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1. Introduction

Let D = {z = x + iy ∈ C : |z| < 1} be the open unit disc. The holomor-
phic Hardy space Hp(D) (1 ≤ p < ∞) consists of all functions f that are
holomorphic in D and satisfy

‖f‖p = sup
0<r<1

( 1
2π

∫ 2π

0

|f(reiθ)|pdθ
)1/p

< ∞.

Getting close to the boundary of D, singularities may happen for functions
in Hp(D), where we have the well known estimate (cf. [3])

(1− |z|)1/p|f(z)| ≤ Cp‖f‖p for 1 ≤ p < ∞.

By using the density of the holomorphic polynomials (cf. [9]), or that of the
Poisson integrals (cf. [5]), one can prove that

lim
|z|→1−

(1− |z|)1/p|f(z)| = 0 for 1 ≤ p < ∞,

which is more precise than the previous inequality near the boundary.

This work was supported by Macao FDCT 056/2010/A3 and research grant of the Uni-
versity of Macau No. UL017/08-Y4/MAT/QT01/FST.
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In the case p = 2, Hp(D) is of particular importance. It is a Hilbert
space with the inner product

〈f, g〉 =
∫ 2π

0

f(eiθ)g(eiθ)dθ, f, g ∈ H2(D).

In a number of practical applications as the underlying space H2(D) plays
an important role (e.g., in signal processing, image processing and coding
theory). Observing that for any function f ∈ H2(D), we have

〈f, φa〉 =
√

1− |a|2f(a),

where φa(z) =
√

1−|a|2
1−az is a unit vector of H2(D) with the parameter a ∈ D.

By the aforementioned property, we get

lim
|a|→1−

|〈f, φa〉| = 0,

which implies that there exists a? ∈ D such that |〈f, φ?
a〉| attains the max-

imum value. This is crucial for the signal adaptive decomposition methods
(as a variation and realization of greedy algorithm) introduced in [5, 8].

In this note, we give a generalization of the above result to higher dimen-
sions, of which the special cases have been applied to the adaptive decompo-
sition of functions of several variables ([6, 7]). Our method is a modification
of the classic method (see [3, page 18]), which depends on some more delicate
estimates. Before we state our main results, let us first have a quick review
of some basic knowledge on Clifford algebra and Clifford analysis.

Let e1, . . . , em be basic elements satisfying eiej + ejei = −2δij , i, j =
1, . . . , n, where δij equals 1 if i = j and 0 otherwise. Let Rm+1 = {x =
x0 + x1e1 + · · · + xmem : xi ∈ R, 0 ≤ i ≤ m} be identified with the usual
(m + 1)-dimensional Euclidean space. The real Clifford algebra generated by
e1, . . . , em, denoted by Am, is an associative algebra in which each element
is of the form x =

∑
T xT eT , where xT ∈ R, eT = ei1ei2 · · · eil

and T =
{1 ≤ i1 < i2 < · · · < il ≤ m} runs over all ordered subsets of {1, . . . , m}
and x∅ = x0, e∅ = e0 = 1. The norm and the conjugate of x are defined by
|x| = (

∑
T |x|2T )1/2 and x =

∑
T xT eT respectively, where eT = eil

· · · ei2 ei1

and ei = −ei for i 6= 0, e0 = e0. We have for any x, y, z ∈ Am, xy = y x,
(xy)z = x(yz) and |xy| ≤ 2m/2|x||y|.

A function f(x) =
∑

T fT (x)eT ∈ C1(Ω,Am) is said to be left mono-
genic in the open set Ω ⊂ Rm+1 if and only if it satisfies the generalized
Cauchy-Riemann equation

Df =
m∑

i=0

ei
∂f

∂xi
= 0,

where the Dirac operator D is defined by D = ∂
∂x0

+∇ =
∑m

0 ei
∂

∂xi
. If f is

left monogenic, then each component of f is a real-valued harmonic function.
For more information about the monogenic function theory, see [2].

Let Bm(x, ρ) = {y ∈ Rm+1 : |y−x| < ρ} be the open ball in Rm+1, which
is centered at x and of radius ρ. For simplicity, we denote Bm = Bm(0, 1).
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The monogenic Hardy space Hp(Bm) (1 ≤ p < ∞), consists of all functions f
that are left monogenic in Bm and satisfy

‖f‖p = sup
0<r<1

( ∫

|η|=1

|f(rη)|pdS
)1/p

< ∞, (1.1)

where dS is the area element of ∂Bm. We prove that

Theorem 1.1. If f ∈ Hp(Bm) (1 ≤ p < ∞), then

(1− |x|)|α|+ m
p |∂αf(x)| ≤ Cm,p,|α|‖f‖p, (1.2)

where α = (l0, l1, . . . , lm), |α| =
∑m

i=0 li and ∂α = ∂l0
x0

∂l1
x1
· · · ∂lm

xm
. Write

x = |x|ξ = rξ, then we have

lim
r→1−

(1− |x|)|α|+ m
p |∂αf(x)| = 0 (1.3)

uniformly in |ξ| = 1.

Corresponding to this, we also prove some propositions for the mono-
genic Hardy space Hp(Rm+1

+ ), which consists of all functions f that are left
monogenic on the half space Rm+1

+ = {x = x0 + x ∈ Rm+1 : x0 > 0, x =
x1e1 + · · ·+ xmem ∈ Rm} and satisfy

‖f‖p = sup
x0>0

( ∫

Rm

|f(x0 + x)|pdx
)1/p

< ∞, (1.4)

where dx = dx1 · · · dxm. We note that for f ∈ Hp(Rm+1
+ ) (1 ≤ p < ∞),

the boundary values f(x) = limx0→0+ f(x0 +x) exist almost everywhere and
comprise a function in Lp(Rm), of which the Poisson integral coincides with f
([4]).

Theorem 1.2. Suppose f ∈ Hp(Rm+1
+ ) (1 ≤ p < ∞), then

x
|α|+ m

p

0 |∂αf(x)| ≤ Cm,p,|α|‖f‖p; (1.5)

moreover,

lim
x0→0+

x
|α|+ m

p

0 |∂αf(x0 + x)| = lim
x0→+∞

x
|α|+ m

p

0 |∂αf(x0 + x)| = 0 (1.6)

holds uniformly with respect to x ∈ Rm, and

lim
|x|→+∞

x
|α|+ m

p

0 |∂αf(x0 + x)| = 0 (1.7)

holds uniformly in x0 > 0.

Remark 1.3. Similar discussions as in Section 2 will show that Theorem 1.1
(resp. Theorem 1.2) holds for the harmonic Hardy space Hp(Bm) (resp.
Hp(Rm+1

+ )) for 1 < p < ∞, where by definition, a function f lies in Hp(Bm)
(resp. Hp(Rm+1

+ )) means that f is harmonic in Bm (resp. Rm+1
+ ) and (1.1)

(resp. (1.4)) holds. But for the case p = 1, (1.3) (resp. (1.6) and (1.7)) may
not hold for H1(Bm) (resp. H1(Rm+1

+ )). For example, f(x0, x1) = x0
x2
0+x2

1
∈

H1(R2
+), but x0f(x0, x1) does not uniformly tend to zero as x0 → 0+.
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2. Proof of the Theorems

Proof of Theorem 1.1. From Cauchy’s estimate (cf. [1]) we know that

|∂αf(x)| ≤ Cm,|α|(1− |x|)−|α| max
y∈∂Bm(x,

1−|x|
2 )

|f(y)|,

hence

(1− |x|)|α|+ m
p |∂αf(x)| ≤ Cm,|α| max

y∈∂Bm(x,
1−|x|

2 )

(1− |y|)m
p |f(y)|.

So, to prove (1.2) and (1.3), it is enough to show that

(1− |x|)m
p |f(x)| ≤ Cm,p‖f‖p (2.1)

and

lim
r→1−

(1− |x|)m
p |f(x)| = 0 (2.2)

for 1 ≤ p < ∞.
Denote by Vr = Cm(1−r)m+1 the volume of the ball Bm(x, 1−r), write

y = |y|η = ρη, note that

|y − x| ≥ ||y| − |x|| = |ρ− r|,
and

|y − x| = |ρη − rξ|
= |r(η − ξ)− (r − ρ)η|
≥ r|η − ξ| − |r − ρ|
≥ r|η − ξ| − |y − x|,

so y ∈ Bm(x, 1− r) implies{
2r − 1 < ρ < 1,

|η − ξ| < 2(1− r)/r.

Hence, for 1 ≤ p < ∞, we have

|(1− r)m/pf(x)|

= (1− r)m/p
∣∣∣V −1

r

∫

Bm(x,1−r)

f(y)dy
∣∣∣

≤ (1− r)m/p
(
V −1

r

∫

Bm(x,1−r)

|f(y)|pdy
)1/p

≤ (1− r)m/p
(
V −1

r

∫ 1

2r−1

ρm

∫

|η−ξ|<2(1−r)/r

|f(ρη)|pdSdρ
)1/p

≤ (1− r)m/p
(
V −1

r 2(1− r) sup
0<ρ<1

∫

|η−ξ|< 2(1−r)
r

|f(ρη)|pdS
)1/p

(2.3)

≤ (1− r)m/p
(
V −1

r 2(1− r) sup
0<ρ<1

∫

|η|=1

|f(ρη)|pdS
)1/p

= Cm,p‖f‖p.
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(2.1) is now proved. On the other hand,

(2.3) ≤ Cm,p

( ∫

|η−ξ|< 2(1−r)
r

sup
0<ρ<1

|f(ρη)|pdS
)1/p

.

Note that as a function of η, sup0<ρ<1 |f(ρη)| ∈ Lp(∂Bm), and the measure
of the set {η : |η − ξ| < 2(1− r)/r} tends to zero as r → 1−, (2.2) follows by
the absolute continuity of the Lebesgue integral. ¤

Proof of Theorem 1.2. By Cauchy’s estimate we have

|∂αf(x)| ≤ Cm,|α|x
−|α|
0 max

y∈∂Bm(x,x0/2)
|f(y)|,

hence

x
|α|+ m

p

0 |∂αf(x)| ≤ Cm,|α| max
y∈∂Bm(x,x0/2)

y
m/p
0 |f(y)|.

So, the proof of (1.5) and (1.6) is now reduced to the proof of the following

x
m/p
0 |f(x)| ≤ Cm,p‖f‖p (2.4)

and

lim
x0→0+

x
m/p
0 |f(x)| = lim

x0→+∞
x

m/p
0 |f(x)| = 0 (2.5)

for 1 ≤ p < ∞. Once these have been proved, the proof of (1.7) will be
reduced to the proof of

lim
|x|→+∞

|f(x0 + x)| = 0 (2.6)

uniformly with respect to x0 ∈ [a, b] ⊂ (0,+∞).
Denote by Vx0 = Cmxm+1

0 the volume of the ball Bm(x, x0
2 ), then for

1 ≤ p < ∞,

x
m/p
0 |f(x)| = x

m/p
0

∣∣∣V −1
x0

∫

Bm(x,
x0
2 )

f(y0 + y)dy
∣∣∣

≤ x
m/p
0

(
V −1

x0

∫

Bm(x,
x0
2 )

|f(y0 + y)|pdy
)1/p

(2.7)

≤ x
m/p
0

(
V −1

x0

∫ 3x0
2

x0
2

∫

Rm

|f(y0 + y)|pdydy0

)1/p

(2.8)

≤ x
m/p
0

(
x0V

−1
x0

sup
y0>0

∫

Rm

|f(y0 + y)|pdy
)1/p

= Cm,p‖f‖p,

so (2.4) is verified.
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On the other hand, when x0 is small,

(2.7) ≤ x
m/p
0

(
V −1

x0

∫ 3x0
2

x0
2

∫

|y−x|≤ x0
2

|f(y0 + y)|pdydy0

)1/p

≤ x
m/p
0

(
x0V

−1
x0

sup
y0∈(

x0
2 ,

3x0
2 )

∫

|y−x|≤ x0
2

|f(y0 + y)|pdy
)1/p

≤ Cm,p

( ∫

|y−x|≤ x0
2

sup
y0∈(

x0
2 ,

3x0
2 )

|f(y0 + y)|pdy
)1/p

≤ Cm,p

( ∫

|y−x|≤ x0
2

sup
y0>0

|f(y0 + y)|pdy
)1/p

.

Note that as a function of y, supy0>0 |f(y0 + y)| ∈ Lp(Rm) and the measure
of the set {y : |y − x| ≤ x0

2 } tends to zero as x0 → 0+, by the absolute
continuity of the Lebesgue integral we have

lim
x0→0+

x
m/p
0 |f(x)| = 0.

When x0 is large,

(2.8) ≤ x
m/p
0

(
x0V

−1
x0

sup
y0∈(

x0
2 ,

3x0
2 )

∫

Rm

|f(y0 + y)|pdy
)1/p

≤ Cm,p

( ∫

Rm

sup
y0∈(

x0
2 ,

3x0
2 )

|f(y0 + y)|pdy
)1/p

holds uniformly with respect to x ∈ Rm, and

sup
y0∈(

x0
2 ,

3x0
2 )

|f(y0 + y)| ≤ sup
y0>0

|f(y0 + y)| ∈ Lp(Rm) for 1 ≤ p < ∞.

Also, from (2.4) we know that

sup
y0∈(

x0
2 ,

3x0
2 )

|f(y0 + y)| ≤ x
−m/p
0 Cm,p‖f‖p,

which implies

lim
x0→+∞

sup
y0∈(

x0
2 ,

3x0
2 )

|f(y0 + y)| = 0

holds uniformly with respect to y ∈ Rm. By the Lebesgue’s dominated con-
vergence theorem we have

lim
x0→+∞

x
m/p
0 |f(x)| = 0.
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Now we proceed to prove (2.6). Since

|f(x0 + x)|

=
Γ(m+1

2 )

π
m+1

2

∣∣∣
∫

Rm

x0

(|x− y|2 + x2
0)

m+1
2

f(y)dy
∣∣∣

≤ b
Γ(m+1

2 )

π
m+1

2

∫

Rm

|f(y)|dy

(|x− y|2 + a2)
m+1

2

= Cm

( ∫

|y|>N

|f(y)|dy

(|x− y|2 + a2)
m+1

2

+
∫

|y|≤N

|f(y)|dy

(|x− y|2 + a2)
m+1

2

)

= Cm(I1 + I2),

by Hölder’s inequality,

I1 ≤
( ∫

|y|>N

(|x− y|2 + a2)
−(m+1)p′

2 dy
)1/p′( ∫

|y|>N

|f(y)|pdy
)1/p

≤
( ∫

Rm

(|y|2 + a2)
−(m+1)p′

2 dy
)1/p′( ∫

|y|>N

|f(y)|pdy
)1/p

≤ Cm,p

( ∫

|y|>N

|f(y)|pdy
)1/p

,

where 1
p + 1

p′ = 1. Because f(y) ∈ Lp(Rm), I1 is small provided N is large
enough. With N fixed,

I2 ≤ Cm

|x|m+1

∫

|y|≤N

|f(y)|dy → 0 (|x| → +∞),

due to f(y) is integrable on {y : |y| ≤ N}, that proves (2.6).
The proof of Theorem 1.2 is now complete. ¤
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