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Abstract

In time-frequency analysis there are fundamental formulas expressing the mean and variance of
the Fourier frequency of signals, s, originally defined in the Fourier frequency domain, in terms
of integrals against the density |s(t)|2 in the time domain. In the literature the existing formulas
are only for smooth signals, for it is the classical derivatives of the phase and amplitude of the
signals that are involved. The two representations of the covariance also rely on the classical
derivatives and thus are restrictive. In this fundamental study, by introducing a new type of
derivatives, called Hardy-Sobolev derivatives, we extend the formulas to signals in the Sobolev
space that do not usually have classical derivatives. We also investigate the corresponding
formulas for periodic (infinite discrete) and finite discrete signals.

Keywords: amplitude-phase representation of signal, Hilbert transform, instantaneous
frequency, derivatives of phase and amplitude, Sobolev space, Hardy space

1. Introduction

Analytic instantaneous frequency of a real- or complex-valued signal s(t) is defined to be
ϕ′(t), where ϕ(t) is the phase function of the quadrature amplitude-phase representation of the
associated (complex-valued) analytic signal As(t) = s(t) + iHs(t) = ρ(t)eiϕ(t), ρ(t) = |As(t)|,
where H stands for the Hilbert transformation (see (1.9)). Besides the analytic instantaneous
frequency one also studies the quadrature instantaneous frequency of a real- or complex-valued
signal that is the derivative ϕ′(t) in the quadrature amplitude-phase representation of the original
signal s(t) = ρ(t)eiϕ(t), ρ(t) = |s(t)|. Since the classical derivative ϕ′(t) may not exist, the two
types of instantaneous frequencies have not yet been well defined. Through the Hardy-Sobolev
spaces decomposition the present paper presents a new type of derivatives for signals in the
Sobolev space that generalizes the classical derivatives.
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Throughout this study we concern four types of signals: continuous signals s(t), continuous
periodic signals s(eit), infinite discrete signals {x(n)}+∞

n=−∞ and finite (periodic) discrete signals
{x(n)}N−1

n=0 . Assume all the signals we study are of unit energy. We start with the classical
derivatives setting. Let s(t) = ρ(t)eiϕ(t) ∈ L2(IR), ρ(t) = |s(t)|. Assume that the classical
derivatives ρ′(t), ϕ′(t) and s′(t) exist for almost all t ∈ IR as Lebesgue measurable functions,
and s′ is in L2(IR). Then there hold

〈ω〉 =

∫ ∞

−∞
ϕ′(t)|s(t)|2dt (1.1)

and

σ2
ω =

∫ ∞

−∞
ρ′2(t)dt +

∫ ∞

−∞
(ϕ′(t)− 〈ω〉)2

ρ2(t)dt, (1.2)

where 〈ω〉 is the mean of the Fourier frequency defined by

〈ω〉 ,
∫ ∞

−∞
ω|ŝ(ω)|2dω, (1.3)

and σ2
ω is the bandwidth defined by

B2 = σ2
ω ,

∫ ∞

−∞
(ω − 〈ω〉)2|ŝ(ω)|2dω = 〈ω2〉 − 〈ω〉2 (1.4)

(see [5]), where ŝ(ω) is the Fourier transform of s(t) (see (2.14)).

The proofs of the above mentioned results heavily depend on the differentiation rules of
products and compositions of differentiable functions. A general signal s ∈ L2(IR) cannot be
expected to have classical derivatives s′, ρ′ and ϕ′ as measurable functions with the desired
integrability properties. Without those derivatives, however, the above representation formulas
and relations are meaningless. It is natural to ask, if the signal understudy is not differentiable,
then what will happen to these formulas.

In order to extend the formulas (1.1), and (1.2) to non-smooth signals, we work on the
Sobolev space L2

1(IR) and adopt the Hardy-Sobolev decomposition. The following results are
established in [6]. If s(t) and its distributional derivative s′(t) both belong to L2(IR), i.e.
s ∈ L2

1(IR), then

〈ω〉 =

∫ ∞

−∞
ϕ+′(t)ρ+2

(t)dt +

∫ ∞

−∞
ϕ−′(t)ρ−2

(t)dt, (1.5)

B2 =

∫ ∞

−∞
[(ρ+′(t))2 + (ρ−′(t))2]dt +

∫ ∞

−∞
[(ϕ+′(t)− 〈ω〉)2ρ+2

(t) + (ϕ−′(t)− 〈ω〉)2ρ−2
(t)]dt,

(1.6)

2



where

ϕ±′(t) , Im

[
s±′(t)
s±(t)

]
, ρ±′(t) , ρ±(t)Re

[
s±′(t)
s±(t)

]
, a.e. (1.7)

and

ρ±(t) , |s±(t)|, (1.8)

where s±(t) are defined through the Hardy spaces decomposition s = s+ + s−, s± = (1/2)(s±
iHs), H is the Hilbert transformation, defined by

Hs(t) , 1

π
lim
ε→0

∫

|t−u|>ε

s(u)

t− u
du. (1.9)

The functions s± are, respectively, the boundary values of the analytic functions

s±(z) =
±1

2πi

∫ ∞

−∞

s(u)

u− z
du =

1√
2π

∫ ∞

−∞
eitωχ±(ω)e−yωŝ(ω)dω, z = t + iy ∈ C±,

where χ± = χIR± , IR+ = (0, +∞) and IR− = (−∞, 0), and, in general, χE is the characteristic
function of the Lebesgue measurable set E that takes value 1 on E and 0 otherwise, and s±′(t)
are the non-tangential boundary limits of s±′(z) ∈ H2(C±), the latter being the Hardy spaces
for the upper- and lower-half of the complex plane, respectively, namely

s±′(t) = lim
z→t

s±′(z), z ∈ C±. (1.10)

In the same way, we generalize the formulas for the mean of time, 〈t〉, and the duration, σ2
t .

The above formulas are all composed of two parts of which one corresponds to s+(t), and the
other to s−(t).

The idea of the Hardy decomposition is based on the concept “analytic signal” originated by
Gabor [8]. The topic of analytic signal is concerned by a great amount of literature, including
[17, 11, 5, 18, 19], that are, in particular, related to the concept “instantaneous frequency”.
The relations between the “instantaneous frequency” and Fourier frequency for signals in the
continuous case are examined in [5, 7, 14]. In [21], the authors study these relations for the
discrete case where signals and their spectra both are assumed to be periodic.

Both the Hardy and Sobolev spaces are classical topics of long histories of development
with ample applications in the practical and theoretical sciences. The Hardy-Sobolev spaces in
recent years have undergone a new phase of development ([1, 13]). To the authors’ knowledge,
apart from the proceeding study [6], no applications in signal analysis have been noted.

In [6] we show that under the classical derivatives assumptions the formulas (1.5) and (1.6),
being valid for functions in the Sobolev space, are reduced to the classical formulas (1.1) and
(1.2). It can be immediately seen that if s = s+ (s− = 0, such signals are regarded as “one-
sided”), then the formulas (1.5) and (1.6) are also reduced to (1.1) and (1.2). In the present
paper we introduce a new type of derivatives, called Hardy-Sobolev derivatives, based on which
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we obtain formulas (1.1) and (1.2) in terms of the new type of derivatives, being valid for
general signals s in the Sobolev space. In other words, the classical formulas become valid for
non-smooth and two-sided signals (i.e. s+ 6= 0, s− 6= 0), if we replace the classical derivatives
by the Hardy-Sobolev derivatives. The latter are given by

Definition 1.1. If s(t) = ρ(t)eiϕ(t) ∈ L2
1(IR), then we define the Hardy-Sobolev derivatives of

s(t), ρ(t) and ϕ(t) by, respectively,

s∗(t) = s+′(t) + s−′(t), (1.11)

ρ∗(t) =

{
ρ(t)Re

[
s+′(t)+s−′(t)
s+(t)+s−(t)

]
if s(t) 6= 0,

0 if s(t) = 0,
(1.12)

and

ϕ∗(t) =

{
Im

[
s+′(t)+s−′(t)
s+(t)+s−(t)

]
if s(t) 6= 0,

0 if s(t) = 0,
(1.13)

where s±′(t) are defined by (1.10). In the sequel, “Hardy-Sobolev derivative” is abbreviated as
“H-S derivative”. It is obvious that s∗, ρ∗ ∈ L2(IR) and ϕ∗ is measurable.

In §2, by using the H-S derivatives and the related techniques we show that the formulas
(1.5) and (1.6) return to their classical forms (1.1) and (1.2) with the derivatives ϕ′, ρ′ being
replaced by ϕ∗, ρ∗. Moreover we further prove the equivalence between the two representations
of the covariance of time and frequency. §3 studies these formulas for periodic signals and infinite
discrete signals. The setting for the mean of the time t and the related variance is motivated
by [21]. For completeness §4 cites the similar relations for finite discrete-time signals.

2. Means of Frequency and Time, and Covariance in Terms of H-S Derivatives

The Fourier transform of s ∈ L1(IR) is defined by

ŝ(ω) , 1√
2π

∫ ∞

−∞
e−itωs(t)dt. (2.14)

If ŝ is also in L1(IR), then the inversion formula holds, that is

s(t) =
1√
2π

∫ ∞

−∞
eitωŝ(ω)dω, a.e. (2.15)

There holds the Plancherel Theorem

‖ŝ‖2
2 = ‖s‖2

2, s ∈ L1(IR) ∩ L2(IR).

Both the Fourier transformation and its inverse can be extended to L2(IR) in which the
Plancherel Theorem remains to hold. In the case the formulas (2.14) and (2.15) are valid
in the L2-sense.
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We adopt the notation L2
n(IR) for the Sobolev spaces ([20]), that is

L2
n(IR) = {s(t) ∈ L2(IR) : s(n)(t) ∈ L2(IR)}

with the norm defined by √
‖s‖2

2 + ‖s(n)‖2
2,

where s(n)(t) denotes the square-integrable n-th distributional derivative of s. In this work we
are concerned with only L2

1(IR).
In [6], for s ∈ L2

1(IR), we discussed five types of derivatives:

(i) the distributional derivatives s+′ and s−′;
(ii) the analytic derivatives as non-tangential limits of s+′(z) and s−′(z) respectively defined

in C+ and C− through (1.10);

(iii) the inverse Fourier transform derivatives [iωŝ+(ω)]∨ and [iωŝ−(ω)]∨;
(iv) the boundary derivatives

lim
z→t

s±(z)− s±(t)

z − t
, z → t in C± non− tangentially;

(v) the classical derivatives of s+ and s−.

When s ∈ L2
1(IR), then the first four types of derivatives of s+ or s− as L2-functions, always

exist and are equal ([6]). The classical derivatives (the type (v)) do not always exist, but when
they exist as L2-functions they are identical with the former four types. In the sequel we use
the notation “ ′ ” for the first four types of derivatives.

The derivatives defined in Definition 1.1 can be regarded as the (vi) type. The relations
between this type and the other types are given in

Proposition 2.1. For s(t) = ρ(t)eiϕ(t) ∈ L2
1(IR), we have

(i)

s∗ = s′ and ρ∗ = ρ′, distributionally; (2.16)

(ii) if the classical derivatives s′(t0), ρ′(t0) and ϕ′(t0) all exist, then

ρ∗(t0) = ρ′(t0), (2.17)

and, if ρ(t0) 6= 0, then

ϕ∗(t0) = ϕ′(t0). (2.18)

Proof of Property (i) The assertion s∗ = s′ is trivial, as s′ = s+′ + s−′ distributionally. Now
we prove ρ∗(t) = ρ′(t). Denote for any y > 0,

Hy(t) = s+
y (t) + s−−y(t) and Ey = {t : Hy(t) 6= 0}.
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Since Ey is an open set, it is a union of at most countably many open intervals. In every open
interval the function eiθy(t) may be smoothly defined through

eiθy(t) =
Hy(t)

|Hy(t)| .

For every φ ∈ D (the space of smooth functions with compact support on IR), by applying
integration by parts,

∫

Ey

|Hy(t)|Re

{
s+

y
′
(t) + s−−y

′
(t)

s+
y (t) + s−−y(t)

}
φ(t)dt

= Re

{∫

Ey

[
s+

y
′
(t) + s−−y

′
(t)

]
e−iθy(t)φ(t)dt

}

= Re
{[

s+
y (t) + s−−y(t)

]
e−iθy(t)φ(t) |+∞−∞

}− Re

{∫

Ey

[
s+

y (t) + s−−y(t)
] [

e−iθy(t)φ(t)
]′

dt

}

= −Re

{∫

Ey

|Hy(t)|eiθy(t)
[−iθy

′(t)e−iθy(t)φ(t) + e−iθy(t)φ′(t)
]
dt

}

= −
∫

Ey

|Hy(t)|φ′(t)dt.

Denote E = {t : ρ(t) 6= 0}. We have

lim
y→0

χEy = χE, a.e.

Note that Hy is dominated by the sum of the non-tangential maximal functions of s+
y and s−−y

that are both in L2(IR) ([9]). By using Lebesgue’s dominated convergence theorem, we have
∫ ∞

−∞
ρ(t)Re

(
s+′(t) + s−′(t)
s+(t) + s−(t)

)
φ(t)dt = −

∫ ∞

−∞
ρ(t)φ′(t)dt,

that is
〈ρ∗(t), φ(t)〉 = −〈ρ(t), φ′(t)〉 = 〈ρ′(t), φ(t)〉.

So
ρ∗ = ρ′.

To show the first assertion of (ii), we consider two cases. The first is s(t0) = 0. In the case

ρ(t0 + ∆t)− ρ(t0)

∆t
=
|s(t0 + ∆t)− s(t0)|

∆t
.

Since ρ′(t0) exists, we know that the limit exists as ∆t → 0. But, from the right-hand-side we
see that when ∆t → 0+, the limit ≥ 0, and when ∆t → 0−, the limit ≤ 0. Therefore, the limit
has to be 0. That is ρ′(t0) = 0 = ρ∗(t0). The second case is s(t0) 6= 0. Then we have

s′(t0) = ρ′(t0)eiϕ(t0) + iϕ′(t0)ρ(t0)e
iϕ(t0).
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Since ρ(t0) 6= 0, we have

ρ(t0)Re[
s′(t0)
s(t0)

] = ρ′(t0) = ρ∗(t0)

and

Im[
s′(t0)
s(t0)

] = ϕ′(t0) = ϕ∗(t0). 2

We note that the definitions of H-S derivatives are elaborate that are based on the concepts
of Hardy and Sobolev spaces. Once the new type derivatives are defined, the proofs are natural
as shown in the following theorems. This shows the necessity of the concepts.

Theorem 2.2. Assume s(t) = ρ(t)eiϕ(t) ∈ L2
1(IR). The mean Fourier frequency defined by (1.3)

is identical with

〈ω〉 =

∫ ∞

−∞
ϕ∗(t)ρ2(t)dt, (2.19)

where ϕ∗(t) is defined in Definition 1.1.

Proof of Theorem Since s(t) = ρ(t)eiϕ(t) ∈ L2
1(IR), we have ωŝ(ω), ŝ(ω) ∈ L2(IR), hence 〈ω〉

is well defined. Denote E = {t : s(t) 6= 0}. With the decomposition s = s+ + s−, (s±)̂ =
χ±ŝ, s±(t) = ρ±(t)eiϕ±(t), we have (also see [6])

〈ω〉 =

∫ +∞

0

ω|ŝ(ω)|2dω +

∫ 0

−∞
ω|ŝ(ω)|2dω

= Im

∫ +∞

−∞
[s+′(t)s+(t) + s−′(t)s−(t)]dt

= Im

∫ +∞

−∞
[s+′(t) + s−′(t)][s+(t) + s−(t)]dt

=

∫

E

Im

{
s+′(t) + s−′(t)
s+(t) + s−(t)

}
|s+(t) + s−(t)|2dt

=

∫ +∞

−∞
ϕ∗(t)ρ2(t)dt,

where the cross terms ∫ +∞

−∞
s+′(t)s−(t)dt and

∫ +∞

−∞
s−′(t)s+(t)dt

vanish because of the Plancherel Theorem and χ+χ− = 0. 2

There holds a similar formula for 〈ω2〉, as is seen in

Theorem 2.3. Assume s(t) = ρ(t)eiϕ(t) ∈ L2
1(IR). There follows

〈ω2〉 ,
∫ ∞

−∞
ω2|ŝ(ω)|2dω

=

∫ ∞

−∞
ρ∗2(t)dt +

∫ ∞

−∞
ϕ∗2(t)ρ2(t)dt. (2.20)
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Proof of Theorem Since s(t) = ρ(t)eiϕ(t) ∈ L2
1(IR), ωŝ(ω) ∈ L2(IR), and thus ω2|ŝ(ω)|2 ∈

L1(IR). Hence 〈ω2〉 is well defined. With the same notation as in the proof of Theorem 2.2, we
have

〈ω2〉 =

∫ +∞

0

ω2|ŝ(ω)|2dω +

∫ 0

−∞
ω2|ŝ(ω)|2dω

=

∫ +∞

−∞
[s+′(t)s+′(t) + s−′(t)s−′(t)]dt

=

∫ +∞

−∞
[s+′(t) + s−′(t)][s+′(t) + s−′(t)]dt

=

∫

E

|s
+′(t) + s−′(t)
s+(t) + s−(t)

|2|s+(t) + s−(t)|2dt

=

∫

E

Re2

{
s+′(t) + s−′(t)
s+(t) + s−(t)

}
|s(t)|2dt +

∫

E

Im2

{
s+′(t) + s−′(t)
s+(t) + s−(t)

}
|s(t)|2dt

=

∫ +∞

−∞
ρ∗2(t)dt +

∫ +∞

−∞
ϕ∗2(t)ρ2(t)dt. 2

Corollary 2.4. Assume s(t) = ρ(t)eiϕ(t) ∈ L2
1(IR). The bandwidth is

B2 = 〈ω2〉 − 〈ω〉2 =

∫ ∞

−∞
ρ∗2(t)dt +

∫ ∞

−∞
[ϕ∗(t)− 〈ω〉]2ρ2(t)dt. (2.21)

Proof of Corollary Based on the expressions of 〈ω〉, 〈ω2〉 obtained in Theorem 2.2 and
Theorem 2.3, we easily obtain the result through the equality B2 = 〈ω2〉 − 〈ω〉2. 2

Alternatively, the bandwidth can be obtained by following the same steps as in the proof of
Theorem 2.3.

Assume s(t), ts(t) ∈ L2(R), then ŝ(ω) = B(ω)eiψ(ω) ∈ L2(R) and ŝ(ω) = ŝ+(ω) + ŝ−(ω),
where

ŝ+(ω) = [χ−s]∧ (ω), ŝ−(ω) = [χ+s]∧ (ω). (2.22)

Being similar to the case of the amplitude-phase representations of s±, we now have ŝ±(ω) =
B±(ω)eiψ±(ω) ∈ L2(IR), where B±(ω), B±′(ω) and ψ±′(ω) are defined in the same way as (1.8)
and (1.7). The H-S derivatives ŝ∗(ω), ψ∗(ω) and B∗(ω) are defined as in Definition 1.1.

Definition 2.5. Let s be a square-integrable signal, then we can define the mean of time by

〈t〉 ,
∫ ∞

−∞
t|s(t)|2dt, (2.23)

the duration by

T 2 , σ2
t ,

∫ ∞

−∞
(t− 〈t〉)2|s(t)|2dt, (2.24)
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the mean of any time function g(t) by

〈g(t)〉 ,
∫ ∞

−∞
g(t)|s(t)|2dt, (2.25)

and the mean of any Fourier frequency function h(ω) by

〈h(ω)〉 ,
∫ ∞

−∞
h(ω)|ŝ(ω)|2dω, (2.26)

provided that the right-hand-sides of (2.23), (2.24), (2.25) and (2.26) are well defined integrals.
Below we also use the notation

〈h(ω)〉± ,
∫ ∞

−∞
h(ω)|ŝ±(ω)|2dω, (2.27)

and

〈g(t)〉± ,
∫ ∞

−∞
g(t)|s±(t)|2dt. (2.28)

For the mean of time and the duration, we have the corresponding results.

Theorem 2.6. Assume s(t), ts(t) ∈ L2(R), the mean time defined by (2.23) is identical with

〈t〉 = −
∫ ∞

−∞
ψ∗(ω)B2(ω)dω. (2.29)

Theorem 2.7. Assume s(t), ts(t) ∈ L2(R), the duration defined by (2.24) is identical with

σ2
t =

∫ ∞

−∞
B∗2(ω)dω +

∫ ∞

−∞
(ψ∗(ω) + 〈t〉)2B2(ω)dω. (2.30)

The proofs of Theorem 2.6 and Theorem 2.7 are omitted as they are similar to those of Theorem
2.2 and Corollary 2.4.

For a complex-valued signal s(t) = ρ(t)eiϕ(t), if s(t), ρ(t) and ϕ(t) have the classical deriva-
tives s′(t), ρ′(t) and ϕ′(t), and s′(t), ts(t) ∈ L2(IR), then the covariance is defined by

Covtω , 〈tϕ′(t)〉 − 〈t〉〈ω〉, (2.31)

that is proved to be equal to

−〈ωψ′(ω)〉 − 〈t〉〈ω〉

(see [5]).
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In [6], we extend the definition of covariance to general signal s(t) ∈ L2
1(IR) and ts(t) ∈

L2(IR) by

Covtω , 〈tϕ+′(t)〉+ + 〈tϕ−′(t)〉− − 〈t〉〈ω〉, (2.32)

and we show that Covtω has an alternative formula

Covtω = −〈ωψ+′(ω)〉+ − 〈ωψ−′(ω)〉− − 〈t〉〈ω〉.

By employing the H-S derivatives, we can reduce the formula of the covariance (2.32) to the
same form as (2.31).

Theorem 2.8. Assume s(t) = ρ(t)eiϕ(t) ∈ L2
1(IR) and ts(t) ∈ L2(IR), there follows

Covtω = 〈tϕ∗(t)〉 − 〈t〉〈ω〉 = −〈ωψ∗(ω)〉 − 〈t〉〈ω〉. (2.33)

Proof of Theorem With the decomposition s = s+ + s−, (s±)̂ = χ±ŝ, s±(t) = ρ±(t)eiϕ±(t),
we proved in [6] that

〈tϕ+′(t)〉+ + 〈tϕ−′(t)〉− =

∫ ∞

−∞
tϕ+′(t)|s+(t)|2dt +

∫ ∞

−∞
tϕ−′(t)|s−(t)|2dt

= Im

∫ ∞

−∞
[s+′(t)ts+(t) + s−′(t)ts−(t)]dt.

Denote E = {t : s(t) 6= 0},

Im

∫ ∞

−∞
[s+′(t)ts+(t) + s−′(t)ts−(t)]dt

= Im

∫ ∞

−∞
[s+′(t) + s−′(t)][ts+(t) + ts−(t)]dt

= Im

∫

E

s+′(t) + s−′(t)
s+(t) + s−(t)

t|s(t)|2dt

=

∫ ∞

−∞
tϕ∗(t)|s(t)|2dt

= 〈tϕ∗(t)〉,

where the cross terms
∫ ∞

−∞
s+′(t)ts−(t)dt and

∫ ∞

−∞
s−′(t)ts+(t)dt

equal to zero because of the Parseval equality.
Similarly we have

−〈ωψ+′(ω)〉+ − 〈ωψ−′(ω)〉− = −〈ωψ∗(ω)〉. 2
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For higher moments of Fourier frequency 〈ωn〉 we have representations of the same kind.

We have prove in [6] that if s(t) ∈ L2
n(IR), then s±(n)

(z) ∈ H2(C±), and s±(n)
(t) are defined to

be the non-tangential boundary limits of s±(n)
(z). In this case we define the n-th H-S derivative

of s(t) by

s(n)∗(t) , s+(n)
(t) + s−(n)

(t).

If s(t) ∈ L2(IR) and tns(t) ∈ L2(IR), then we can define the n-th H-S derivative of ŝ(ω) by

ŝ(n)∗(ω) , (ŝ+)(n)(ω) + (ŝ−)(n)(ω),

where (ŝ±)(n)(ω) are the non-tangential boundary limits of (ŝ±)(n)(z).
With similar techniques we obtain

Theorem 2.9. Assume s(t) ∈ L2
n(IR), there follow

〈ω2k〉 =

∫ ∞

−∞
|s(k)∗(t)|2dt,

〈ω2k−1〉 =

∫ ∞

−∞
Im[s(k)∗(t)s(k−1)∗(t)]dt, k = 1, ..., n.

Theorem 2.10. Assume s(t) ∈ L2(IR) and tns(t) ∈ L2(IR), there follow

〈t2k〉 =

∫ ∞

−∞
|ŝ(k)∗(ω)|2dω,

〈t2k−1〉 = −
∫ ∞

−∞
Im[ŝ(k)∗(ω)ŝ(k−1)∗(ω)]dω, k = 1, ..., n.

3. Mean Frequency and Time for Period Signal and Infinite Discrete Signal

For s(eit) = ρ(t)eiϕ(t), t ∈ [0, 2π), if we assume that s(eit) ∈ L2
1([0, 2π)), we can also define

the Hardy-Sobolev derivatives related to s(eit) in a similar way. s(eit) ∈ L2([0, 2π)) may be
expanded into its Fourier series convergent in the L2−norm sense

s(eit) =
1√
2π

∞∑

k=−∞
cke

ikt,

where ck’s are the Fourier coefficients,

ck =
1√
2π

∫ 2π

0

s(eit)e−iktdt, k = 0,±1,±2, · · · ,

and There holds the Parseval equality

‖s‖2
2 =

∞∑

k=−∞
|ck|2.
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Now we decompose s(eit) into two parts s+(eit) and s−(eit), where s±(eit) = 1
2
(s ± iH̃s ±

c0), which are the non-tangential boundary values of the analytic functions s+(z) and s−(z),
respectively, where

s+(z) =
1

2πi

∫

∂ID

s(ζ)

ζ − z
dζ =

1√
2π

+∞∑

k=0

ckz
k, z ∈ ID,

and

s−(z) = − 1

2πi

∫

∂ID

s(ζ)

ζ − z
dζ =

1√
2π

−1∑

k=−∞
ckz

k, z ∈ C \ ID,

and H̃ is the circular Hilbert transformation given by

H̃f =
1

2π
p.v.

∫ π

−π

cot(
t− s

2
)f(s)ds, a.e.

Since s(eit) ∈ L2
1([0, 2π)), then s+′(eit) and s−′(eit) all exist as L2−functions on ∂ID and are

the non-tangential boundary values of s+′(z) and s−′(z), respectively (see [6]).
Based on the above decomposition, we introduce the Hardy-Sobolev derivatives related to

s(eit).

Definition 3.1. If s(eit) = ρ(t)eiϕ(t) ∈ L2
1(IR), then we define the Hardy-Sobolev derivatives of

s(eit), ρ(t) and ϕ(t) by, respectively,

s∗(eit) = s+′(eit) + s−′(eit), (3.34)

ρ∗(t) =

{
−ρ(t)Im

[
eit s+′(eit)+s−′(eit)

s+(eit)+s−(eit)

]
if s(eit) 6= 0,

0 if s(eit) = 0,
(3.35)

and

ϕ∗(t) =

{
Re

[
eit s+′(eit)+s−′(eit)

s+(eit)+s−(eit)

]
if s(eit) 6= 0,

0 if s(eit) = 0.
(3.36)

It is obvious that s∗, ρ∗ ∈ L2(IR) and ϕ∗ is measurable. Furthermore, assume s(eit) ∈
L2

m([0, 2π)), then we can define the n-th Hardy-Sobolev derivative of s(eit), namely,

s(n)∗(eit) = s+(n)
(eit) + s−(n)

(eit), n = 1, ..., m.

For periodic signal s(eit), the corresponding mean of the Fourier frequency and higher moments
of the Fourier frequency are given by:

〈k〉 ,
∞∑

k=−∞
k|ck|2 and 〈kn〉 ,

∞∑

k=−∞
kn|ck|2, n ∈ Z+.

Then we can prove

12



Theorem 3.2. Assume s(eit) = ρ(t)eiϕ(t) ∈ L2
1([0, 2π)). There hold

〈k〉 =

∫ 2π

0

ϕ∗(t)ρ2(t)dt,

〈k2〉 =

∫ 2π

0

ρ∗2(t)dt +

∫ 2π

0

ϕ∗2(t)ρ2(t)dt,

where ϕ∗(t) are defined in the Definition 3.1. In general, if s(eit) = ρ(t)eiϕ(t) ∈ L2
m([0, 2π)),

then

〈k2n−1〉 =

∫ 2π

0

Re[eits(n)∗(eit)s(n−1)∗(eit)]dt, (3.37)

〈k2n〉 =

∫ 2π

0

|s(n)∗(eit)|2dt, n = 1, ..., m. (3.38)

Proof of Theorem Since s(eit) ∈ L2
1([0, 2π)), then in the L2−norm sense s+(eit) = 1√

2π

∑∞
k=0 cke

ikt

and s−(eit) = 1√
2π

∑−1
k=−∞ cke

ikt, where ck’s are the Fourier coefficients of s(eit). Thus eits+′(eit) =
1√
2π

∑∞
k=0 kcke

ikt and eits−′(eit) = 1√
2π

∑−1
k=−∞ kcke

ikt. Assume E = {t ∈ [0, 2π)|s(eit) 6= 0}. By
the Parseval equality, We have

〈k〉 =
∞∑

k=0

kckck +
−1∑

k=−∞
kckck

=

∫ 2π

0

eits+′(eit)s+(eit)dt +

∫ 2π

0

eits−′(eit)s−(eit)dt

=

∫ 2π

0

eit[s+′(eit) + s−′(eit)][s+(eit) + s−(eit)]dt

=

∫

E

eit s
∗(eit)

s(eit)
|s(eit)|2dt

=

∫

E

Re

{
eit s

∗(eit)

s(eit)

}
|s(eit)|2dt

=

∫ 2π

0

ϕ∗(t)|s(eit)|2dt,

where the cross terms
∫ 2π

0

eits+′(eit)s−(eit)dt and

∫ 2π

0

eits−′(eit)s+(eit)dt

13



equal to zero because of the orthogonality.

〈k2〉 =
∞∑

k=0

kckkck +
−1∑

k=−∞
kckkck

=

∫ 2π

0

eits+′(eit)eits+′(eit)dt +

∫ 2π

0

eits−′(eit)eits−′(eit)dt

=

∫ 2π

0

eit[s+′(eit) + s−′(eit)]eit[s+′(eit) + s−′(eit)]dt

=

∫

E

|eits∗(eit)|2
|s(eit)|2 |s(eit)|2dt

=

∫

E

Re2

{
eit s

∗(eit)

s(eit)

}
|s(eit)|2dt +

∫

E

Im2

{
eit s

∗(eit)

s(eit)

}
|s(eit)|2dt

=

∫ 2π

0

ϕ∗2(t)|s(eit)|2dt +

∫ 2π

0

ρ∗2(t)dt.

The proofs of the relations (3.38) and (3.37) are similar and thus omitted. 2

Next we study 〈t〉 and the related variance. Since t in s(eit) belongs to the interval [0, 2π),
t is treated as an angular random variable under the radian measure, and the energy density
function of t is |s(eit)|2 (see [15]). The mean angle (direction) of t is to be defined by

〈t〉 = arg E(eit) = arg

∫ 2π

0

eit|s(eit)|2dt, (3.39)

and the circular variance of t by

Vt = 1− Ecos(t− 〈t〉) = 1−
∫ 2π

0

cos(t− 〈t〉)|s(eit)|2dt. (3.40)

We have
∫ 2π

0

cos(t− 〈t〉)|s(eit)|2dt = Re{
∫ 2π

0

ei(t−〈t〉)|s(eit)|2dt}

= Re{
∫ 2π

0

eit|s(eit)|2dt
| ∫ 2π

0
eit|s(eit)|2dt|∫ 2π

0
eit|s(eit)|2dt

}

= |
∫ 2π

0

eit|s(eit)|2dt|.

Hence

Vt = 1− |
∫ 2π

0

eit|s(eit)|2dt|.

If we consider the mean time of the period signal s(eit) like (2.29), then the major difficulty
would be the replacement of “phase derivative” of {ck}. The central difference, forward and
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backward differences are all used in literature for discrete phase derivative (see [2], [3], [4],
[21]). In the present paper, with ck = |ck|eiψ(k) where ψ(k) is phase function of ck, we define
the discrete-time phase derivative as the backward difference of the phase:

ψ∗(k) = [ψ(k)− ψ(k − 1)] mod 2π. (3.41)

Since ψ∗(k) belongs to the interval [0, 2π), we can take ψ∗(k) as an angular random variable
and its density function is |ck|2. Thus we can define the mean value and variance of ψ∗(k) as

〈ψ∗(k)〉 = arg[
+∞∑

k=−∞
eiψ∗(k)|ck|2] (3.42)

and

Vψ∗(k) = 1−
+∞∑

k=−∞
cos[ψ∗(k)− 〈ψ∗(k)〉]|ck|2 = 1− |

+∞∑

k=−∞
eiψ∗(k)|ck|2|. (3.43)

We have the following theorem:

Theorem 3.3. Assume s(eit) = ρ(t)eiϕ(t) ∈ L2
1([0, 2π)). There holds

〈t〉 , arg[

∫ 2π

0

eit|s(eit)|2dt] = arg[
∑′∞

k=−∞
e−iψ∗(k)|ck|2|ck−1

ck

|], (3.44)

where {ck} are the Fourier coefficients of s(eit), and
∑′ is the summation over the indices k′s

at which ck 6= 0.

Proof of Theorem Since s(eit) ∈ L2
1([0, 2π)), then {cn} ∈ l2, and thus {cn−1cn} ∈ l1 by the

Hölder inequality. By the Parseval equality we have

〈t〉 , arg[

∫ 2π

0

eit|s(eit)|2dt]

= arg[

∫ 2π

0

eits(eit)s(eit)dt]

= arg[
∞∑

k=−∞
ck−1ck]

= arg[
∞∑

k=−∞
|ck−1|eiψ(k−1)|ck|e−iψ(k)]

= arg[
∞∑

k=−∞
e−iψ∗(k)|ck|2|ck−1

ck

|]. ¤

Through (3.42) we obtain easily

〈−ψ∗(k)〉 = arg[
+∞∑

k=−∞
e−iψ∗(k)|ck|2], (3.45)
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Comparing (3.44) to (3.45), we find that the mean of time t is different from the mean of
group delay of s(eit), that is −ψ∗(n). But in the continuous case the mean of time of the signal
is always equal to the mean of the group delay of the signal (see (2.29)).

From Theorem 3.3, we obtain another representation of the circular variance of time t :

Vt = 1− |
∫ 2π

0

eit|s(eit)|2dt| = 1− |
∞∑

k=−∞
e−iψ∗(k)|ck|2|ck−1

ck

||. (3.46)

We also have the circular variance of −ψ∗(n) through (3.43)

V−ψ∗(k) = 1−
+∞∑

k=−∞
cos[−ψ∗(k)− 〈ψ∗(k)〉]|ck|2 = 1− |

+∞∑

k=−∞
e−iψ∗(k)|ck|2|. (3.47)

By comparing (3.46) with (3.47), we have

Vt 6= V−ψ∗(k).

This, however, is different from the continuous case given by (2.30), as in the latter the variance
of time is always greater than the variance of group delay of the signal, provided that the signal
is not a zero signal. Note that Hardy spaces and H-S derivatives are not concerned in the
discrete signals case, because no technical problems motivate the related decomposition.

Now consider discrete signals {x(n)}+∞
n=−∞. Their discrete-time Fourier transform, also called

frequency spectrum, is the restriction of their Z−transform to the unit circle. They are the
complex-valued periodic functions (see [16], [12]),

X(eiω) =
+∞∑

n=−∞
x(n)e−inω. (3.48)

There is an inversion transformation to get back the sequence:

x(n) =
1

2π

∫ 2π

0

X(eiω)eiωndω. (3.49)

The discrete signals and the periodic signals are dual to each other in the Fourier transform
sense. So the mean of time and frequency for a discrete signal can be converted to the mean of
frequency and time of the corresponding periodic signal, thus we omit the details for discrete
signals.

Some studies treat discrete signals, especially, real-valued signals, through their associated
analytic signals defined by

z(n) = x(n) + iHdx(n),

where {x(n)}+∞
n=−∞ is the discrete signal, and Hd is the discrete Hilbert transform for infinite

discrete signals, defined by

Hdx(n) =
+∞∑

m=−∞
h(n−m)x(m),
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where

h(n) =

{
2
π

sin2(π n
2
)

n
if n 6= 0,

0 if n = 0.
(3.50)

After getting the associated analytic signals one applies similar analysis as above to Z(n).

4. Mean Frequency and Time for Periodic Discrete signal

In this section we study periodic discrete signals, or equivalently, finite discrete signals
{x(n)}N−1

n=0 ([21]). We first define the associated discrete analytic signals z(n), by

z(n) = x(n) + iH̃dx(n), (4.51)

where H̃d is the discrete Hilbert transformation for finite discrete signals defined through (see
[10])

H̃dx(n) =
N−1∑
m=0

h(n−m)x(m),

where

h(n) =

{
2 sin2(πn/2) cot(πn/N) n = 1, 2, · · · , N − 1;

0 n = 0.
(4.52)

The discrete Fourier transform of x(n) is given by

X(k) =
1

N

N−1∑
n=0

x(n)e−i 2πnk
N ,

and {x(n)} is represented as

x(n) =
N−1∑

k=0

X(k)ei 2πnk
N .

The discrete analytic signal z(n), defined by (4.51) and its DFT, Z(k), are both finite signals
of period N, where Z(k) is given by

Z(k) =
1

N

N−1∑
n=0

z(n)e−i 2πnk
N .

Let z(n) = |z(n)|eiφ(n), where φ(n) = arg[z(n)]. We define the discrete phase derivative of
{x(n)} by the back difference of the phase φ(n) :

φ∗(n) = [φ(n)− φ(n− 1)] mod 2π.

We take {2πk/N}N−1
k=0 and {φ∗(n)} as discrete angular random variables, then the mean

value and variance of {2πk/N}N−1
k=0 can be similarly defined like (3.39) and (3.40) as follows

(see [15])

〈2πk/N〉 = arg[
N−1∑

k=0

ei2πk/N |Z(k)|2] (4.53)
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and

V2πk/N = 1− Ecos(2πk/N − 〈2πk/N〉)

= 1−
N−1∑

k=0

cos(2πk/N − 〈2πk/N〉)|Z(k)|2

= 1− |
N−1∑

k=0

ei2πk/N |Z(k)|2|. (4.54)

The above equations (4.53) and (4.54) a re the discrete counterpart of (1.3) and (2.21). As in
the Theorem 3.3, further writing out (4.53) and (4.54) in the discrete time domain yield

〈2πk/N〉 = arg[
∑′N−1

n=0
eiφ∗(n)|z(n)|2|z(n− 1)

z(n)
|]. (4.55)

and

V2πk/N = 1− |
∑′N−1

n=0
eiφ∗(n)|z(n)|2|z(n− 1)

z(n)
||. (4.56)

The mean and variance of phase derivative φ∗(n) are given, respectively, by

〈φ∗(n)〉 = arg[
N−1∑
n=0

eiφ∗(n)|z(n)|2], (4.57)

and

Vφ∗(n) = 1− |
N−1∑
n=0

eiφ∗(n)|z(n)|2|. (4.58)

The relations (4.55), (4.57),(4.56) and (4.58) show that the results for the finite discrete signals
are similar to those for the infinite discrete signals.
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