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Abstract We study best approximation to functions in Hardy H2(D) by two classes of functions of
which one is n-partial fractions with poles outside the closed unit disc and the other is n-Blaschke
forms. Through the equal relationship between the two classes we obtain the existence of the
minimizers in both classes. The algorithm for the minimizers for small orders are practical.
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1 Introduction

By modified Blaschke products (of finite order) we mean the functions

B1(z) =
1√
2π

√
1− |a1|2
1− a1z

, B2(z) =
1√
2π

√
1− |a2|2
1− a2z

z − a1

1− a1z
, ...,

Bk(z) =
1√
2π

√
1− |ak|2
1− akz

k−1∏

j=1

z − aj

1− ajz
, ..., (1.1)

where the sequence {ak}∞k=1 defining the system is contained in D, where D stands for the open unit
disc. {Bk}∞k=1 is an orthonormal system, regarded as rational orthogonal (or Takenaka-Malmquist)
system ([1] and its references). We also use the notation

Bk = B{a1,...,ak}

to indicate the dependence of Bk on the k-tuple {a1, ..., ak}. The system has been well studied
since 1920’s with ample applications in the applied mathematics, including control theory, system
identification, and signal analysis. If, in particular, ak = 0 for all k, then the system reduces to the
Fourier basis

{ 1√
2π

,
z√
2π

,
z2

√
2π

, ...,
zn

√
2π

, ...}.
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The Laguerre basis and the two-parameter Kautz basis are all particular cases of the general system
(1.1). All the classical studies of the system rely on the condition

∞∑

j=1

(1− |aj |) = ∞. (1.2)

Geometrically this addresses the non-hyperbolic separability of the points aj ’s. It says that under
the hyperbolic distance the distribution of the points aj ’s concentrates at the origin. Under the
condition (1.2) the system is complete in all the Hardy spaces Hp(D), 1 ≤ p < ∞, and in the disc
algebra. Conversely, completeness of the system in any of the mentioned Banach spaces implies
the condition (1.2) ([1]). There are parallel theories in the region outside the unit disc, and in the
upper- and lower-half complex planes.

In [15] and [14] we propose an adaptive algorithm of which the points ak defining the system
are consecutively chosen according to the function F ∈ H2(D) to be decomposed. The selections
of each ak is based on the maximal projection principle in spirit of greedy algorithm ([11]). The
consecutive selection may not gives rise to the best approximation (See (v), (vi) below), but has
a simple algorithm ([15], [14]). The formed system {Bk}∞k=1 using the selected ak’s may not be a
basis for the above mentioned Banach spaces, it, however, offers a fast decomposition of the given
function in terms of the energy. In this paper we restrict ourselves to the finite system {Bk}n

k=1,
where n is a fixed integer. Below we will be based on the following terminology.
(i) For any n-tuple {a1, ..., an} in D the orthonormal system

B{a1}, B{a1,a2}, ..., B{a1,...,an} (1.3)

is called the n-Blaschke system associated with {a1, ..., an}, or simply an n-Blaschke system.

(ii) For an above defined n-Blaschke system and any complex numbers ck, k = 1, ..., n, with cn 6= 0,
the sum

n∑

k=1

ckB{a1,...,ak}

is called a Blaschke form associated with {a1, ..., an}. An n-Blaschke form has at most n poles that
are all outside the closed unit disc.

(iii) We say that ak has the multiplicity l, 1 ≤ l ≤ n, in the n-tuple {a1, ..., an}, if there are totally
l entries, an1 , ..., anl

, 1 ≤ n1 < · · · < nl = k, such that an1 = · · · = anl
= ak. In other words, up to

the entry ak the number ak altogether appears l times.

(iv) We call
ẽ{a1}, ẽ{a2}, ..., ẽ{an},

the n-system associated with the n-tuple {a1, ..., an}, where if ak 6= 0 with multiplicity l, then

ẽ{ak}(z) =
1

(1− akz)l
;

and, if ak = 0 with multiplicity l, then

ẽ{ak}(z) = zl−1.
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The n-system associated with an n-tuple is usually not orthogonal. The notation ẽ{ak} here is, in
fact, an abuse, as it is not only dependent of the value of ak but also dependent of its position in
the n-tuple sequence {a1, ..., an}.
(v) An n-Blaschke system is called a local n-system of F, if the n-tuple {a1, ..., an} defining the
system is chosen based on the maximal projection principle

‖Fk − 〈F, B{a1,...,ak−1,ak}〉B{a1,...,ak−1,ak}‖
= min{‖Fk − 〈F, B{a1,...,ak−1,b}〉B{a1,...,ak−1,b}‖ : b ∈ D}, (1.4)

k = 1, ..., n, where F1 = F, and

Fk = F −
k−1∑

l=1

〈F, B{a1,...,al}〉B{a1,...,al}, k > 1.

([15], [14]). For a given function F and an integer n, there may exist more than one local n-system.
We note that if {a1, ..., an} is a local system of F and m < n, then {a1, ..., am} is a local m-system
of F. In other words, local systems have inheriting property.
(vi) An n-Blaschke system defined by {a1, ..., an} is called a global n-system (critical point) of F
if it satisfies

‖F −
n∑

k=1

〈F, B{a1,...,ak}〉B{a1,...,ak}‖

= min{‖F −
n∑

k=1

〈F, B{b1,...,bk}〉B{b1,...,bk}‖ : b1, ..., bn ∈ D}. (1.5)

The corresponding Blaschke form

n∑

k=1

〈F, B{a1,...,ak}〉B{a1,...,ak}

ia called an n-Blaschke minimizer, and {a1, ..., an} an n-tuple minimizer. A particular case is that
F itself is an n-Blaschke form. There may exist more than one such minimizers, in general. Global
systems do not have inheriting property.

(vii) Let Rn be the set of all rational functions of the form

R(z) =
r−1∑

j=0

cjz
j +

L∑

l=1

Kl∑

k=1

dk
l

(z − bl)k
, (1.6)

where 0 ≤ r ≤ n, 1 ≤ Kl ≤ n, l = 1, ..., L, cr−1
∏L

l=1 dKl
l 6= 0, and

r +
L∑

l=1

Kl = n.

If R ∈ Rn, then we call R an n-partial fraction. Each n-partial fraction is associated with an
n-tuple {0, ..., b1, ..., b2, ..., ..., bL, ...} = {a1, ..., an}. In an n-partial fraction ordering for the involved
a1, ..., an does not matter. The number of all distinguished orderings is n!/(m0! · · ·mL!), where
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L+1 is the number of all distinguished ak’s in the set, and ml, l = 0, ..., L, is the number of repeat-
ing of bl. Lemma 3.1 (§3) asserts that an n-partial fraction, under every distinguished ordering of
the involved a1, ..., an, is identical with an n-Blaschke form. The converse is obviously true due to
partial sum decomposition of fractions.

(viii) For F ∈ H2(D), we call R1(z) ∈ Rn an n-partial fraction minimizer of F, if

‖F −R1‖H2 = min{‖F −R‖H2 : R ∈ Rn}.

We provide some illustrative examples for the notation introduced.
Examples For the 4-tuple {b1, b2, b3, b4} = {0, 1

2 , 0, i
3}, we have b1 = b3. But b1 has multiple 1 and

b3 has multiple 2. The corresponding 4-Blaschke system is

B{0}(z) =
1√
2π

, B{0, 1
2
}(z) =

1√
2π

√
1− 1

4

1− z
2

z, B{0, 1
2
,0} =

1√
2π

z − 1
2

1− z
2

z,

and

B{0, 1
2
,0, i

3
} =

1√
2π

√
1− 1

9

1 + iz
3

z − 1
2

1− z
2

z2.

The associated 4-system is

{1,
1

1− z
2

, z,
1

1 + iz
3

}.

If we change the order of the 4-tuple to {0, 1
2 , i

3 , 0}, then b4 has multiple 2, and the associated
4-Blaschke system becomes

B{0}(z) =
1√
2π

, B{0, 1
2
}(z) =

1√
2π

√
1− 1

4

1− z
2

z, B{0, 1
2
, i
3
} =

1√
2π

√
1− 1

9

1 + iz
3

z − 1
2

1− z
2

z,

and

B{0, 1
2
, i
3
,0} =

1√
2π

z − i
3

1 + iz
3

z − 1
2

1− z
2

z,

and the associated non-orthogonal 4-system is only a re-ordering of the above one, viz.

{1,
1

1− z
2

,
1

1 + iz
3

, z}.

As a realizable but a variation of greedy (matching pursuit) algorithm ([11]) local n-systems
and some related function decomposition problems are studied in [15] and [14]. The present paper
will be devoted to proving the existence of a global n-system or an n-Blaschke minimizer, or,
equivalently, existence of an n-partial fraction minimizer.

Our main theorems are as follows.

Theorem 1.1 If F ∈ H2(D) is not an m-Blaschke form for any m < n, then there exists an
n-Blaschke minimizer of F.
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Theorem 1.2 If F ∈ H2(D) does not belon to any Rm,m < n, then there exists an n-partial
fraction minimizer of F.

Below H2(D) will be abbreviated as H2. The existence and algorithm for best rational approx-
imation to H2-functions is a classical issue. The early references include [6], [20], [8], [5], [3], [2].
Although the existence has been proved to exist ([20]), from the constructive point of view no
practical algorithm for the minimizers have been established. The proofs of our theorems, in turn,
provide an algorithm to obtain the two types of minimizers. While it is a subject to be further
studied, at least for small orders the algorithm provided in the proofs is practical.

To note some related studies may be worthwhile. It is based on our interest in adaptive decom-
position into mono-components (see below for definition) that we merge to this current study. Our
study on adaptive mono-component decomposition was motivated by the engineering algorithm
Empirical Mode Decomposition (EMD) ([9]), as well as some related studies on analytic signals
([10], [4]). We call a complex-valued function F in Lp(∂D), 1 ≤ p ≤ ∞, a complex-mono-component
if with F (eit) = ρ(t)eiθ(t), there hold (i) ρ ≥ 0; (ii) H(ρeiθ) = −iρeiθ, where H is the Hilbert
transformation of the context; and (iii) θ′ ≥ 0. Note that phase derivative θ′ has to be suitably
interpreted ([13]), and if and only if θ′ ≥ 0, then θ′ is called instantaneous frequency. If F is
a real-valued signal and its (associated) analytic signal F + iHF is a complex mono-component,
then F itself is called a real-mono-component. Being of no ambiguity we use the terminology
mono-component for both complex- and real-mono-components ([12]). A function F (eit) is called a
pre-complex-mono-component if eiMtF (eit) is a complex moo-component for some M > 0. If F is a
real-valued and if its associated analytic signal is a pre-complex-mono-component, then we call F
itself a real-pre-mono-component. Similarly, we use the terminology pre-mono-component for both
complex- and real-pre-mono-component ([15]). It is because of the fact that the boundary values
of the system functions Bn belong to the classes of mono-components or pre-mono-components
that we became interested in this system. The purpose of finding various mono-component is for
adaptively decomposing signals into their intrinsic constructive mono-component atoms that, by
definition, have (physically meaning full or positive) (analytic) instantaneous frequencies. The
most general class for complex-valued unimodular mono-components is the boundary values of in-
ner functions including infinite Blaschke products and singular inner functions. The proof of this
fact is based on the classical Julia-Wolff-Carathéodory Theorem ([13]). This inner function result
has a significant impact to the study of signals of minimum phase and all-pass filters. Finding out
non-unimodular mono-components from the unimodular ones leads to a trend of recent studies on
the Bedrosian identity ([17], [16], [19], [22], [21]). Starlike and p-starlike functions give rise to more
general mono-components that do not rely on the unimodular types, nor on the Bedrosian identity.
The modified Blaschke products studied in this paper are p-starlike functions (see [14] or [15]) that
can be formulated by using the Bedrosian identity based on finite Blaschke products ([16], [19]).

2 Formula For Remaining Energy Under n-Blaschke Form

Assume that F is an H2-function in the unit disc D whose boundary value is again denoted by F.
To stress on the fact that B{a} induces the evaluation functional at the point a ∈ D (reproducing
kernel) for analytic functions (as we will see), we use e{a} as an alternative notation for B{a}.

To prove Theorem 1.1 the remaining energy representation under an n-Blaschke form will be
needed. We will adopt the approach developed in [15] and [14]. A Technical alternative is the
classical ”Cristoffel-Darboux formula” ([18]). Let F ∈ H2 and F1 = F. Under the usual inner
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product

〈F, G〉 =
∫ 2π

0
F (eit)G(eit)dt,

we have

F (z) = F1(z) =
(
F1(z)− 〈F1, e{b1}〉e{b1}(z)

)
+ 〈F1, e{b1}〉e{b1}(z)

= F2(z)
z − b1

1− b1z
+ 〈F1, B{b1}〉B{b1}(z),

where by Cauchy’s formula, we have

〈F1, e{b1}〉 =

√
1− |b1|2√

2π

∫ 2π

0

F1(eit)
1− b1e−it

dt =
√

2π
√

1− |b1|2F1(b1).

Then

F2(z) =
(
F1(z)− 〈F1, e{b1}〉e{b1}

) 1− b1z

z − b1

=
(

F1(z)− (1− |b1|2) F1(b1)
1− b1z

)
1− b1z

z − b1
. (2.7)

The first factor of F2 in (2.7) has zero b1, and hence F2 ∈ H2. We call the process from F1 to
F2 the “sifting via b1,” or simply “a sifting”. Performing sifting process up to the n times via,
consecutively, b1, ..., bn, we obtain

F (z) = Fn+1(z)
z − b1

1− b1z
· · · z − bn

1− bnz
+ 〈Fn, e{bn}〉B{b1,...,bn}(z) + · · ·

+〈F1, e{b1}〉B{b1}(z), (2.8)

where

〈Fk, e{bk}〉B{b1,...,bk}(z) =
(1− |bk|2)Fk(bk)

1− bkz

z − b1

1− b1z
· · · z − bk−1

1− bk−1z
,

where the recursive formula for Fk is

Fk(z) =
(

Fk−1(z)− (1− |bk−1|2)Fk−1(bk−1)
1− bk−1z

)
1− bk−1z

z − bk−1
.

Denoting by

F̃k(z) = Fk(z)
k−1∏

j=1

z − bk

1− bkz
,

the usual (k − 1)-th remainder, then there is a recursive formula for F̃k :

F̃k = F̃k−1 − 〈F̃k−1, B{b1,...,bk−1}〉B{b1,...,bk−1}, k = 2, 3, ...,

with F̃1 = F1 = F. Because Blaschke products are unimodular on the unit circle, we have

‖F̃k‖ = ‖Fk‖. (2.9)
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Noting that F̃k has zeros at b1, ..., bk, including the multiplicity, and F − F̃k is a linear combination
of B{b1,...,bl}, l = 1, ..., k − 1, we have

〈F, B{b1,...,bk}〉 = 〈F̃k, B{b1,...,bk}〉 = 〈Fk, e{bk}〉.

Due to the mutual orthogonality between the Bk’s and orthogonality between F̃n+1 and all the
Bk’s, we have

‖F̃n+1‖2 = ‖Fn+1‖2

= ‖F‖2 −
n∑

k=1

|〈Fk, e{bk}〉|2

= ‖F‖2 − 2π

n∑

k=1

(1− |bk|2)|Fk(bk)|2. (2.10)

This is the remaining energy after consecutively n siftings via b1, ..., bn.
In a local n-system at k-th sifting process we choose, when a1, ..., ak−1 have already been fixed,

ak ∈ D, so that (1.4) holds. In contrast, Theorem 1.1 concerns the case where all a1, ..., an are
chosen at the same time so that (1.5) holds.

3 Gram-Schmidt Process in Relation to n-Blaschke System

It is well known that if b1, ..., bn are mutually distinguished points in D, then the G-S process applied
to the systems

{ 1
1− bkz

}n
k=1, or {

k∏

l=1

z − bl

1− blz
}n

k=1

will produce the orthonormal system

{B{b1,...,bk}}n
k=1.

The question is: What will happen if some values of bk have multiplicity larger than one? The
exceptional cases do not seem to have been fully addressed in the literature. For instance, in [20]
(page 224), only the case for multiple infinity (corresponding to multiple zero in our setting) is
mentioned, but without a treatment.

The proof of Theorem 1.1 and Theorem 1.2 will be based on

Lemma 3.1 For any n-tuple {b1, ..., bn} in D the induced n- Blaschke system in the order

B{b1}, B{b1,b2}, ..., B{b1,...,bn}

may be obtained through the G-S orthogonalization process from the associated n-system

ẽ{b1}, ẽ{b2}, ..., ẽ{bn},

defined in (iv).

Proof We use mathematical induction. Assume that the G-S orthogonalization process applied to
ẽ{b1}, ..., ẽ{bk−1} in the given order produces B{b1}, ..., B{b1,...,bk−1}. Now we add the element ẽ{bk}.
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In the G-S process we express F as a sum of a linear combination of B{b1,...,bl}, l = 1, .., k − 1, and
a term orthogonal with all those B{b1,...,bl}. In (2.8) taking F = ẽ{bk}, we have

ẽ{bk}(z) = Fk(z)
z − b1

1− b1z
· · · z − bk−1

1− bk−1z
+ [〈Fk−1, e{bk−1}〉B{b1,...,bk−1}(z) + · · ·

+〈F1, e{b1}〉B{b1}(z)]

= F̃k(z) + Sk(z). (3.11)

Consider two possibilities. One is bk 6= 0 that corresponds to F (z) = 1
(1−bkz)l , 1 ≤ l ≤ k. In the

case F has pole 1/bk of multiple l. Each composing entry in the Sk(z) part, if having the pole, then
must be with multiplicity less or equal to l − 1. This implies that the part

F̃k(z) = Fk(z)
z − b1

1− b1z
· · · z − bk−1

1− bk−1z

must have the pole 1/bk of multiplicity l. On one hand, the Blaschke product

z − b1

1− b1z
· · · z − bk−1

1− bk−1z

has the pole 1/bk of multiplicity l− 1. On the other hand, in both sides of the equality (3.11), due
to the G-S process, there are no poles other than 1/b1, ..., 1/bk, together with the multiplicities,
where some bl can be zero. Therefore,

Fk(z) =
c

1− bkz
.

The L2-normalization gives c =
√

1−|bk|2√
2π

. Hence the normalization of F̃k is B{b1,...,bk}, as desired.

For the possibility bk = 0 with multiplicity l ≥ 1, taking F (z) = zl−1, that has pole at infinity of
multiplicity l − 1, then (3.11) reads

zl−1 = Fk(z)
k−1∏

l=1

z − bl

1− blz
+ dk−1

1√
2π

√
1− |bk−1|2
1− bk−1z

k−2∏

l=1

z − bl

1− blz
+ · · ·

= Fk(z)

(
k−1∏

l=1

z − bl

1− alz

)
+ Sk(z) (3.12)

= F̃k(z) + Sk(z).

We are to show that Fk(z) is a constant, and so the L2 normalization of F̃k is just B{b1,...,bk}. We
note that the Blaschke product in the round brackets in (3.12) has the order zl−1 at infinity. In
the case if bk−1 = 0, then in each of the modified Blaschke products in Sk(z) the pole z = ∞ is of
multiplicity at most l−3. Dividing zl−1 from both sides and letting z →∞, taking into account the
fact the G-S process produces no poles other than those arising from the round bracket in (3.12),
we conclude Fk = c. If bk−1 6= 0, then z = ∞ is a pole in Sk with multiplicity at most l − 2. The
same reasoning concludes Fn = c. The proof is thus complete.
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4 Proofs of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1 We first observe that for any n-tuple {b1, ..., bn} in D, although the system
{B{b1,...,bk}}n

k=1 is relevant to the ordering of the bk’s in the n-tuple, the projection

n∑

k=1

〈F, B{b1,...,bk}〉B{b1,...,bk}

is irrelevant to it. This is because, in accordance with Lemma 3.1, it is the orthogonal projection to
the complex n-dimensional linear space spanned by {e{b1}, ..., e{bn}}, where the latter is irrelevant
to the order. Now we show that an n-tuple {a1, ..., an} exists in which every ak is an interior point
of D that gives rise to an n-Blaschke minimizer (see (vi) in §1). We show this by introducing a
contradiction. Suppose that F itself is not an n-Blaschke form, and there does not exist a minimizer
n-tuple {a1, ..., an} inside the disc. In the case there exists a sequence of n-tuples {bl

1, ..., b
l
n} such

that

‖F̃ l
n‖2 = ‖F‖2 − 2π

n∑

k=1

(1− |bl
k|2)|Fk(bl

k)|2

tends to the infimum value d as l →∞, while for at least one index k0 there exists a subsequence
{blj

k0
}∞j=1 converging to a boundary point. We divide the indices k = 1, ..., n into two groups,

denoted by the letters B and I, respectively, where if {bl
k}∞l=1 contains a subsequence converging

to a boundary point of D, then k ∈ B, and otherwise k ∈ I. Note that k0 ∈ B 6= ∅. Due to the
observation made at the beginning of the proof, we may alter the ordering of {bl

1, ..., b
l
n}, if necessary,

and may assume that the indices in I are all smaller than those in B. By a diagonal process we
can choose a subsequence lj → ∞ such that for k ∈ B the sequences {blj

k } converge to boundary
points, and for k ∈ I, converge to interior points. Without loss of generality we may assume that
the original sequence {l}∞l=1 has such property. That is, as l →∞, the sequence {bl

k}∞l=1 converges
to bk ∈ ∂D if k ∈ B, and converges to bk ∈ D if k ∈ I. For any l adopt the notation for the non-zero
remainders

F̃ l
m = F −

m∑

k=1

〈F l
j , e{bl

j}〉B{bl
1,...,bl

j}, m = 1, ..., n,

and the notation
Rl
I = F −

∑

j∈I
〈F l

j , e{bl
j}〉B{bl

1,...,bl
j}.

There follows, in accordance with (2.10) and (2.9),

‖Rl
I‖2 = ‖F‖2 −

∑

j∈I
|〈F l

j , e{bl
j}〉|

2 ≥ ‖F̃ l
k‖2 = ‖F l

k‖2, k ∈ B. (4.13)
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We have, owing the properties of the Poisson kernel Pr and the inequality (4.13), for any given
ε > 0,

‖Rl
I‖ ≥ ‖Rl

I −
∑

k∈B
〈F l

k, e{bl
k}〉B{bl

1,...,bl
k}‖

≥ ‖Pr ∗ (Rl
I −

∑

k∈B
〈F l

k, e{bl
k}〉B{bl

1,...,bl
k})‖

≥ ‖Pr ∗Rl
I‖ −

∑

k∈B
‖F l

k‖‖Pr ∗B{bl
1,...,bl

k}‖

≥ ‖Pr ∗Rl
I‖ −

∑

k∈B
‖Rl

I‖‖Pr ∗B{bl
1,...,bl

k}‖

≥ (1− ε

2
)‖Rl

I‖ − ‖Rl
I‖

∑

k∈B
‖Pr ∗B{bl

1,...,bl
k}‖,

if r is sufficiently close to 1. Let r be fixed from now on in the rest of the proof.
Now, since B{bl

1,...,bl
k} ∈ H∞(D), we have (Corollary 3.2, p58, [7])

Pr ∗B{bl
1,...,bl

k}(e
it) = B{bl

1,...,bl
k}(re

it),

and thus

‖Pr ∗B{bl
1,...,bl

k}‖
2 = ‖B{bl

1,...,bl
k}(re

i(·))‖2

≤ 1
2π

∫ 2π

0

1− |bl
k|2

|1− b
l
kre

it|2
dt

=
1− |bl

k|2
1− r2|bl

k|2
.

For the fixed r, since liml→∞ |bl
k| = 1, k ∈ B, we can choose l large enough so that

‖Pr ∗B{bl
1,...,bl

k}‖ ≤
ε

2n

hold for all k ∈ B. Therefore, for such l,

‖Rl
I‖ ≥ ‖Rl

I −
∑

k∈B
〈F l

k, e{bl
k}〉B{bl

1,...,bl
k}‖ ≥ (1− ε)‖Rl

I‖.

This shows that
lim
l→∞

‖
∑

k∈B
〈F l

k, e{bl
k}〉B{bl

1,...,bl
k}‖ = 0,

and hence

lim
l→∞

‖Rl
n‖2 = lim

l→∞
‖F −

∑

k∈I
〈F l

k, e{bl
k}〉B{bl

1,...,bl
k}‖

2

= lim
l→∞

(
‖F‖2 −

∑

k∈I
|〈F l

k, e{bl
k}〉|

2

)

= ‖F‖2 −
∑

k∈I
|〈F, B{b1,...,bk}〉|2 (4.14)

= d.
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Note that d > 0, for otherwise we would have that F is an m-Blaschke form for some m < n,
being contrary to the assumption. This last relation (4.14), however, shows that the selections of
bl
k’s and the limit procedure involving k ∈ B all have no effect and the minimum value d can be

attained at an m-tuple inside the unit disc, where m < n. This is a contradiction. For in that case
we could select an arbitrary b̃k ∈ D for each k ∈ B. Those, together with the original limit points
bk ∈ D, k ∈ I, would give rise to an n-Blaschke system definitely improving the approximation
given in (4.14). This proves the Theorem.

Proof of Theorem 1.2 It is known that any R ∈ Rn is an n-Blaschke form. On the other
hand, every n-Blaschke form is an R ∈ Rn. Now, by the assumption, F itself is not in any Rm for
m < n, and F, therefore, is not an m-Blaschke form for m < n. By using Theorem 1.1, F has an
n-Blaschke minimizer, that is a function in Rn. We claim that it is a minimizer of F in Rn. For,
if this were not true, then there would exist another rational function in Rn offering a better ap-
proximation to F. It is also an n-Blaschke and thus presents a contradiction. The proof is complete.

Remark The proof of Theorem 1.1 and the relations obtained in §2 offerd an algorithm for an
n-tuple minimizer. For small n the algorithm is practical.
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