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a b s t r a c t

As presented in some recent publications, adaptively choosing the parameters of a
Takenaka–Malmquist (TM) system according to the given signal gives rise to the so called
adaptive Fourier decomposition (AFD). Besides optimal selections of the parameters to
ensure themaximal energy gain at each step, AFDproduces entries of non-negative analytic
instantaneous frequency. The latter enables us to define a reasonable time–frequency
distribution with most desired properties. The energy principle together with the
unwinding process through factorizing out the inner function factors yields two variations
of the standard AFD, both having appeared in the literature. They are referred by this
paper as, respectively, unwinding adaptive Fourier decomposition (UAFD) and double
sequence unwinding adaptive Fourier decomposition (DSUAFD). After a short summary
of the three adaptive decompositions, the present paper makes comparison between
them, as well as with the traditional Fourier series decomposition (FD). The related
Dirac type time–frequency distributions associated with mono-components and mono-
component decompositions of multi-components are introduced with examples. As
necessary preparation we recall the concept mono-component and related knowledge in
the introduction section.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The analytic and rational functions

Bn(z) = B{a1,a2,...,an}(z) =


1 − |an|2

1 − anz

n−1
k=1

z − ak
1 − akz

, n = 1, 2, . . . , (1)

are known as an orthogonal rational function system or Takenaka–Malmquist system (TM system) that depends on a
sequence of complex parameters {ak} in the unit disc D. An entry Bn is called a modified Blaschke product. A TM system
is a generalization of the Fourier system {zn}∞n=0 that corresponds to ak = 0 for all k. The Laguerre basis and the two-
parameter Kautz basis are also particular cases of the system (1). We will be working with the Hardy space H2(D). Denote
the non-tangential boundary limits of the functions in H2(D) by H2

b (∂D) that is a closed subspace of L2(∂D). The mapping
that maps functions in H2(D) to their non-tangential boundary limits (functions) in H2

b (∂D) is an isometric isomorphism.
The Hilbert spaceH2

b (∂D) consists of the so called analytic signals, or physically realizable signals, that are identical with the
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signals of finite energywhose Fourier series expansion only spans by the non-negative powers of the complex trigonometric
function eit . The inner product that we have for L2(∂D) is

⟨F ,G⟩ =
1
2π

 2π

0
F(eit)G(eit)dt.

Under the given inner product restrictions of the functions in (1) constitute an orthonormal system. As is well known, the
condition

∞
k=1

(1 − |ak|) = ∞ (2)

is sufficient and necessary for the associated orthonormal system {Bn(eit)} to be a complete basis in the Hardy spaceH2
b (∂D).

The last mentioned sufficient and necessary condition can be extended to all Hp
b (∂D), 1 < p < ∞. A complex-valued

signal s is called a complex mono-component if it is the boundary limit of an analytic signal, and, under the amplitude–phase
representation s(t) = ρ(t)eiθ(t), it possesses the property θ ′(t) ≥ 0, a.e. Note that the classical derivatives θ ′(t) may not
exist [1–5]. The notion of θ ′(t) should be suitably defined, and be a generalization of the classical derivative. We define it in
various cases through Hardy space decomposition [2,6]. For a complex mono-component s(t) = ρ(t)eiθ(t) its instantaneous
frequency function (IF function) is defined to be θ ′(t). We call a real-valued signal s a real mono-component if s + iHs is a
complex mono-component, where H is the Hilbert transform of the context. The instantaneous frequency of a real mono-
component s is defined to be the IF of the complex mono-component s + iHs. Both complex and real mono-components
are abbreviated as mono-components that causes no confusion. Mono-components are generalizations of eint , the latter
being the boundary values of the monomials zn. A complex-valued signal s is called a pre-mono-component if there exists
M > 0 such that eiMts(t) is a mono-component. Among boundary limits of functions in the Hardy space a large class of
mono-components have been identified, including boundary values of Möbius transforms, Blaschke products of finite and
infinite orders [7], starlike and p-starlike functions, modified Blaschke products [8,9], etc.

The referred studies [8,9], in particular, are among the new phase of the study of the Bedrosian identity [10]H(fg) = fHg ,
where H is the Hilbert transformation. This new phase of study aimed to assert at what conditions the quadrature form
ρ(t)eiθ(t) is again a mono-component if eiθ(t) is assumed to be a mono-component. It is essentially the main results of [8,9]
that if the phase signal eiθ(t) is from a Blaschke product of n − 1 zeros, then the desired mono-component ρ(t)eiθ(t) is
intimately related to modified Blaschke products Bn. In a TM system each modified Blaschke product Bn, being restricted
to the boundary, is an analytic signal, and is either a mono-component or pre-mono-component for M = 1. If one of the
parameters a1, . . . , an−1 in relation to Bn is identical with 0, then z is a factor of Bn, and Bn is a mono-component.

A decomposition into a sum of mono-components is called amono-component decomposition [7]. A given signal can have
more than one mono-component decompositions among which Fourier series is a particular one. The interesting ones are
those of a fixed type ofmono-componentswith increasing phase derivatives in the sequel, and of fast convergence. Themost
popular and important type ofmono-components would be the rational mono- or pre-mono-components in the TM system,
viz. the modified Blaschke products. In terms of fast convergence in energy we raise the concept adaptive mono-component
decomposition (AMD) [1,2,7,11].

All traditional studies of the TM system are based on a prescribed sequence of parameters a1, . . . , an, . . . satisfying the
condition (2). In [12], instead of using a prescribed sequence {ak} we consecutively select {ak} according to the given signal
f to be decomposed. The selections of ak’s are based on the energy principle: at each selection of a new parameter we
can achieve the maximal energy gain. The algorithm thus achieves fast convergence in energy. Fast convergence of AFD
decomposition, in both the energy and the pointwise sense are verified by experiments. By combining the AFD algorithm
with the factorization mechanism in view of minimum energy delay property of outer functions we propose an unwinding
adaptive Fourier decomposition (UAFD) in [11] (see Section 3). In the most recent paper [13] we propose a third adaptive
mono-component decomposition that, besides the unwinding process, incorporates an optimal selection of a pair of two
parameters at each step, corresponding to two infinite series at the end, called DSUAFD. The facts that UAFD and, especially,
DSUAFD belong to the mono-component decomposition rest on the newly proved theoretical result on positivity of phase
derivatives of boundary limits of inner functions [7]. In the present paper we will recall and compare the formulations and
effectiveness of the three newly established AMDmethods, and discuss their ideas and merits. Some comparisons between
them are based on numerical examples.

The types of new function decompositions are intended to treat the so called transient signals. A precise definition
of transient signal involves the stochastic process. In other words, transient signals are random signals. They are usually
nonlinear and non-stationary. To study such signals the concept instantaneous frequency (IF) cannot be avoided, and the
IFs are preferably non-constant, such as those for nonlinear Fourier atoms [14]. It is well known that the traditional Fourier
decomposition can only provide the total amount of each frequency in the whole time range. This disadvantage is due to the
linear-phase-representation of Fourier in terms of trigonometric functions, or Fourier atoms, which are of linear phase. It, in
particular, cannot tell at a certain time moment, what types of frequencies present and what are their respective amounts.
In all the three proposed decomposition methods there exist well defined IFs. The reason we name them in relation to
Fourier is that they are directly related to analytic and harmonic function theory. It is this characterization that distinguishes
themselves from wavelets, short time/window Fourier, or Gabor transform, etc.
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Although being modest ones, there do exist convergence rate estimates proved for AFD and, in general, for greedy
algorithm [15]. There are also recent studies that show that for TM bases there exist the same pointwise convergence results
and convergence rate estimates as for the Fourier series case [16–19]. The reason we prefer the new types of decomposition
methods to the traditional ones is again for the course of transient signals. Indeed, a transient signal s(ζ , t) can be the trace
of a Brownianmotion at a probability state ζ that does not possess any smoothness. Therefore, seeking for convergence rate
estimates under smoothness conditions for the AFD type decompositions is not a right direction. On the other hand, to treat
transient signals, adaptive approximation by the TM system through parameter selection to get maximal energy gain from
each remainder and factorization in view of the energy delay seem to be among sensible strategies.

TM bases have long been interested with applications in various engineering practices, especially in physics
(optics), control theory, and, in particular, in system identification. One cannot exhaust the relevant literature but can
mention [16–18,20–25]. Most recently Pap extended the concept of wavelets to TM bases in which the poles defining
the TM basis satisfy some group relations [26]. The mentioned studies, however, aim to treat TM bases. In other words,
they are based on prescribed parameters ak’s satisfying the hyperbolic non-separable condition (2). In those studies the
non-negative phase derivative aspect of TM bases and its applications to signal analysis are not explored. TM systems that
are not necessarily bases, on the other hand, are related to Beurling’s and Beurling–Lax’s Theorems, and especially, shift-
and backward shift- invariant subspaces of the Hardy spaces. AFD, because of its selection of poles, can be classified into
the category of general TM systems other than bases. Like the traditional TM basis decompositions, AFD has found its
applications in system identification [12,27,28]. Based on AFD a practical algorithm of the best approximation to signals
in the Hardy H2 space by rational functions of degree less than a prescribed positive integer n was recently proposed
in [29]. If a system is given by an ordinary differential equation, through Laplace transformation the solution is reduced
to solving a Laplace-multiplier problem of rational function type. This observation indicates that TM bases and TM systems
are naturally related to rational function approximation problems. To conclude, there is a great potential for applications of
the three introduced AFD related decompositions. As a matter of fact, whenever a practical problem can be treated by the
traditional Fourier series decomposition (FD), then it can also be treated by using AFD, or UAFD, or DSUAFD. Related interest
can be found in [30,31]. In this paper, for completeness of the story, we introduce, and provide examples for, the Dirac type
time–frequency distributions of mono-components and multi-components. The Dirac type distributions follow Cohen [32]
and are first studied in the Ph.D. Thesis of Dang Pei at University of Macau.

This paper concentrates in periodic or discrete physically realizable signals corresponding to H2(D). For physically
realizable signals in the whole time range, i.e. those in H2(C+), there is a parallel theory. Decompositions of real-valued
signals in the L2(R)-space can be obtained through the decompositions of their Hardy space projections. In the real-L2(∂D)
signal case, for instance, we have s = 2[Res+]−c0, where s+ =

1
2 (s+ iHs), and c0 is the 0-th Fourier coefficient of s (see [12]).

In Sections 2–4 we review, respectively, AFD, UAFD and DSUAFD. Section 5 introduces the mono-component based
time–frequency distributions (MTFDs) for mono-components and multi-components. Section 6 devotes to numerical
experiments together with analysis on the merits of the individual algorithms.

2. AFD

Let f ∈ H2(D). To expand f into its Fourier series we successively project f = f1 and the reduced remainders fn(z) =

rn(z)/zn onto the unit vector 1, where rn denotes the standard remainder defined as the difference between f and the n-th
partial sum. In AFD, instead of projecting f1 onto the unit vector 1, we project it onto the normalized reproducing kernel

e{a}(z) =


1 − |a|2

1 − az
, a ∈ D.

Note that e{a} is a generalization of 1 due to e{0} = 1. In the terminology of greedy algorithm the related dictionary is

D :=


ea(z) =


1 − |a|2

1 − āz
, a ∈ D


, (3)

where D denotes the open unit disc in the complex plane C. By using Cauchy’s integral formula, we have

⟨f1, e{a}⟩ =


1 − |a|2f1(a).

The first step is the adaptive selection of a = a1 ∈ D such that

|⟨f1, e{a1}⟩|
2

= (1 − |a1|2)|f1(a1)|2 = max{(1 − |a|2)|f1(a)|2 : a ∈ D}.

In [12] we prove that such optimal a1 is attainable at a point in D for any function f1 ∈ H2(D). This result is called the
Maximal Energy Principle. The standard remainder
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r1(z) = f1(z) −


1 − |a|2f1(a1)

is accordingly minimized. We next find the reduced remainder f2 by

r1(z) = f2(z)
z − a1
1 − a1z

. (4)

Note that r1 has zero a1, and thus f2 is in H2(D). In general, the recursive formula to obtain fk+1 from fk is the ak-backward
shift of fk:

fk+1(z) =
fk(z) − ⟨fk, e{ak}⟩e{ak}(z)

z−ak
1−akz

, (5)

where

ak = argmax{|⟨fk, e{a}⟩| : a ∈ D}.

In terms of the standard remainder we have

rn(z) = fn+1(z)
n

k=1

z − ak
1 − akz

. (6)

We call such a process from fk to fk+1 through finding a maximizer ak for

|⟨fk, e{a}⟩| =


1 − |a|2|fk(a)|

amaximum sift. If ak does not give rise to the maximum, we can still carry on the process, then we call the process just a sift,
or a sift through ak. Möbius factors are accumulated and form finite order Blaschke products. The entry that we obtain at the
n-th sift is ⟨fn, e{an}⟩Bn(z). If all the sifts are maximum sifts, then the corresponding decomposition is an AFD. Indeed, under
maximum sifts we can show [12]

f =

∞
k=1

⟨fk, e{ak}⟩Bk =

∞
k=1

⟨f , Bk⟩Bk,

although the selected ak’s do not necessarily satisfy the condition (2).
Note that a-backward shift is a generalization of the ordinary backward shift operator. Indeed, the case a = 0 corresponds

to the latter. It is interesting to know that the recursive formula is just the generalized backward shift.
AFD is considered to be a realizable variation of greedy algorithm [15,33,34]. It is realizable, for at each selection we can,

theoretically, get the maximum energy gain; and it is a variation because the optimal selection for the parameter at each
step is not for the standard remainder, but for the reduced remainder. More aspects of the algorithm of AFD are studied
in [35]. AFD has been used to practical problems including system identification and speech analysis [27].

3. Unwinding AFD

Unwinding AFD was motivated by the following observation in digital signal processing. Let X(z) and Y (z) be the
Z-transforms of, respectively, the physically realizable signals x = (x0, x1, . . . , xn, . . .) and y = (y0, y1, . . . , yn, . . .). Assume
there exists the relation Y = GX , where G is an inner function. By definition an inner function in the unit disc is a bounded
analytic function whose non-tangential boundary limits are of unit module almost everywhere on the unit circle. Due to the
unimodular property of G, there follows

∥X∥ = ∥Y∥.

The Plancherel Theorem gives
∞
k=0

|xk|2 =

∞
k=0

|yk|2.

One can show, however, for any integer N ≥ 0,
N

k=0

|xk|2 ≥

N
k=0

|yk|2

(see [6,36]). This amounts to say that all-pass filters cause ‘‘energy delay’’. One can further show that if the equal sign holds
for a particular pair of signals x and y, then Gmust be of the form

G(Z) =
y0 + y1Z + · · · + yNZN

x0 + x1Z + · · · + xNZN
, (7)
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where the denominator of G(Z) has no zero in or on the unit circle [6,36]. This implies that if G is not of such form, then the
energy gain in the output signal Y is strictly delayed at each step. This suggests that in a mono-component decomposition,
in order to get fast convergence, we should factorize out at each step the inner function factor and only decompose the outer
function part.

This mechanism can also be explained as follows. Suppose one wishes to decompose a function that, by nature, only
has higher frequencies, such as f (z) = zng(z), where g is in H2(D). Thus in the Taylor series expansion of f the non-zero
coefficients start from cn. For such functions if one produces a mono-component decomposition starting from the very low
degree in the TM system, then the process is mandatory, and convergence cannot be expected to be fast. The natural way is
to first factorize out the inner function factor in the Nevanlinna factorization of the signal.

In the above example we should at least first factorize out the factor zn. We call the factorization procedure unwinding.
The actual algorithmgoes as follows. Let f ∈ H2(D), and f = I1f1, where I1 is the inner function factor of f in itsNevanlinna

factorization, and f1 is the outer function factor. The maximum sift process is applied to f1 that results in

f (z) = I1(z)[f1(z) − ⟨f1, e{a1}⟩e{a1}(z)] + I1(z)⟨f1, e{a1}⟩e{a1}(z)
= I1(z)g1(z) + I1(z)⟨f1, e{a1}⟩e{a1}(z).

Write

g1(z) = h2(z)
z − a1
1 − a1z

= I2(z)f2(z)
z − a1
1 − a1z

,

where I2 and f2 are the inner and outer factors of h2 ∈ H2(D). Successively, we obtain

f (z) =


n+1
i=1

Ii(z)


fn+1(z)


n

i=1

z − ai
1 − aiz


+

n
j=1


j

i=1

Ii(z)


⟨fj, e{aj}⟩Bj(z),

where hn+1 is the an-backward shift of fk,

hn+1(z) =
fn(z) − ⟨fn, e{an}⟩e{an}(z)

z−an
1−anz

, (8)

hn+1 = In+1fn+1,

and the outer function fn+1 is given by

fn+1(z) = e
1
2π
 2π
0

eit+z
eit−z

log |hn+1(eit )|dt
.

Next we use maximum sift to fn+1 and obtain an+1, and so on.
The last formula for finding the outer function in the Nevanlinna factorization is referred to any book of Hardy spaces

(e.g., [37]), and

f (z) =

∞
j=1


j

i=1

Ii(z)


⟨fj, e{aj}⟩Bj(z)

(see [11]).

4. Double sequence unwinding AFD

The DSUAFD algorithm is motivated by the same idea. The actual process involves selection of two parameters at one
time, as given below [13].

f (z) = I1(z)f1(z)

= I1(z)

f1(z) − A1 −

B1z
1 − a1z


+ I1(z)


A1 +

B1z
1 − a1z


,

where the role of A1 is to make f1(z) − A1 have the zero 0, and B1 = B(f1, A1, a1) is the constant that makes B1z
1−a1z

to be the
projection of f1(z) − A1 onto z

1−a1z
, where a1 is chosen so thatf1 − A1 −

B1(·)

1 − a1(·)

 = min
f1 − A1 −

B(·)
1 − a(·)

 : a ∈ D


,
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where B = B(f1, A1, a), and (·) represents the variable z (see [13]). Recursively, we have a sequence of outer functions fn and
dn ≥ 1 such that

f (z) = I1(z)I2(z)z


z − a1
1 − a1z

d1
f2(z) + I1(z)


A1 +

B1z
1 − a1z


= I1(z)I2(z)I3(z)z2


z − a1
1 − a1z

d1  z − a2
1 − a2z

d2
f3(z)

+


A2 +

B2z
1 − a2z


z − a1
1 − a1z

d1
I1(z)I2(z)z + I1(z)


A1 +

B1z
1 − a1z


= · · ·

=


n+1
i=1

Ii(z)


zn

n
i=1


z − ai
1 − aiz

di
fn+1(z)

n
j=1


Aj +

Bjz
1 − ajz

 j
i=1

Ii(z)


z j−1

j−1
i=1


z − ai
1 − aiz

di

=

∞
j=1


Aj +

Bjz
1 − ajz

 j
i=1

Ii(z)


z j−1

j−1
i=1


z − ai
1 − aiz

di
.

Note that the factors

Aj +
Bjz

1 − ajz

are, in fact, with Aj = fj(0) and

Bi =


O′

i(0), if ai = 0;
a−1
i (1 − |ai|2)[Oi(ai) − Oi(0)], if ai ≠ 0. di =


0, if O′

i(0) = 0;
1, if ai ≠ 0.

They generate two series, and that is the reason why it is called double sequence AFD. The role of the two sequences is to
produce, besides UAFD, one extra factor z at each step so to ensure really faster convergence than Fourier series (see the
proof in [13]). The first term Aj of the factor gives rise to a series whose entries are all inner functions. The second term Bjz

1−ajz
corresponding to the maximum sift process gives rise to what we have in UAFD in relation to the TM system. We note that
DSUAFD is always a mono-component decomposition due to existence of the powers of z in the entries.

5. MTFD

The mono-component-based time–frequency distribution (MTFD) of a mono-component signal s(t) = ρ(t)eiϕ(t) is defined
to be

P(t, ξ) = ρ2(t)δM(ξ − ϕ′(t)), (t, ξ) ∈ R ×


−

1
2M

, +∞


(9)

where

δM(ξ − ϕ′(t)) =


M if ξ ∈


ϕ′(t) −

1
2M

, ϕ′(t) +
1
2M


,

0 if ξ ∉


ϕ′(t) −

1
2M

, ϕ′(t) +
1
2M


.

(10)

There M is a large enough positive number. When M = ∞, then the L2-function δM becomes the distributional Dirac
(generalized) function. The reason for making M to be a finite number is for the mathematical convenience and practical
applications.

If s is a multi-component in the Hardy space H2, then through an adaptive mono-component decomposition s can be
decomposed into a sum of mono-components

s(t) =

∞
k=1

sk(t) (11)

or

s(t) =

n
k=1

sk(t) + rn(t), (12)
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Table 1
Relative energy errors of F1 .

Partial sum DSUAFD UAFD AFD FD

1 0.1910 0.1997 0.3294 0.1000 × 101

2 0.8203 × 10−1 0.9880 × 10−1 0.1444 0.1000 × 101

3 0.1121 × 10−1 0.1037 × 10−1 0.8033 × 10−1 0.1000 × 101

4 0.3048 × 10−2 0.3924 × 10−2 0.4348 × 10−1 0.9721
5 0.6439 × 10−3 0.7141 × 10−3 0.1388 × 10−1 0.8640
6 0.1414 × 10−3 0.1641 × 10−3 0.9103 × 10−2 0.7323
7 0.3652 × 10−4 0.4548 × 10−4 0.4039 × 10−2 0.6082
8 0.7050 × 10−5 0.7924 × 10−5 0.2989 × 10−2 0.5008
9 0.2132 × 10−5 0.2646 × 10−5 0.1502 × 10−2 0.4110

10 0.3657 × 10−6 0.3936 × 10−6 0.1132 × 10−2 0.3368

where rn is the remainder in H2. We note that adaptive mono-component decomposition is not unique. Under AFD, or
UAFD, or DSUAFD the decomposing terms (11) are all mono-components (sometimes pre-mono-components). They are
further orthogonal in those decompositions. Associatedwith everymono-component decomposition (11) or (12), an induced
time–frequency distribution of s is defined, also calledmono-component-based time–frequency distribution (MTFD), given by

P(t, ξ) =

∞
k=1

Pk(t, ξ) =

∞
k=1

ρ2
k (t)δM(ξ − ϕ′

k(t)), (t, ξ) ∈ R ×


−

1
2M

, ∞


(13)

or

P(t, ξ) =

∞
k=1

Pk(t, ξ) ≈

N
k=1

ρ2
k (t)δM(ξ − ϕ′

k(t)), (t, ξ) ∈ R ×


−

1
2M

, ∞


, (14)

where Pk(t, ξ) is the MTFD of the mono-component sk.
We can also induce an MTFD for a general signal s in L2. To this end we first project s into the related Hardy space, that

is to get s+, then adaptively decompose s+ into a sum of mono-components. Then we form the corresponding MTFD of s+.
The associated time–frequency distribution of s, called an MTFD of s, is defined to be identical with the MTFD of s+.

MTFDs for mono- and multi-components have many desired properties for time–frequency distributions.

6. Comparison of four methods

In this section, comparisons of the four methods (DSUAFD, UAFD, AFD and FD) are made. Here the relative energy error
of the Nth partial sum is defined as

E1(f ; n) =
∥f − fn∥2

∥f ∥2
, (15)

where fn is the n-th partial sum of the decomposition. In addition, we have the pointwise error

E2(f ; n) =

m
i=1

|f (i) − fn(i)|, (16)

where f (i) and fn(i) are the i-th interpolating points of f and fn, respectively. In our experiments, four functions were used.
The experiments were conducted on a computer with 2 GB RAM and 2.66 GHz Intel Core 2 Duo processor and the code was
implemented in MATLAB.

6.1. Experiment 1

The original signal (adopted from control theory) is

F1 =
0.0247z4 + 0.0355z3

(1 − 0.9048z)(1 − 0.3679z)
∈ H2, (17)

where z ∈ C.
Figs. 1–5 show the real parts of the original signal and of the partial sums corresponding to the four algorithms. Tables 1

and 2 illustrate the relative energy errors and pointwise errors. The results of 10 iterations are given. If we decompose
the signal 4 times, the relative energy errors of DSUAFD, UAFD, AFD, and FD are respectively 0.3048 × 10−2, 0.3924 ×

10−2, 0.4348 × 10−1 and 0.9721. It is easy to find that DSUAFD has the best performance, and that of UAFD is close. In
terms of iteration numbers, their approximations are obviously better than AFD and FD. As shown by the experiment, the
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Fig. 1. The 1st partial sums of F1 .

Fig. 2. The 2nd partial sums of F1 .

Table 2
Pointwise errors of F1 .

Partial sum DSUAFD UAFD AFD FD

1 0.1245 × 102 0.1259 × 102 0.1816 × 102 0.1391 × 102

2 0.5868 × 101 0.6229 × 101 0.1122 × 102 0.1391 × 102

3 0.2692 × 101 0.2604 × 101 0.1001 × 102 0.1391 × 102

4 0.1284 × 101 0.1411 × 101 0.5942 × 101 0.1582 × 102

5 0.6492 0.6651 0.4820 × 101 0.1587 × 102

6 0.2906 0.3084 0.3239 × 101 0.1492 × 102

7 0.1583 0.1705 0.2384 × 101 0.1380 × 102

8 0.6675 × 10−1 0.6929 × 10−1 0.2202 × 101 0.1256 × 102

9 0.3856 × 10−1 0.4131 × 10−1 0.1417 × 101 0.1134 × 102

10 0.1538 × 10−1 0.1560 × 10−1 0.1217 × 101 0.1034 × 102

approximation of AFD is significantly better than that of FD (see Table 1). The error curves are given in Fig. 6. The pointwise
errors of DSUAFD, UAFD, and AFD exhibit a similar phenomena. Table 3 presents the comparison of the respective computer
running times. (Note that N/A stands for ‘‘Not Applicable’’.) It shows that DSUAFD and UAFD requiremore running time than
AFD and FD. This is no wonder, as the factorization process costs a lot of time. To reach the same error, the running time
of AFD is less than that of FD. AFD involves much less iterations. The iteration numbers of DSUAFD, UAFD, AFD and FD are,
respectively, 7, 7, 22 and 55, when the error tolerance is 0.5 × 10−4.
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Fig. 3. The 3rd partial sums of F1 .

Fig. 4. The 4th partial sums of F1 .

Table 3
Comparison of running times on F1 (PS = order of the partial sum).

Error tolerance DSUAFD(PS) UAFD(PS) AFD(PS) FD(PS)

0.5 × 100 8.379 s(1) 8.281 s(1) 0.2083 s(1) 0.6537 s(9)
0.5 × 10−1 15.37 s(3) 15.68 s(3) 0.7291 s(4) 0.5679 s(20)
0.5 × 10−2 18.90 s(4) 18.99 s(4) 1.174 s(7) 1.110 s(32)
0.5 × 10−3 25.85 s(6) 25.55 s(6) 1.959 s(12) 1.690 s(43)
0.5 × 10−4 29.80 s(7) 29.25 s(7) 2.744 s(22) 2.423 s(55)

6.2. Experiment 2

In this experiment, a ladder signal is used to demonstrate the effectiveness of the proposedmethod. The original signal is

F2(t) =


2, 0.375π < t ≤ 0.625π,
5, 0.625π < t ≤ 1.25π,
3, 1.25π < t ≤ 1.75π,
1, otherwise,

(18)

where t ∈ [0, 2π ].
Figs. 7–11 show the real parts of the original signal and of the partial sums corresponding to the four algorithms. Tables 4

and 5 illustrate the relative energy errors and pointwise errors. In addition, we give the error curves of the four algorithms
in Fig. 12. Table 6 shows the respective computer running times. These experimental results demonstrate the effectiveness
of the newly proposed adaptive mono-component decompositions. Note that DSUAFD performs comparably with UAFD in
this experiment. They both perform better than AFD and FD on F2. We can reconstruct the signal by using a smaller number
of iterations in DSUAFD and UAFD.
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Fig. 5. The 5th partial sums of F1 .

Fig. 6. (a) Relative energy error curves and (b) pointwise error curves of F1 .

Table 4
Relative energy errors of F2 .

Partial sum DSUAFD UAFD AFD FD

1 0.5230 × 10−1 0.5605 × 10−1 0.7470 × 10−1 0.2400
2 0.1003 × 10−1 0.1081 × 10−1 0.4370 × 10−1 0.3896 × 10−1

3 0.3431 × 10−2 0.3176 × 10−2 0.1601 × 10−1 0.2728 × 10−1

4 0.3164 × 10−3 0.4236 × 10−3 0.1104 × 10−1 0.2476 × 10−1

5 0.9346 × 10−4 0.2123 × 10−3 0.8722 × 10−2 0.1887 × 10−1

6 0.2156 × 10−4 0.1800 × 10−3 0.5832 × 10−2 0.1482 × 10−1

7 0.2902 × 10−5 0.1591 × 10−3 0.4724 × 10−2 0.1352 × 10−1

8 0.1021 × 10−5 0.1541 × 10−3 0.3237 × 10−2 0.1341 × 10−1

9 0.2909 × 10−6 0.1537 × 10−3 0.2449 × 10−2 0.8791 × 10−2

10 0.3000 × 10−7 0.1535 × 10−3 0.2044 × 10−2 0.8754 × 10−2
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Fig. 7. The 1st partial sums of F2 .

Fig. 8. The 2nd partial sums of F2 .

Table 5
Pointwise errors of F2 .

Partial sum DSUAFD UAFD AFD FD

1 0.2575 × 103 0.2758 × 103 0.3191 × 103 0.5570 × 103

2 0.9815 × 102 0.1054 × 103 0.2038 × 103 0.1982 × 103

3 0.5242 × 102 0.5414 × 102 0.1278 × 103 0.1702 × 103

4 0.1771 × 102 0.2098 × 102 0.1105 × 103 0.1588 × 103

5 0.8863 × 101 0.1422 × 102 0.8972 × 102 0.1222 × 103

6 0.4283 × 101 0.1306 × 102 0.6930 × 102 0.1104 × 103

7 0.1613 × 101 0.1289 × 102 0.5233 × 102 0.1091 × 103

8 0.8819 × 101 0.1276 × 102 0.4884 × 102 0.1092 × 103

9 0.5038 0.1278 × 102 0.3893 × 102 0.7951 × 102

10 0.1571 0.1277 × 102 0.3671 × 102 0.7859 × 102

6.3. Experiment 3

The original signal is

F3 =
(1 + 2z2)

(z − 2)(z − 3)
−

1
(z + 2)(z + 3)

e
z+1
z−1 +

z+i
z−i +

z−i
z+i , (19)

where z ∈ C. The signal involves a singular inner function part induced by a singular measure consisting of three Dirac type
point measures at, respectively, 1, i, and −i. In our experiment, the values of the signal at singular points are determined by
their nearby points.
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Fig. 9. The 3rd partial sums of F2 .

Fig. 10. The 4th partial sums of F2 .

Fig. 11. The 5th partial sums of F2 .

This signal is more complex than the signals in the previous two experiments. Figs. 13–17 show the real parts of the
original signal and of the partial sums corresponding to the four algorithms. Tables 7 and 8 illustrate the relative energy
errors and pointwise errors. In addition, we also give the error curves of the four algorithms in Fig. 18. In Table 9, we give the
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Fig. 12. (a) Relative energy error curves and (b) pointwise error curves of F2 .

Fig. 13. The 1st partial sums of F3 .

Table 6
Comparison of running times on F2 (PS = degree of the partial sum).

Error tolerance DSUAFD(PS) UAFD(PS) AFD(PS) FD(PS)

0.5 × 100 9.084 s(1) 9.217 s(1) 8.868 s(1) 0.01248 s(1)
0.5 × 10−1 12.50 s(2) 12.52 s(2) 9.189 s(2) 0.01358 s(2)
0.5 × 10−2 15.85 s(3) 15.83 s(3) 11.04 s(7) 0.02420 s(19)
0.5 × 10−3 19.27 s(4) 19.12 s(4) 15.89 s(20) N/A
0.5 × 10−4 25.97 s(6) N/A 21.17 s(33) N/A

comparison of the respective computer running times. These experimental results demonstrate the effectiveness of DSUAFD
and UAFD. In this experiment neither AFD, nor FD gives effective approximation to F3.
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Fig. 14. The 2nd partial sums of F3 .

Fig. 15. The 3rd partial sums of F3 .

Table 7
Relative energy errors of F3 .

Partial sum DSUAFD UAFD AFD FD

1 0.2546 0.2439 0.3865 0.9437
2 0.8269 × 10−1 0.7640 × 10−1 0.2627 0.8846
3 0.1220 × 10−1 0.1241 × 10−1 0.1880 0.5777
4 0.3315 × 10−2 0.3410 × 10−2 0.1254 0.1675
5 0.1899 × 10−3 0.7231 × 10−3 0.7631 × 10−1 0.1484
6 0.7031 × 10−3 0.1856 × 10−3 0.5805 × 10−1 0.2737 × 10−1

7 0.5253 × 10−4 0.4459 × 10−4 0.4186 × 10−1 0.2533 × 10−1

8 0.1406 × 10−4 0.1097 × 10−4 0.3423 × 10−1 0.2291 × 10−1

9 0.4278 × 10−5 0.2779 × 10−5 0.2633 × 10−1 0.2201 × 10−1

10 0.1126 × 10−5 0.6655 × 10−6 0.2112 × 10−1 0.2155 × 10−1

6.4. Experiment 4

The original signal is

F3 =


(1 + 2z2)

(z − 2)(z − 3)
−

1
(z + 2)(z + 3)


e

z+1
z−1 +

z+i
z−i +

z−i
z+i , (20)

where z ∈ C. This signal has a singular inner function factor having three singular points at 1, i, and −i.
Figs. 19–23 show the real parts of the original signal and those of the partial sums corresponding to the four algorithms.

Tables 10 and 11 illustrate the relative energy errors and pointwise errors. We give the error curves of the four algorithms
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Fig. 16. The 4th partial sums of F3 .

Fig. 17. The 5th partial sums of F3 .

Table 8
Pointwise errors of F3 .

Partial sum DSUAFD UAFD AFD FD

1 0.5867 × 102 0.5765 × 102 0.8078 × 102 0.1114 × 103

2 0.2871 × 102 0.2847 × 102 0.6322 × 102 0.1136 × 103

3 0.1309 × 102 0.1313 × 102 0.5176 × 102 0.9532 × 102

4 0.6168 × 101 0.6361 × 101 0.4167 × 102 0.5262 × 102

5 0.3058 × 101 0.3148 × 101 0.3483 × 102 0.4999 × 102

6 0.1478 × 101 0.1814 × 101 0.2990 × 102 0.1800 × 102

7 0.7962 0.7741 0.2534 × 102 0.1568 × 102

8 0.3800 0.3689 0.2253 × 102 0.1696 × 102

9 0.2148 0.1916 0.1941 × 102 0.1602 × 102

10 0.1018 0.9073 × 10−1 0.1758 × 102 0.1635 × 102

Table 9
Comparison of running times on F3 (PS = order of the partial sum).

Error tolerance DSUAFD(PS) UAFD(PS) AFD(PS) FD(PS)

0.5 × 100 8.641 s(1) 8.982 s(1) 0.4963 s(1) 1.140 s(4)
0.5 × 10−1 15.87 s(3) 15.93 s(3) 1.582 s(7) 1.574 s(6)
0.5 × 10−2 19.91 s(4) 19.90 s(4) 37.05 s(39) 51.55 s(96)
0.5 × 10−3 27.80 s(6) 27.39 s(6) N/A N/A
0.5 × 10−4 33.99 s(8) 31.15 s(7) N/A N/A
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Fig. 18. (a) Relative energy error curves and (b) pointwise error curves of F3 .

Fig. 19. The 1st partial sums of F4 .

in Fig. 24. The comparison of the computer running times is presented in Table 12. These experimental results demonstrate
the effectiveness of DSUAFD and UAFD in this experiment. It seems that AFD and FD do not provide effective approximation
to singular inner functions.

6.5. Experiment 5

In this experiment we produce mono-component-based time–frequency distributions (MTFDs) of the functions F1 and
F2. Figs. 25 and 26 show MTFDs of F1 and F2.

6.6. Discussions and Conclusions

The four mono-component decomposition models, of which three are adaptive, are extensively compared. In terms of
iteration times, the three adaptive mono-component decompositions are more effective than the traditional Fourier series.
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Fig. 20. The 2nd partial sums of F4 .

Fig. 21. The 3rd partial sums of F4 .

Fig. 22. The 4th partial sums of F4 .

The DSUAFD and UAFD models are superb. For singular inner functions AFD and FD almost have no effect, while DSUAFD
and UAFD can do effective approximation. Among DSUAFD and UAFD the latter is more preferable, for, to gain a similar
accuracy, UAFD has a less complicated algorithm and requires less computer running time. In terms of computer running
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Fig. 23. The 5th partial sums of F4 .

Table 10
Relative energy errors of F4 .

Partial sum DSUAFD UAFD AFD FD

1 0.2443 0.1968 0.9279 0.1000 × 101

2 0.8113 × 10−1 0.7023 × 10−1 0.8453 0.9995
3 0.1131 × 10−1 0.1230 × 10−1 0.7588 0.9992
4 0.3390 × 10−2 0.3473 × 10−2 0.6755 0.9948
5 0.7033 × 10−3 0.8315 × 10−3 0.6118 0.9841
6 0.1942 × 10−3 0.2059 × 10−3 0.5659 0.9840
7 0.5207 × 10−4 0.5537 × 10−4 0.5276 0.9557
8 0.1307 × 10−4 0.1267 × 10−4 0.4810 0.9550
9 0.4024 × 10−5 0.3595 × 10−5 0.4448 0.9532

10 0.9307 × 10−6 0.7824 × 10−6 0.4202 0.9083

Table 11
Pointwise errors of F4 .

Partial sum DSUAFD UAFD AFD FD

1 0.4801 × 102 0.4484 × 102 0.9040 × 102 0.9173 × 102

2 0.2344 × 102 0.2357 × 102 0.8617 × 102 0.9192 × 102

3 0.1052 × 102 0.1088 × 102 0.8154 × 102 0.9201 × 102

4 0.5233 × 101 0.5409 × 101 0.7781 × 102 0.9095 × 102

5 0.2549 × 101 0.2743 × 101 0.7182 × 102 0.8898 × 102

6 0.1266 × 101 0.1312 × 101 0.6982 × 102 0.8856 × 102

7 0.6609 0.6938 0.6818 × 102 0.8194 × 102

8 0.3199 0.3232 0.6420 × 102 0.8198 × 102

9 0.1757 0.1744 0.6282 × 102 0.8394 × 102

10 0.8247 × 10−1 0.7976 × 10−1 0.6209 × 102 0.8459 × 102

Table 12
Comparison of running times on F4 (PS = order of the partial sum).

Error tolerance DSUAFD(PS) UAFD(PS) AFD(PS) FD(PS)

0.5 × 100 9.036 s(1) 8.467 s(1) 1.623 s(8) 7.140 s(25)
0.5 × 10−1 16.46 s(3) 15.55 s(3) N/A N/A
0.5 × 10−2 19.46 s(4) 19.59 s(4) N/A N/A
0.5 × 10−3 27.57 s(6) 26.10 s(6) N/A N/A
0.5 × 10−4 33.28 s(8) 33.76 s(8) N/A N/A

time, it is no wonder that DSUAFD and UAFD require considerably longer times, for they involve the factorization process.
The compensation is that only a few terms can effectively reconstruct the given signal. It is remarkable that AFD is more
effective than FD but requires not substantially more computer time. In fact, AFD gives rise to a practical algorithm of best
approximation by rational functions of degrees less than n. We will treat this issue in a separate paper.
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Fig. 24. (a) Relative energy error curves and (b) pointwise error curves of F4 .

Fig. 25. MTFD of F1 .
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Fig. 26. MTFD of F2 .
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