionic analysis, we study similar adaptive decompositions of
functions in different Hardy spaces of quaternionic valued functions, viz. H2(B4), H2(R4 \B4),
H2(R4

+) and H2(R4−). In each context there is a similar system {Bn}∞n=1 generated by shifted
Cauchy kernels. By adaptively choosing the parameters {an}∞n=1 according to the given function
we achieve fast decomposition in terms of energy such that

f =
∞∑

n=1

Bn〈f,Bn〉.

Invoking Sokhotskyi-Plemelj formula, we obtain adaptive decompositions of signals of finite
energy that are not necessarily quaternionic monogenic, nor scalar-valued. Those, therefore,
generalize the result in [10, 11] into four dimensions.

If f is a monogenic function in the Hardy space H2 inside the unit ball, then it has a non-
tangential boundary value on the sphere that is in L2. Inside the ball, f has a monogenic Taylor
expansion. Restricted to the sphere the Taylor expansion reduces to the spherical harmonics
expansion of the function. In the L2 sense the the spherical harmonics expansion converges to
the non-tangential boundary value of f. If f is an L2 function defined on the sphere, say, being
scalar-valued, then it has directly a Fourier-Laplace series in spherical harmonics, the Fourier-
Laplace series coincides with the scalar part of the restriction of the Taylor expansion of the
corresponding Hardy H2 function in the ball with the boundary value f + Hf on the sphere,
where H stands for the Hilbert transformation in the context ([12]). The proposed adaptive
decomposition aims to obtain alternative spherical harmonics expansion that converge faster
than the corresponding classical series expansion. In the unbounded domain cases the same
idea can be proceeded to get fast series decompositions of the same kind, rather than the
classical Fourier integral decomposition (Fourier inversion formula).

Like what is in greedy algorithm, our fastness statement is based on intuition and experi-
ence. Convergence rates are difficult to be established, for there is no smoothness conditions
assumed for the boundary data. The existing convergence rate results ([2]) address the worst
cases and are not sharp estimates. The current study is related to approximation to functions
in the Hardy spaces by rational functions of a certain degree. This topic will be dealt with in
a separate paper.

It is well known that conformal mappings in the higher dimensions are only Möbius trans-
forms. Although Möbius transforms map the unit ball onto the unit ball, they themselves, are
not monogenic. On the other hand, monogenic functions composed with Möbius transforms
are no longer monogenic, unless being multiplied by a conformal weight function ([7]). Higher
dimensional Möbius transforms therefore are very different from those in one complex variable,
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and that is why the analogous objects such as Blaschke products are not available. In fact,
Blaschke products have not been defined in the higher dimensional spaces in the Clifford al-
gebra setting. Note that if we let an = 0, then (1) gives a classical Blaschke product of n − 1
order. This suggests that we may define Blaschke products to be the basic functions in the TM
systems in individual contexts with the final parameter an being equal to zero. In other words,
Blaschke products are those that are basic functions obtained through G-S orthogonalization
process on shifted Cauchy kernels, with the ending parameter an being zero.

The writing plan of this paper is as follows. §2 provide the related notation and termi-
nology, and some basic knowledge on quaternionic analysis. §3 is devoted to adaptive Fourier
decomposition for functions in H2(B4), basing on which, the adaptive decomposition for func-
tions in L2(S4) is given in §4. While in §5, we deal with the context H2(R4

+) and L2(R3). In §6
we prove the same convergence rate for this higher dimension approximation. In §7 we point
out that all the previous results can be transferred to the cases with underlying spaces in R3,
which is convenient for us to present some numerical examples in §8.

2 Preliminaries

Through out the paper we work on the quaternions H (the only associative normed division
algebra that extends the complex numbers) over the real numbers R. To distinguish it from
the complexified quaternions, we sometimes call it real-quaternions. A real-quaternion x ∈ H
is of the form x =

∑3
i=0 xiei, where Re x = x0 and Imi x = xi (1 ≤ i ≤ 3) belong to R, and the

basis elements ei (0 ≤ i ≤ 3) satisfy

e2
0 = e0, eie0 = e0ei = ei, e2

i = −1 (1 ≤ i ≤ 3),

e1e2 = e3 = −e2e1, e2e3 = e1 = −e3e2, e3e1 = e2 = −e1e3.

Basing on these relations one defines the quaternionic multiplication and addition by linearity
and distributive law. The norm and the conjugate of x are defined respectively by |x| =
(
∑3

0 x2
i )

1
2 and x = x0e0 −

∑3
i=1 xiei, which obey xx = xx = |x|2 (we often identify e0 with the

real identity 1). x−1 = x/|x|2 (x 6= 0) gives the reverse of x.
For any q1, q2, q3 ∈ H, we have |q1q2| = |q1||q2|, q1q2 = q2 q1 and (q1q2)q3 = q1(q2q3). To-

gether with the multiplication law, real-quaternions H becomes a four-dimensional, normed
division, associative but non-commutative algebra. It is easy to see that the embedding rela-
tions R ⊂ C ⊂ H hold. As a vector space, or a topological space, H is identified with the four
dimensional Euclidean space R4.

A function f ∈ C1(Ω,H) is said to be left (right) H-regular, or left (right) H-monogenic in
the open set Ω ⊂ R4 if and only if there holds the Cauchy-Riemann-Fueter equation

Df = e0
∂f

∂x0
+ e1

∂f

∂x1
+ e2

∂f

∂x2
+ e3

∂f

∂x3
= 0

(
fD =

∂f

∂x0
e0 +

∂f

∂x1
e1 +

∂f

∂x2
e2 +

∂f

∂x3
e3 = 0

)
,

where D =
∑3

i=0 ei
∂

∂xi
is the quaternionic Dirac operator. If f is both left and right H-regular,

then f is said to be H-regular. Since D(Df) = 4f = (fD)D, where D = ∂
∂x0

−∑3
i=1 ei

∂
∂xi

and 4 =
∑3

i=0
∂2

∂x2
i
, it follows that any left (right) H-regular function is always harmonic.
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Being analogous with complex analysis of one variable, we have the Cauchy integral formula
(on bounded or unbounded domain) in the quaternionic analysis, the following is a simple
version:

Lemma 2.1. [13] Let Ω ⊂ R4 be a bounded domain with smooth boundary ∂Ω. Suppose f is
left H-regular in Ω and continuous in Ω = Ω ∪ ∂Ω, if x is a point in Ω, then

f(x) =
1

2π2

∫

∂Ω

(q − x)−1

|q − x|2 (n(q)dS)f(q),

where n(q) is the outward normal unit to ∂Ω at the point q, dS stands for the surface area
element on ∂Ω.

The theory of quaternionic analysis was built up by the Swiss mathematician R. Fueter et al.
in 1930s, now it has been widely applied to many fields (such as physics, image processing etc.).
For more information about quaternion, quaternionic analysis and their higher dimensional
analogues, we refer the reader to [1, 3, 6, 13].

Denote by B4 the unit ball {x ∈ R4 : |x| < 1} in R4, and S4 the unit sphere {x ∈ R4 : |x| =
1}. The Hardy space H2(B4) consists of all functions f that are left H-regular in B4 and satisfy

‖f‖ = sup
0<r<1

( 1
2π2

∫

|η|=1
|f(rη)|2dS

)1/2
< ∞,

where dS is the area element of S4. For any f ∈ H2(B4), the non-tangential boundary values
of f on S4 exist and belong to L2(S4). Moreover, the Cauchy integral formula holds for all
functions in H2(B4), and H2(B4) is a Hilbert space with the inner product defined by

〈f, g〉 =
1

2π2

∫

|η|=1
g(η)f(η)dS, f, g ∈ H2(B4).

The above concepts can be built in arbitrary n-dimensional space (n ≥ 2), see, e.g. [4] for more
details.

3 Fast convergent decomposition of functions in H2(B4)

In what follows we assume {an}∞n=1 is a sequence of quaternionic numbers in B4. Set

αn(x) = α{an}(x) = (1− |an|2)
3
2

1− anx

|1− anx|4 , n ∈ N+.

Which is sometimes written as αn, or α{an} for short. It is easy to show that α{a}(x) ∈ H2(B4)
if any only if |a| ≤ 1, moreover, we have

Proposition 3.1. For any function f ∈ H2(B4) and any quaternion a ∈ B4, there holds

〈f, α{a}〉 = (1− |a|2) 3
2 f(a).
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Proof. By definition and the Cauchy integral formula for H2(B4),

〈f, α{a}〉 =
1

2π2

∫

|η|=1
(1− |a|2) 3

2
1− aη

|1− aη|4 f(η)dS

= (1− |a|2) 3
2

1
2π2

∫

|η|=1

η − a

|η − a|4 (ηdS)f(η)

= (1− |a|2) 3
2 f(a).

From the above property, we immediately arrive at

‖αn(x)‖2 = 〈αn, αn〉 = (1− |an|2)
3
2 αn(an) = 1.

Another proof of this equality is to use the spherical coordinates transform, or an alternative
method proposed in [5]. When an (n ∈ N+) are distinct from each other, αn (n ∈ N+) are
mutually linear independent in H2(B4). By Gram-Schmidt orthogonalization process, they can
be orthogonalized by setting

β1(x) = β{a1}(x) = α1(x),

βn(x) = β{a1,...,an}(x) = αn(x)−
n−1∑

i=1

βi(x)
〈αn, βi〉
〈βi, βi〉 , n ≥ 2.

Thus {Bn} = {B{a1,...,an}} = { βn

‖βn‖} becomes an orthonormal system.
But if at least two of the parameters are the same, for example, a2 equals a1, then obviously

β2(x) = β{a1,a1}(x) = 0. At this case, we interpret B2 as limρ→0+ B{a1,b}, where b = a1 +
(ρ cos θ, ρ sin θ cos ϕ, ρ sin θ sinϕ cos ψ, ρ sin θ sinϕ sinψ) and θ, ϕ ∈ [0, π], ψ ∈ [0, 2π]. More
precisely,

lim
ρ→0+

B{a1,b} = lim
ρ→0+

β{a1,b}
‖β{a1,b}‖

= lim
ρ→0+

β{a1,b} − β{a1,a1}√
〈β{a1,b} − β{a1,a1}, β{a1,b} − β{a1,a1}〉

= lim
ρ→0+

β{a1,b}−β{a1,a1}
ρ√

〈β{a1,b}−β{a1,a1}
ρ ,

β{a1,b}−β{a1,a1}
ρ 〉

=
∇−→n β{a1,y}|y=a1

‖∇−→n β{a1,y}|y=a1‖

=
∇−→n α{y}|y=a1 − β{a1}

〈∇−→n α{y}|y=a1 ,β{a1}〉
〈β{a1},β{a1}〉

‖∇−→n α{y}|y=a1 − β{a1}
〈∇−→n α{y}|y=a1 ,β{a1}〉

〈β{a1},β{a1}〉
‖

where ∇−→n α{y} = ∂α{y}
∂y0

cos θ + ∂α{y}
∂y1

sin θ cos ϕ + ∂α{y}
∂y2

sin θ sinϕ cos ψ + ∂α{y}
∂y3

sin θ sinϕ sinψ
is the directional derivative of α{y}. In other words, when a2 = a1, B2 is interpreted as the
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orthonormalization of α{a1} and ∇−→n α{y}|y=a1 , it contains one quaternionic parameter a1 and
three real parameters θ, ϕ, ψ.

We further note that as a function of y, α{y} satisfies α{y}D = 0, which implies that
∂α{y}
∂y0

, ∂α{y}
∂y1

, ∂α{y}
∂y2

and ∂α{y}
∂y3

are linear dependent in H2(B4), hence, if the multiplicity of any
quaternionic parameter an (we call the cardinal number of the set {ak : ak = an, k ≤ n}
the multiplicity of an and denote it by m(an)) is larger than 4, then the second order partial
derivatives of α{y} at the point an should be involved in the orthogonalization process. In
general, when m(an) >

∑n−1
k=0

(
k+2
2

)
=

(
n+2

3

)
, then the n-th order partial derivatives of α{y} at

the point an must be appear.
As an example, we calculate the explicit form of B2(x) when a2 6= a1:

〈α2, β1〉 = (1− |a1|2)
3
2 α2(a1)

= [(1− |a1|2)(1− |a2|2)]
3
2

1− a2a1

|1− a2a1|4 ,

β2(x) = α2(x)− β1(x)
〈α2, β1〉
〈β1, β1〉

= (1− |a2|2)
3
2

( 1− a2x

|1− a2x|4 − (1− |a1|2)3 1− a1x

|1− a1x|4
1− a2a1

|1− a2a1|4
)
,

and

‖β2‖2 = 〈α2 − β1
〈α2, β1〉
〈β1, β1〉 , α2 − β1

〈α2, β1〉
〈β1, β1〉 〉

= ‖α2‖2 − 〈α2, β1〉〈α2, β1〉 − 〈β1, α2〉〈α2, β1〉+ |〈α2, β1〉|2
= 1− |〈α2, β1〉|2

= 1−
[(1− |a1|2)(1− |a2|2)

|1− a2a1|2
]3

.

Hence β2(x)
‖β2‖ gives B2(x).

The rest of this section will be devoted to the adaptive approximation of f ∈ H2(B4) by
the system {Bn}.

Given a function f ∈ H2(B4), suppose f can be expanded into

f(x) =
∞∑

n=1

Bn(x)cn,
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then the coefficients cn are given by

c1 = 〈f,B{a1}〉
= (1− |a1|2)

3
2 f(a1),

cn = 〈f,Bn〉

=
〈
f,

αn −
∑n−1

i=1 βi
〈αn,βi〉
〈βi,βi〉

‖βn‖
〉

=

〈
f −∑n−1

i=1 βi
〈f,βi〉
〈βi,βi〉 , αn

〉

‖βn‖ .

Set

fn(x) = f(x)−
n−1∑

i=1

βi(x)
〈f, βi〉
〈βi, βi〉 = f(x)−

n−1∑

i=1

Bi(x)〈f,Bi〉,

if m(an) = 1, then

〈f,Bn〉 =
(1− |an|2) 3

2 fn(an)
‖βn‖ , (3)

and

‖βn‖2 =
〈
αn −

n−1∑

i=1

βi
〈αn, βi〉
〈βi, βi〉 , αn −

n−1∑

i=1

βi
〈αn, βi〉
〈βi, βi〉

〉

= 〈αn, αn〉 −
n−1∑

i=1

〈αn, βi〉
〈βi, βi〉 〈αn, βi〉 −

n−1∑

i=1

〈βi, αn〉〈αn, βi〉
〈βi, βi〉 +

n−1∑

i=1

|〈αn, βi〉|2
〈βi, βi〉

= 1−
n−1∑

i=1

|〈αn, βi〉|2
〈βi, βi〉 . (4)

Otherwise, if m(an) > 1, 〈f,Bn〉 and ‖βn‖ will be taken in the limit sense as before.

Lemma 3.1. Let a1, . . . , an−1 ∈ B4 be fixed, a = |a|ξ = rξ, then

lim
r→1−

‖β{a1,...,an−1,a}‖ = 1

uniformly in |ξ| = 1.

Proof. From (4) it suffices to show that limr→1− |〈α{a}, βi〉|2 = 0 whenever i ≤ n − 1, this
follows once we show that limr→1− |〈α{a}, αi〉|2 = 0, due to βi is the linear combination
of α1, . . . , αi. Note that when r → 1−, a must be different from ai (i ≤ n − 1), hence
|〈α{a}, αi〉|2 =

[ (1−|ai|2)(1−|a|2)
|1−aai|2

]3 if m(ai) = 1, or the linear combination of the partial deriva-

tives of
[ (1−|ai|2)(1−|a|2)

|1−aai|2
]3 with respect to ai if m(ai) > 1. In both cases it is clear that

limr→1− |〈α{a}, αi〉|2 = 0, the lemma follows.
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Lemma 3.2. Assumptions are as in Lemma 3.1, then

lim
r→1−

|〈f,B{a1,...,an−1,a}〉| = 0

uniformly in |ξ| = 1.

Proof. From the formula (3) and Lemma 3.1, it is equivalent to show that for any function
g ∈ H2(B4) there holds

lim
r→1−

(1− r2)3|g(a)|2 = lim
r→1−

|〈g, B{a}〉|2 = 0.

It suffices to prove that
lim

r→1−
‖g −B{a}〈g, B{a}〉‖ = ‖g‖,

due to

‖g −B{a}〈g, B{a}〉‖2 =
〈
g −B{a}〈g, B{a}〉, g −B{a}〈g, B{a}〉

〉

= ‖g‖2 − |〈g, B{a}〉|2.

Let Pρ(η, µ) = 1
2π2

1−ρ2

|ρη−µ|4 be the Poisson kernel, where ρ ∈ (0, 1) and |η| = |µ| = 1. For any
ε > 0, we can choose ρ sufficiently close to 1 so that

‖g‖ ≥ ‖g −B{a}〈g, B{a}〉‖
≥ ‖Pρ ∗ (g −B{a}〈g, B{a}〉)‖L2(S4)

≥ ‖Pρ ∗ g‖L2(S4) − |〈g, B{a}〉|‖Pρ ∗B{a}‖L2(S4)

≥ (1− ε)‖g‖ − ‖g‖‖Pρ ∗B{a}‖L2(S4), (5)

where

Pρ ∗B{a} =
1

2π2

∫

|µ|=1

1− ρ2

|ρη − µ|4 (1− r2)
3
2

1− aµ

|1− aµ|4 dS

= B{a}(ρη).

Hence,

‖Pρ ∗B{a}‖2
L2(S4) =

1
2π2

∫

|η|=1

(1− r2)3

|1− aρη|6 dS

=
( 1− r2

1− ρ2r2

)3 1
2π2

∫

|η|=1

( 1− ρ2r2

|1− aρη|2
)3

dS

=
( 1− r2

1− ρ2r2

)3
‖B{ρa}‖2

=
( 1− r2

1− ρ2r2

)3
. (6)

When r is close to 1, (5) and (6) give

‖g‖ ≥ (1− 2ε)‖g‖,
which proves the lemma.
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Another Proof. Denote Vr = π2

2 (1−r)4 the volume of the ball B4(a, 1−r) = {x : |x−a| <
1− r}, write x = |x|η = ρη, note that

|x− a| ≥ ||x| − |a|| = |ρ− r|,

and

|x− a| = |ρη − rξ|
= |r(η − ξ)− (r − ρ)η|
≥ r|η − ξ| − |r − ρ|
≥ r|η − ξ| − |x− a|,

so x ∈ B4(a, 1− r) implies
{

2r − 1 < ρ < 1,

|η − ξ| < 2(1− r)/r.

Hence, when r is sufficiently close to 1, we have

|〈g, B{a}〉| = |(1− r2)3/2g(a)|
= (1− r2)3/2

∣∣∣V −1
r

∫

B4(a,1−r)
g(x)dx

∣∣∣

≤ (1− r2)3/2
(
V −1

r

∫

B4(a,1−r)
|g(x)|2dx

)1/2

≤ (1− r2)3/2
(
V −1

r

∫ 1

2r−1
ρ3

∫

|η−ξ|<2(1−r)/r
|g(ρη)|2dSdρ

)1/2

≤ (1− r2)3/2
(
V −1

r 2(1− r) sup
0<ρ<1

∫

|η−ξ|<2(1−r)/r
|g(ρη)|2dS

)1/2

.
( ∫

|η−ξ|<2(1−r)/r
sup

0<ρ<1
|g(ρη)|2dS

)1/2
.

Note that sup0<ρ<1 |g(ρη)| ∈ L2(S4) whenever g ∈ H2(B4), and the measure of the set {η :
|η− ξ| < 2(1− r)/r} tends to 0 as r → 1−, the lemma follows by the absolute continuity of the
Lebesgue integral. ¤

Lemma 3.2 guarantees that we can choose an ∈ B4 at each step such that

|〈f,B{a1,...,an−1,an}〉|2 = sup{|〈f,B{a1,...,an−1,a}〉|2 : a ∈ B4}, (7)

which will make the expansion converges in a fast way in the sense of energy.

Theorem 3.1. Under the above selection criterion (7), we have

‖
N∑

n=1

Bn〈f,Bn〉 − f‖ → 0 (N →∞). (8)
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Proof. Bessel inequality gives
∞∑

n=1

|〈f,Bn〉|2 ≤ ‖f‖2,

which asserts that there exists g ∈ H2(B4) s.t.
∞∑

n=1

Bn〈f,Bn〉 = g

holds in the sense of H2(B4). If (8) does not hold, then

h = f − g 6= 0,

so there exists a point b ∈ B4 \
⋃∞

i=1{ai} s.t.

|〈h,B{b}〉| = δ > 0.

Set

fN = f −
N−1∑

n=1

Bn〈f,Bn〉, rN = −
∞∑

n=N

Bn〈f,Bn〉.

Since when N is large enough

|〈rN , B{b}〉| ≤ ‖rN‖‖B{b}‖ = ‖rN‖ =
( ∞∑

n=N

|〈f,Bn〉|2
)1/2

< δ/2, (9)

we have
|〈fN , B{b}〉| = |〈h− rN , B{b}〉| > |〈h,B{b}〉| − |〈rN , B{b}〉| > δ/2.

Note that

〈fN , B{b}〉 =
〈
f −

N−1∑

n=1

Bn〈f,Bn〉, B{b}
〉

=
〈
f,B{b} −

N−1∑

n=1

Bn〈B{b}, Bn〉
〉

=
〈
f,B{b} −

N−1∑

n=1

βn

〈B{b}, βn〉
〈βn, βn〉

〉

= 〈f,B{a1,...,aN−1,b}〉‖β{a1,...,aN−1,b}‖,
we get

|〈f,B{a1,...,aN−1,b}〉| =
|〈fN , B{b}〉|

‖β{a1,...,aN−1,b}‖
> |〈fN , B{b}〉| > δ/2.

On the other hand, we know from (9) that

|〈f,BN 〉| = |〈f,B{a1,...,aN−1,aN}〉| < δ/2,

so
|〈f,B{a1,...,aN−1,aN}〉| < |〈f,B{a1,...,aN−1,b}〉|.

By the maximal selection criterion (7) we should not have chosen aN but b at the N -th step,
it is a contradiction.
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4 Fast convergent decomposition of functions in L2(S4)

For convenience, Throughout this article we use Im x to denote the vector part of any quaternion
x, i.e., Im x = x − Re x. Given a function f(ξ), which is defined on S4, assume f ∈ L2(S4),
without lost of generality, we further assume that f is real-valued (otherwise we handle with f
component-wisely). If a function F (x) ∈ H2(B4) satisfies

lim
r→1−

Re(F (rξ)) = f(ξ), a.e. on S4,

then the adaptive decomposition of F (x) according to section 3 will lead to the adaptive
decomposition of f(ξ). Follows the idea proposed in [1] and [12], such F can be constructed
explicitly (not necessarily uniquely) by

F (x) = T (f)(x) =
∫

|ω|=1
P (x, ω)f(ω)dω +

∫

|ω|=1
Q(x, ω)f(ω)dω, |x| < 1,

where P (x, ω) = 1
2π2

1−|x|2
|x−ω|4 is the Poisson kernel, and

Q(x, ω) = Im
( ∫ 1

0
t2(DP )(tx, ω)xdt

)

=
( 1

2π2

∫ 1

0

4t2(1− t2|x|2)
|tx− ω|6 dt

)
Im(ωx)

=
1

2π2

((3 + |x|2)(3− Re(ωx))− 8
|x− ω|4 −

arctan
√
|x|2−(Re(ωx))2

1−Re(ωx)√
|x|2 − (Re(ωx))2

) Im(ωx)
|x|2 − (Re(ωx))2

is the Cauchy-type harmonic conjugate of the Poisson kernel on the unit sphere. Similar to
[12], we can prove that T is a bounded operator from L2(S4) to H2(B4).

5 The case when the variables are in the whole range

Sometimes we may write x ∈ R4 as x = x0 + x for convenience, where x ∈ R3. Denote the half
space {x ∈ R4 : Re x > 0} by R4

+, functions lies in the Hardy space H2(R4
+) satisfy Df = 0 in

R4 and
sup
x0>0

( 1
2π2

∫

R3

|f(x0 + x)|2dx
)1/2

< ∞.

The inner product on H2(R4
+) is defined by

〈f, g〉 =
1

2π2

∫

R3

g(y)f(y)dy, f, g ∈ H2(R4
+),

and the norm
‖f‖ =

( 1
2π2

∫

R3

|f(y)|2dy
)1/2

= 〈f, f〉1/2.
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Suppose f(x) is a real-valued function, f(x) ∈ L2(R3), consider the Cauchy integral of f :

F (x) = C(f)(x) =
1

2π2

∫

R3

y − x

|y − x|4 f(y)(−1)dy, x ∈ R4
+,

We have F (x) ∈ H2(R4
+), and the well known Sokhotskyi-Plemelj formula gives

lim
x0→0+

F (x0 + x) =
1
2
f(x) +

1
2
H(f)(x),

where H(f) =
∑3

i=1 eiRi(f), and

Ri(f)(x) =
1
π2

p.v.

∫

R3

xi − yi

|x− y|4 f(y)dy

is the i-th Riesz transform of f. Hence, the adaptive decomposition of f(x) is now turned to
the approximation of F (x).

Similarly we set

αn(x) = α{an}(x) = (2Re(an))
3
2

x + an

|x + an|4 , an ∈ R4
+, n ∈ N+,

then αn(x) ∈ H2(R4
+) and ‖αn(x)‖2 = 1 for all n, they can also be orthogonalized by Gram-

Schmidt orthogonalization process (if the multiplicities of some parameters are larger than
1, then we treat with it in the limit sense as before), which leads to an orthonormal system
{Bn} = {B{a1,...,an}}. Given a function f ∈ H2(R4

+), we have

〈f,B{a}〉 =
1

2π2

∫

R3

(2a0)
3
2

y + a

|y + a|4 f(y)dy

= (2a0)
3
2

1
2π2

∫

R3

y − a

|y − a|4 f(y)(−1)dy

= (2a0)
3
2 f(a). (10)

Corresponding to Lemma 3.2, The following propositions hold.

Proposition 5.1.
lim

a0→0+
|〈f,B{a}〉| = 0 uniformly in a ∈ R3.

We would like to write down the proof for completeness.

Proof. It suffices to show that

lim
a0→0+

‖f −B{a}〈f,B{a}〉‖ = ‖f‖.

Let Pt(x) = 1
π2

t
(|x|2+t2)2

be the Poisson kernel on half plane. For any ε > 0, we can choose t

sufficiently close to 0 so that

‖f‖ ≥ ‖f −B{a}〈f,B{a}〉‖
≥ ‖Pt ∗ (f −B{a}〈f,B{a}〉)‖L2(R3)

≥ (1− ε)‖f‖ − ‖f‖‖Pt ∗B{a}‖L2(R3), (11)
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where

Pt ∗B{a} =
1
π2

∫

R3

t

(|x− y|2 + t2)2
B{a}(y)dy

= B{a}(t + x).

Hence,

‖Pt ∗B{a}‖2
L2(R3) =

1
2π2

∫

R3

(2a0)3
dx

(|x− a|2 + (t + a0)2)3

=
( a0

t + a0

)3 1
2π2

∫

R3

( 2(t + a0)
|x− a|2 + (t + a0)2

)3
dx

=
( a0

t + a0

)3
‖B{t+a}‖2

=
( a0

t + a0

)3
. (12)

When a0 is close to 0, (11) and (12) yield

‖f‖ ≥ (1− 2ε)‖f‖,

which proves the lemma.

Another Proof. Denote Va0 = π2a4
0

2 the volume of the ball B4(a, a0), then

|〈f,B{a}〉| = |(2a0)3/2f(a)|
= (2a0)3/2

∣∣∣V −1
a0

∫

B4(a,a0)
f(x0 + x)dx

∣∣∣

≤ (2a0)3/2
(
V −1

a0

∫

B4(a,a0)
|f(x0 + x)|2dx

)1/2

≤ (2a0)3/2
(
V −1

a0

∫ 2a0

0

∫

|x−a|≤a0

|f(x0 + x)|2dxdx0

)1/2

≤ (2a0)3/2
(
2a0V

−1
a0

sup
x0∈(0,2a0)

∫

|x−a|≤a0

|f(x0 + x)|2dx
)1/2

.
( ∫

|x−a|≤a0

sup
x0∈(0,2a0)

|f(x0 + x)|2dx
)1/2

≤
( ∫

|x−a|≤a0

sup
x0>0

|f(x0 + x)|2dx
)1/2

Note that supx0>0 |f(x0 + x)| ∈ L2(R3) and |{x : |x − a| ≤ a0}| → 0 (as a0 → 0+), by the
absolute continuity of the Lebesgue integral we have

lim
a0→0+

∫

|x−a|≤a0

sup
x0>0

|f(x0 + x)|2dx = 0. ¤
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Proposition 5.2.
lim

a0→+∞ |〈f,B{a}〉| = 0 uniformly in a ∈ R3.

Proof. Denote Ca0 = π2

2 (a0
2 )4 the volume of the ball B4(a, a0/2), then

|〈f,B{a}〉| = |(2a0)3/2f(a)|
= (2a0)3/2

∣∣∣C−1
a0

∫

B4(a,a0/2)
f(x0 + x)dx

∣∣∣

≤ (2a0)3/2
(
C−1

a0

∫

B4(a,a0/2)
|f(x0 + x)|2dx

)1/2

≤ (2a0)3/2
(
C−1

a0

∫ 3a0/2

a0/2

∫

R3

|f(x0 + x)|2dxdx0

)1/2

≤ (2a0)3/2
(
a0C

−1
a0

sup
x0∈(a0/2,3a0/2)

∫

R3

|f(x0 + x)|2dx
)1/2

.
( ∫

R3

sup
x0∈(a0/2,3a0/2)

|f(x0 + x)|2dx
)1/2

holds uniformly in a ∈ R3, and

sup
x0∈(a0/2,3a0/2)

|f(x0 + x)| ≤ sup
x0>0

|f(x0 + x)| ∈ L2(R3)

due to the maximal inequality. Hence, the proposition follows by the Lebesgue dominated
convergence theorem once we prove that

lim
a0→+∞ sup

x0∈(a0/2,3a0/2)
|f(x0 + x)| = 0.

It is known that
|f(x0 + x)| . x

−3/2
0 ‖f‖,

which can also be proved by similar discussions. Hence

sup
x0∈(a0/2,3a0/2)

|f(x0 + x)| . a
−3/2
0 ‖f‖,

and the right hand side tends to zero uniformly in x as a0 → +∞.

Proposition 5.3.
lim

|a|→+∞
|〈f,B{a}〉| = 0 uniformly in a0 > 0.

Proof. In fact, by the above two propositions and the formula (10), we just need to prove that

lim
|a|→+∞

|f(a0 + a)| = 0 uniformly in a0 ∈ [c, d] ⊂ R.
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Since

|f(a0 + a)| =
1

2π2

∣∣∣
∫

R3

a0 + a− y

|a0 + a− y|4 f(y)dy
∣∣∣

.
∫

R3

|f(y)|
(|y − a|2 + a2

0)3/2
dy

.
∫

|y|>N

|f(y)|
(|y − a|2 + c2)3/2

dy +
∫

|y|≤N

|f(y)|
(|y − a|2 + c2)3/2

dy

= I1 + I2,

by Hölder’s inequality,

I1 ≤
( ∫

|y|>N

1
(|y − a|2 + c2)3

dy
)1/2( ∫

|y|>N
|f(y)|2dy

)1/2

≤
( ∫

R3

1
(|y|2 + c2)3

dy
)1/2( ∫

|y|>N
|f(y)|2dy

)1/2

.
( ∫

|y|>N
|f(y)|2dy

)1/2
.

Because f(y) ∈ L2(R3), I1 is small provided N is large enough. With N fixed,

I2 . 1
|a|3

∫

|y|≤N
|f(y)|dy → 0 (|a| → +∞)

due to f(y) is integrable on {y : |y| ≤ N}. That proves the proposition.

Remark: In fact, for any fixed a1, . . . , an−1, we have

lim
a0→0+

|〈f,B{a1,...,an−1,a}〉| = lim
a0→+∞ |〈f,B{a1,...,an−1,a}〉| = 0 uniformly in a ∈ R3,

and
lim

|a|→+∞
|〈f,B{a1,...,an−1,a}〉| = 0 uniformly in a0 > 0.

We conclude from the above properties that the maximal selection criterion

|〈f,B{a1,...,an−1,an}〉|2 = sup{|〈f,B{a1,...,an−1,a}〉|2 : a ∈ R4
+} (13)

that corresponds to (7) could be carried out to adaptively approximate f, and Theorem 3.1
also holds in this setting.

6 The rate of fast convergent decomposition

In this section we deal with the convergence rate of the adaptive decomposition discussed
above. For convenience, we use the unified notation H2(Ω) to denote H2(B4) or H2(R4

+). For
a sequence of points {an} in Ω, we correspondingly set B{an} = α{an}(x) = αn(x) ∈ H2(Ω)
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with ‖αn(x)‖ = 1 as before, and {Bn} = {B{a1,...,an}} is their orthonormalization (when the
multiplicity m(ai) > 1 for some i, we replace αi(x) by its partial derivatives with respect to ai

in the orthogonalization process).
Given a function f ∈ H2(Ω), according to the maximal selection criterion (7) or (13), there

holds

f =
∞∑

n=1

Bn〈f,Bn〉 =
∞∑

n=1

B{a1,...,an}〈f,B{a1,...,an}〉

in the following sense

‖fN‖ = ‖f −
N−1∑

n=1

Bn〈f,Bn〉‖ → 0 (N →∞).

In addition, we assume that f lies in the function class

H2(Ω,M) :=
{

f ∈ H2(Ω) : f =
∞∑

k=1

α{bk}(x)ck,
∞∑

k=1

|ck| ≤ M < ∞ and bk ∈ Ω, k = 1, 2, . . .
}

,

which actually implies

‖f1‖ = ‖f‖ ≤
∞∑

k=1

|ck| · ‖α{bk}‖ =
∞∑

k=1

|ck| ≤ M.

Theorem 6.1. Under the above assumption, we have

‖fN‖ ≤ M√
N

.

Lemma 6.1. [2] Let {dm}∞m=l be a sequence of non-negative numbers satisfying the inequalities

d1 ≤ A, dm+1 ≤ dm(1− dm/A), m = 1, 2, . . . .

Then we have for each m
dm ≤ A/m.

Proof of Theorem 6.1 We have

‖fN+1‖2 = ‖fN −BN 〈f,BN 〉‖2

= ‖fN‖2 − |〈f,BN 〉|2, (14)

and

|〈f,BN 〉| =
|〈fN , αN 〉|
‖βN‖

= sup
an∈Ω

|〈fN , α{an}〉|
‖β{a1,...,an}‖

≥ sup
an∈Ω

|〈fN , α{an}〉|. (15)
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Since f ∈ H2(Ω,M), there exists a sequence {bk} in Ω such that f =
∑∞

k=1 α{bk}ck, then

‖fN‖2 = |〈fN , fN 〉|
= |〈fN , f〉|

= |〈fN ,
∞∑

k=1

α{bk}ck〉|

≤ M sup
k≥1

|〈fN , α{bk}〉|. (16)

Combine (14)–(16), we obtain

‖fN+1‖2 ≤ ‖fN‖2(1− ‖fN‖2

M2
),

from this and Lemma 6.1 one could easily see that ‖fN‖ ≤ M/
√

N . ¤

7 The case when underlying space lies in R3

In this section, we point out the fact that we could build up an analogous theory in the unit
ball B3 and the half space R3

+, where B3 = {x = x0 + x = x0 + x1e1 + x2e2 ∈ R3 : |x| < 1}
and R3

+ = {x = x0 + x ∈ R3 : x0 > 0}. A function f defined on B3 (R3
+), taking values in H, is

called a left monogenic function if it satisfies

Df = e0
∂f

∂x0
+ e1

∂f

∂x1
+ e2

∂f

∂x2
= 0

in its domain. If in addition, f satisfies

‖f‖2 =
1
4π

sup
0<r<1

∫

η∈S3

|f(rη)|2dS < ∞
( 1

4π
sup
x0>0

∫

R2

|f(x0 + x)|2dx < ∞
)
,

here S3 is the boundary of B3, then f belongs to the Hardy space H2(B3) (H2(R3
+)). The

Cauchy formula for this setting is

f(x) =
1
4π

∫

∂Ω

(q − x)−1

|q − x| (n(q)dS)f(q), x ∈ Ω, f ∈ H2(Ω), Ω = B3 (R3
+).

For more details about this function class and their generalizations, see e.g. [4].
The following operator

T (f)(x) = F (x) =
∫

ω∈S3

P (x, ω)f(ω)dω +
∫

ω∈S3

Q(x, ω)f(ω)dω, x ∈ B3,

where P (x, ω) = 1
4π

1−|x|2
|x−ω|3 is the Poisson kernel, and

Q(x, ω) = Im
( ∫ 1

0
t(DP )(tx, ω)xdt

)

=
( 1

4π

∫ 1

0

3t(1− t2|x|2)
|tx− ω|5 dt

)
Im(ωx)

=
1
4π

((3 + |x|2)(3− Re(ωx))− 8
|x− ω|3 − 1

) Im(ωx)
|x|2 − (Re(ωx))2

,
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maps a real-valued function f(ω) ∈ L2(S3) to a function F (x) ∈ H2(B3), and the real part of
the boundary values of F coincides with f.

While the operator

C(f)(x) = F (x) =
1
4π

∫

R2

y − x

|y − x|3 f(y)(−1)dy, x ∈ R3
+,

sends a real-valued function f(x) ∈ L2(R2) to a function F (x) ∈ H2(R3
+), and the real part of

the boundary values of F coincides with 1
2f.

Hence, the adaptive decomposition of f ∈ L2(S3) (L2(R2)) could be obtained from the
adaptive decomposition of F ∈ H2(B3) (H2(R3

+)). For this, we use the orthonormal basis
generated by

α{a}(x) = (1− |a|2) 1− ax

|1− ax|3 ∈ H
2(B3), a, x ∈ B3

(
α{a}(x) = (2Re a)

x + a

|x + a|3 ∈ H
2(R3

+), a, x ∈ R3
+

)
.

For f ∈ H2(B3) (H2(R3
+)), we have

〈f, α{a}〉 = (1− |a|2)f(a) ((2Re a)f(a)).

With the above settings, we could get the results parallel to §3, §5 and §6 after similar
discussions, we omit the details.

8 Some numerical experiments

In order to make our results visible in R3, here we work on the space H2(B3) (H2(R3
+)).

Example 1: Let f(x) = ∂
∂x0

( 1−0.5x
|1−0.5x|3 ) = (1−0.75x0+0.25x)(1−0.5x)

|1−0.5x|5 , then f ∈ H2(B3) and ‖f‖2 =
32/9 ≈ 3.5556. By the maximal selection criterion, the adaptive decomposition of f by the
5-th partial sum of the system {Bn} is given by:

f(x) ∼ S5(f, x) =
5∑

n=1

Bn(x)cn =
5∑

n=1

Bn(x)〈f,Bn〉, x ∈ B3,

with the parameters a1 = (0.6458,−0.0000,−0.0000), a2 = (−0.0721, 0.0013, 0.0019), a3 =
(0.6456, 0.0000,−0.0000), a4 = (0.2969, 0.0001, 0.0001), a5 = (0.8448, 0.0002, 0.0001), and the
coefficients c1 = 〈f,B1〉 = (1.8779, 0, 0, 0), c2 = (−0.1176, 0.0001, 0.0001, 0), c3 = (0.0897,−0.0001,
−0.0001,−0.0000), c4 = (−0.0850, 0.0000, 0.0000, 0.0000), c5 = (0.0046, 0.0000,−0.0000,−0.0000).
The energy of S5 is

∑5
n=1 |cn|2 ≈ 3.5555 ≈ ‖f‖2.

On the sphere S3, set F (θ, ϕ) = f(cos(θ), sin(θ) cos(ϕ), sin(θ) sin(ϕ)), θ ∈ [0, π], ϕ ∈ [0, 2π],
we get the figure of Re(F ) (Figure 1), similarly, we can get the figures of Re(S5) (Figure 2),
Re(F − S5) (Figure 3) and |F − S5| (Figure 4) on S3.

Let us compare this with the spherical monogenic expansion of f , on S3, f(ω) =
∑∞

k=0 Pk(f, ω),
|ω| = 1, where Pk is the inner spherical monogenic of order k. Figure 5 shows the expansion
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of Re(F ) up to k = 10, Figure 6 reflects the difference between Re(F ) and Re
∑10

k=0 Pk(f, ω).
The energy of

∑10
k=0 Pk(f, ω) equals

∑10
k=0 ‖Pk‖2 = 1864043/524288 ≈ 3.5554. Compare these

with S5, we can see that our method works well for f than the approximation by Pk.

Example 2: Let g(x) = (x+1)(x−3x0−2)
|x+1|5 , then g ∈ H2(R3

+) and ‖g‖2 = 0.375. The adaptive de-

composition of g by the 5-th partial sum of the system {Bn} is g(x) ∼ S5 =
∑5

n=1 Bn(x)cn, x ∈
R3

+, with the parameters a1 = (0.5000, 0.0005, 0.0008), a2 = (3.1482,−0.0053, 0.0008), a3 =
(0.3264, 0.0006, 0.0009), a4 = (3.2086,−0.0058, 0.0007), a5 = (0.3044, 0.0006, 0.0008), and the
coefficients c1 = 〈f,B1〉 = (−0.5926, 0.0003, 0.0005, 0), c2 = (0.1180,−0.0000,−0.0002,−0.0000),
c3 = (0.0827,−0.0000, 0.0001,−0.0000), c4 = (−0.0454, 0.0001, 0.0002, 0.0000), c5 = (−0.0261,
−0.0000,−0.0001, 0.0000). ‖S5‖2 =

∑5
n=1 |cn|2 ≈ 0.3747 = 99.92%‖g‖2.

The real part of the boundary values of g is g(x) = x2
1+x2

2−2

(x2
1+x2

2+1)5/2 , x = (x1, x2) ∈ R2.

Since g(x) is very small when |x| is large, we focus our attention on the rectangular domain
Q = [−1, 1]2 = [−1, 1] × [−1, 1]. The figure of g(x), and the figures of the boundary values of
Re(S5), g(x)− Re(S5) and |g − S5| on Q are respectively shown in Figure 7-10.

On B2 = {x ∈ R2 : |x| < 1} ⊂ Q, g(x) admits the Taylor expansion

g(x) = T5(g, x) + o(|x|8) = −2 + 6|x|2 − 45
4
|x|4 +

35
2
|x|6 − 1575

64
|x|8 + o(|x|8), |x| < 1.

Figure 11 shows T5 on [−0.7, 0.7]2 ⊂ B2, Figure 12 shows the error (remainder term) g(x)− T5

on [−0.7, 0.7]2. We could see that Taylor series works bad on the endpoints, and in general it
may not convergent when |x| is large.

On Q, g(x) could be expanded into Fourier series:

g(x) =
+∞∑

m,n=−∞
cm,neiπ(mx1+nx2), x ∈ Q,

where
cm,n =

1
4

∫

Q
f(y)e−iπ(my1+ny2)dy.

F5(g, x) =
∑4

m,n=−4 cm,neiπ(mx1+nx2) and g(x) − F5 are shown in Figure 13-14. Compare F5

with the adaptive expansion by S5, we could see that Fourier series is non-stationary and it
does not converge to g(x) on R2 \ Q, because g(x) is not periodic.
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Figure 7: g(x) on Q
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Figure 8: Re(S5) on Q
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Figure 9: g(x)− Re(S5) on Q
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Figure 11: T5 on [−0.7, 0.7]2
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