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1. Introduction30

The rational orthonormal system

Bn(z) = B{a1,a2,...,an}(z) =

√
1 − |an|2
1 − anz

n−1∏
k=1

z − ak

1 − akz
, n = 1, 2, . . . , (1.1)

is known as Takenaka–Malmquist system17 that depends on a given sequence of
complex parameters {ak} in unit disc D. It is a generalization of Fourier system
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{zn}∞n=0, the latter corresponding to ak = 0 for all k. Laguerre basis and two-
parameter Kautz basis6,7 are also special cases of (1.1). The inner product that we
use for L2(∂D) and the boundary values of functions in H2(D) is

〈F, G〉 =
1
2π

∫ 2π

0

F (eit)G(eit)dt.

Under the isometric isomorphism relation between them, we identity H2(D)
with the space of the boundary values of the functions in H2(D). As is well known,
the condition

∞∑
k=1

(1 − |ak|) = ∞ (1.2)

is sufficient and necessary for {Bn} to be a complete basis in the Hardy space1

H2(D). All the traditional studies of the orthonormal system are based on the2

condition (1.2). In Ref. 15, we introduce an approach to functional decomposition3

that is different from all those traditionally using the TM system. Instead of using4

a previously known parameter sequence {ak} satisfying the condition (1.1), we5

choose {ak} according to the given signal f to be decomposed. There are two6

main reasons of doing such decomposition. First, such decomposition is adaptive.7

Intuitively, as well as supported by experiments, approximation to a given f with8

fast convergence in energy is achieved. Secondly, under such decomposition any9

physically realizable signal may be decomposed into a series of mono-components10

of which each possesses non-negative and thus physically meaningful instantaneous11

frequencies.1,2,8,12,13 In particular, if we set a1 = 0, then all B{a1,a2,...,ak}(z) become12

multi-starlike functions, and therefore their phase derivatives are non-negative on13

the boundary.14

Subsequent to the previously established convergence result under the greedy15

algorithm principle, the present paper further proves a convergence rate that16

demonstrates the fastness of the convergence of AFD. The writing plan is as follows.17

In Sec. 2 we describe the AFD algorithm referred to Ref. 15. In Sec. 3 we prove18

the convergence rate. In Sec. 4 we show that in the average sense Fourier series is19

the optimal. In Sec. 5 we provide the transformation matrices between the adaptive20

rational orthogonal system and the related sequence of the shifted Cauchy kernels21

and their variations with multiples larger than one.22

2. Adaptive Fourier Decomposition23

Let f ∈ H2(D). To expand f = f1 = g1 into its Fourier series we use the following
process. The remainder f2(z) = f1(z) − f1(0) has zero at z = 0. Therefore, the
reduced remainder g2(z) = f2(z)/z ∈ H2(D). Since g2(z)− g2(0) has zero at z = 0,

the reduced remainder g3 = (f2 − f2(0))/z ∈ H2(D), and so on. We subsequently
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have

f(z) = f1(z) = f2(z) + g1(0)

= zg2(z) + g1(0)

= z2g3(z) + zg2(0) + g1(0)

...

= zn+1gn(z) + zngn−1(0) + · · · + zg2(0) + g1(0). (2.1)

This process is to first project f1 onto the unit vector one and then find the
remainder. Then project the reduced remainder, g2, that is the standard remainder
f2 being divided by z. The process from g1 to get the reduced remainder g2 may be
called a Fourier sifting. Then project g2 onto the same unit vector one, and subse-
quently find the next standard remainder f3 and the reduced remainder g3, and so
on. Every time it projects the reduced remainder to the unit vector one. Projecting
onto the unit vector one amounts to take average on all function values, that is
equivalent to evaluate the function value at zero. In AFD, instead of projecting
f1 = g1 onto the unit vector one, we project it onto the evaluator

e{a}(z) =

√
1 − |a|2
1 − az

, a ∈ D.

Note that it is a generalization of one, as e{0} = 1. By Cauchy’s integral formula,
we have

〈f1, e{a}〉 =
√

1 − |a|2f1(a).

Below we denote, for any f ∈ H2(D),

Aa(f) = (1 − |a|2)|f(a)|2. (2.2)

We adaptively select a = a1 ∈ D so that

|〈g1, e{a1}〉|2 = (1 − |a1|2)|g1(a1)|2 = max{(1 − |a|2)|g1(a)|2 : a ∈ D}.
In Ref. 15, we prove that for any g1 ∈ H2(D) such a1 is attainable at a point in

D. This result is called the Maximal Selection Principle. The standard remainder
f2(z) = f1(z)−√1 − |a1|2f1(a1)e{a1}(z) is accordingly the minimized one in norm
sense. We subsequently find the reduced remainder g2 by

g2(z) = f2(z)
1 − a1z

z − a1
. (2.3)

We call the process getting gk+1 from gk through such optimal selection of ak based1

on the Maximal Selection Principle a maximal sifting process, or a maximal sifting2

process through ak. If we algebraically deduce gk+1 from qk not through an optimal3

selection of e{ak} based on the Maximal Selection Principle, but through some4

evaluator e{b}, then the corresponding process is called the sifting process through5

b. The sifting process through a = 0 is the so-called Fourier sifting.6
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A dictionary D in a Hilbert space H is a set of functions of unit norm with
SpanD = H . A dictionary is, in general, redundant. Redundancy offers greater effi-
ciency in approximation. Closely related to a dictionary in nonlinear approximation
is greedy algorithm5,3 and its variations.16 The above-mentioned adaptive decom-
position programme can be regarded as a modified orthogonal greedy algorithm as
follows. We begin with a dictionary D in the Hardy Space H2(D). Here, the special
dictionary D is given by

D :=

{
e{a}(z) =

√
1 − |a|2
1 − āz

, a ∈ D

}
. (2.4)

Note that every e{a}(z) is a normalized Cauchy kernel function.1

Adaptive Fourier Decomposition. Associated with AFD the following notations
and properties will be used. We set g1 := f1 := f . Then, for each m ≥ 1, we
inductively define

Hm(f) := span{B{a1}, B{a1,a2}, . . . , B{a1,...,am}}. (2.5)

The standard remainder

fm+1 := f − PHm(f), (2.6)

where PHm(f) is the orthogonal projection of f to Hm(f). fm are standard
reminders:

fm = f −
m−1∑
k=1

〈f, Bm〉Bm.

In particular,

‖fm‖2 = ‖fm−1‖2 − |〈fm−1, Bm−1〉|2. (2.7)

The reduced remainders

gm := fm

m−1∏
k=1

1 − ākz

z − ak
. (2.8)

We have where

〈f, Bm〉 = 〈fm, Bm〉 = 〈gm, e{am}〉.
In AFD we employ maximal sifting processes, that is, when the proceeding

e{al}, l = 1, . . . , m − 1, have been selected, the next e{am} is selected according to
Maximal Selection Principle, that is

|〈gm, e{am}〉| = max{|〈gm, e{a}〉| : a ∈ D}, (2.9)

where

Aa(gm) = |〈gm, e{a}〉|2 = (1 − |a|2)|gm(a)|2.
After all, we have2
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Theorem 2.1.15 For any function f ∈ H2(D), if a1, . . . , ak, . . . are consecutively
selected according to the Maximal Selection Principle, then we have

f =
∞∑

k=1

〈f, B{a1,...,ak}〉B{a1,...,ak}

in the H2(D) sense.1

3. Convergence Rate on H2(D, M)2

For the dictionary D, we define the subclasses of functions

H2(D, M) :=

{
f ∈ H2(D) : f =

∞∑
k=1

ckek, ek ∈ D,

∞∑
k=1

|ck| ≤ M

}
. (3.1)

Note that the convergence in the definition takes the H2-norm sense.3

Lemma 3.1. If f in H2(D, M), then ‖f‖ ≤ M.4

Proof. For f ∈ H2(D, M), there exist a sequence of complex numbers {ck} and a
sequence {ek} ∈ D such that f =

∑∞
k=1 ckek with

∑∞
k=1 |ck| ≤ M ,

‖f‖2 = |〈f, f〉|

=

∣∣∣∣∣〈f,

∞∑
k=1

ckek〉
∣∣∣∣∣

≤
∞∑

k=1

|ck||〈f, ek〉|. (3.2)

From the Schwarz inequality and the characterized expansion of f in {ek},

‖f‖2 ≤ M‖f‖, (3.3)

which gives ‖f‖ ≤ M .5

We have:6

Lemma 3.2. Let f ∈ H2(D, M) and f =
∑∞

k=1 cke{ak}. If there exists a series of
positive numbers such that

∑∞
n=1 ρn < ∞ and∣∣∣∣∣

∞∑
k=1

ck

√
1 − |ak|2an

k

∣∣∣∣∣ ≤ ρn,

then f belongs to the positive Wiener algebra W+. In particular, if for every k,7

|ak| < r < 1, then f ∈ W+.8
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Proof. Writing each e{ak} into its Taylor series expansion, we have

f(z) =
∞∑

k=1

cke{ak}(z)

=
∞∑

k=1

ck

√
1 − |ak|2

(
1 +

∞∑
n=1

an
kzn

)

=
∞∑

k=1

ck

√
1 − |ak|2 +

∞∑
n=1

zn
∞∑

k=1

ck

√
1 − |ak|2an

k .

In the closed unit disc the series is uniformly dominated by

CM +
∞∑

n=1

ρn,

and therefore is in the positive Wiener algebra.1

We now turn to analysis of approximation rate of AFD. We need the following2

lemma.3

Lemma 3.3.4 Let {dm}∞m=1 be a sequence of nonnegative numbers satisfying

d1 ≤ A, dm+1 ≤ dm

(
1 − dm

A

)
. (3.4)

Then there holds

dm ≤ A

m
.

Theorem 3.1. Let D be the dictionary of normalized Cauchy kernels in H2(D).
Then for each f ∈ H2(D, M), decomposed by Adaptive Fourier Decomposition, we
have

‖fm‖≤ M√
m

.

Proof. In the process of Adaptive Fourier Decomposition, we have, due to (2.7),

‖fm+1 ‖2=‖fm‖2 −|〈fm, Bm〉|2.
Since f ∈ H2(D, M), there exists a sequence {bk} ∈ D such that f =

∑∞
k=1 cke{bk}.

Therefore,

‖fm‖2 = |〈fm, f〉|

=

∣∣∣∣∣〈fm,

∞∑
k=1

cke{bk}〉
∣∣∣∣∣

≤ M sup
bk

|〈fm, e{bk}〉|

= M sup
bk

√
1 − |bk|2|fm(bk)|. (3.5)
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From Maximal Selection Principle and computation of the inner product,

|〈fm, Bm〉| = sup
a∈D

|〈fm, B{a1,...,am−1,a}〉|

= sup
a∈D

|〈gm, e{a}〉|

= sup
a∈D

√
1 − |a|2|fm(a)|

∣∣∣∣
m−1∏
k=1

1 − āka

a − ak

∣∣∣∣
≥ sup

bk

√
1 − |bk|2|fm(bk)|

∣∣∣∣
m−1∏
k=1

1 − ākbk

bk − ak

∣∣∣∣
≥ sup

bk

√
1 − |bk|2|fm(bk)|

≥ 1
M

‖fm‖2, (3.6)

we therefore have

‖fm+1 ‖2≤‖fm‖2

(
1 − ‖fm ‖2

M2

)
. (3.7)

By setting A = M2 and using Lemma 3.3, we obtain the desired estimate.1

Remark 3.1. The proved convergence rate is not a sharp estimate. It addresses the2

worst case, that, apart from being in H2(D, M), does not assume other properties3

for the signal. It is, in particular, regardless degree of smoothness of the signal. The4

results on convergence rates of Fourier decomposition heavily rely on smoothness5

of functions under consideration. Effectiveness (fastness) of greedy algorithm is6

supported by intuition and experiments. In the concrete experimental examples7

one often gets small errors after a few maximal sifting processes.8

4. Justification of Fourier Series9

Below we give a justification on the norm convergence of the traditional Fourier
expansion from the adaptive approximation point of view. Fourier expansion of a
given function in H2(D), as described at the beginning of Sec. 2, corresponds to the
selection an = 0 for all n. At every selection it takes e{0} = 1 in the dictionary, and
projects the function and all its reduced remainders onto this fixed elements. We call
this Fourier shifting process. We show that for general signals in the Hardy space,
in the average sense, the Fourier shifting process gives rise to the best result. We
will introduce a probability measure P (dg) of reasonably symmetric properties on
the unit sphere S(H2(D)) of the Hardy H2(D) space. The first symmetric property
to be required is the rotational symmetry. We require, for any a = reit,∫

S(H2(D))

|g(a)|2P (dg) = L(r). (4.1)
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The average of the projected energies over all functions on the sphere then is
identical with∫

S(H2(D))

|〈g, e{a}〉|2P (dg) =
∫

S(H2(D))

(1 − |a|2)|g(a)|2P (dg)

= (1 − r2)L(r), (4.2)

being independent of the orientation eit. We now proceed to showing that the1

selection a = 0, among all a ∈ D, gives rise to the largest average of the projected2

energies.3

The set of functions S(H2(D)), being identical with the unit sphere of the l2

space {
(c0, c1, . . . , cn, . . .)|

∞∑
k=0

|ck|2 = 1

}
, (4.3)

is viewed as the direct product of the sets

X1 = {(|c0|, . . . , |cn|, . . .)|
∞∑

n=0

|cn|2 = 1},

and

X2 = {(eiθ0 , . . . , eiθn , . . .)| θn ∈ [0, 2π), n = 0, 1, . . .},
i.e.

S(H2(D)) = X1 × X2.

Let P (dρ) and P (dθ) denote the probability measures on X1 and X2, respec-
tively, where P (dg) is the product probability of P (dρ) and P (dθ), i.e. P (dg) =
P (dρ) × P (dθ). P (dθ) is defined by the independent identical distributions (i.i.d.)
of its factor spaces {θk : θk ∈ [0, 2π)} of which each is the normalized Lebesgue
measure in [0, 2π). P (dρ) is defined by evenly distributed |cn|2 in [0, 1] for each n.

For different n they are not independent, but with the constraint condition given
in the definition of the space X1. Adopting the above defined probability over the
unit sphere S(H2(D)), and considering the random variable

Aa(g) = |〈g, e{a}〉|2 = (1 − |a|2)|g(a)|2, g ∈ S(H2(D)), (4.4)

we have4

Theorem 4.1. Under the probability defined on S(H2(D)) the mathematical expec-5

tation E(Aa) takes its maximum value at a = 0.6

Proof. We have, for any a = reiα ∈ D,∫
S(H2(D))

|g(a)|2P (dg) = L(r) =
1
2π

∫ 2π

0

L(r)dt

=
1
2π

∫ 2π

0

∫
S(H2(D))

|g(reit)|2P (dg)dt

1350007-8
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=
∫

S(H2(D))

1
2π

∫ 2π

0

|g(reit)|2dtP (dg)

=
∫

S(H2(D))

∞∑
n=0

|cn|2r2nP (dg)

=
∫

X1

∞∑
n=0

|cn|2r2nP (dρ). (4.5)

Denoting the probability event |c0|2 ∈ [k−1
N , k

N ) by Ek, then P (Ek) = 1
N , and

the energy left for
∑∞

k=1 |ck|2 is, approximately, 1 − k
N . Denote by P (dρ/Ek) the

conditional probability, k = 1, . . . , L, then the last entry of (4.5) is equal to

lim
N→∞

N∑
k=1

P (Ek)
∫

X1/Ek

∞∑
n=0

|cn|2r2nP (dρ/Ek)

= lim
N→∞

N∑
k=1

1
N

∫
X1/Ek

(
k

N
+ r2

∞∑
n=0

|cn+1|2r2n

)
P (dρ/Ek)

= lim
N→∞

(
N∑

k=1

k

N2
+ r2

N∑
k=1

L(r)
(

1 − k

N

)
1
N

)

=
(∫ 1

0

tdt + r2L(r)
∫ 1

0

(1 − t)dt

)

=
(

1
2

+
r2

2
L(r)

)
. (4.6)

Comparing (4.5) with (4.6), we obtain

L(r) =
1

2 − r2
,

and, by (4.4),

sup
a∈D

E(Aa) = sup
a∈D

(1 − |a|2)L(|a|) =
1
2
, at a = 0.

This shows that if we do not know any information about g1, but only1

g1 = g ∈ H2(D), then the wise selection of a is a1 = 0. Since the reduced remainder,2

g2 obtained through the a1-sifting is also a general element in H2(D), the next wise3

selection is a2 = 0, and so on. Thus Fourier series would be the wisest for decom-4

posing a general element in H2(D). If, however, specific information of g1 ∈ H2(D)5

is known, for instance, through the given concrete data, then the Fourier series6

should not be the best. In general the introduced AFD provides a fast convergence7

in energy, while the obtained decomposition better frequency aspects than Fourier8

series. One could also define the probability P (dρ) on X1 by the condition that9

1350007-9
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|cn|p, p 	= 2, is evenly distributed in [0, 1]. Theorem 4.1 may be elaborated as fol-1

lows. Assume that the probability on X2 satisfies the same orientation symmetric2

property and the probability on X1 complies with the following probability law:3

(i) For any k the probability density of the distribution of |ck|2 in [0, 1] is α(t):∫ 1

0

α(t)dt = 1;

and4

(ii) When |c0|2 is fixed belonging to the event {|c0|2 ∈ E}, the conditional probabil-5

ity distribution P (dρ/E) for
{

|c1|2
1−|c0|2 , . . . , |cn|2

1−|c0|2 , . . .
}

on the sphere S(H2(D))6

is the same as that for {|c0|2, . . . , |cn|2, . . .} on the unit sphere. Then there holds7

Theorem 4.2. Under the probability distribution α for X1 and the i.i.d. symmetric
distribution for X2, the mathematical expectation E(Aa) satisfies the relation

E(Aa) =
A(1 − |a|2)

1 − |a|2(1 − A)

that takes the maximum value A at a = 0, and

A =
∫ 1

0

tα(t)dt.

Proof. Define L(r) by (4.1) and denote Eα
k the event |c0|2 ∈ [k−1

N , k
N

]
that has

the probability ∫ k
N

k−1
N

α(t)dt ≈ α

(
k

N

)
1
N

.

Similarly to the proof of Theorem 4.1, we have

L(r) = lim
N→∞

N∑
k=1

P (Eα
k )
∫

X1/Eα
k

∞∑
n=0

|cn|2r2nP (dρ/Eα
k )

= lim
N→∞

N∑
k=1

α

(
k

N

)
1
N

∫
X1/Eα

k

(
k

N
+ r2

∞∑
n=0

|cn+1|2r2n

)
P (dρ/Ek)

= lim
N→∞

(
N∑

k=1

α

(
k

N

)
1
N

k

N
+ r2

N∑
k=1

L(r)
(

1 − k

N

)
α

(
k

N

)
1
N

)

=
∫ 1

0

tα(t)dt + r2L(r)
∫ 1

0

(1 − t)α(t)dt

= A + r2L(r)(1 − A). (4.7)

Solving the equation for L(r), we have

L(r) =
A

1 − r2(1 − A)
.
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Therefore,

sup
a∈D

E(Aa) = sup
a∈D

(1 − |a|2)L(|a|)

= A sup
r∈[0,1)

1 − r2

1 − r2(1 − A)

= A, at r = 0.

Remark 4.1. The probability distribution of X1 in Theorem 4.1 corresponds to1

α(t) ≡ 1, and that for “|cn|p, p 	= 2, being evenly distributed in [0, 1]” corresponds2

to α(t) = p
2 t

p−2
2 . In the two cases, respectively, A = 1

2 and A = p
p+2 .3

Remark 4.2. It is well known that better smoothness gives implies faster conver-4

gence of Fourier series. In the probability language this may be interpreted as α(t)5

having greater values nearby one. In the case A is close to one, and, by Theorem 4.2,6

the Fourier series has a faster convergence rate in the average sense.7

5. Transformation Matrices Between T-M and Shifted Cauchy8

Kernel Systems9

In Ref. 14, we show, for any given m-tuple {a1, . . . , an},
Span{B1, B2, . . . , Bn} = Span{E{a1}, E{a1,a2}, . . . , E{a1,...,an}}, (5.1)

where if ak 	= 0 having multiplicity l in {a1, . . . , ak}, then

E{a1,...,ak} =
1

(1 − akz)l
, l ≥ 1

and if ak = 0 having multiplicity l in {a1, . . . , ak}, then

E{a1,...,ak} = zl−1, l ≥ 1.

The system

{Ek}n
k=1 = {E{a1}, E{a1,a2}, . . . , E{a1,...,an}}

is called the shifted Cauchy kernel system, or the Cauchy wavelet system by some
authors. Although it is not orthogonal, it has some advantage over the TM system
{Bk}n

k=1. For instance, if a real-valued signal s can be expressed by

s(eit) = Re
n∑

k=1

ckEk(eit),

which is easy to compute, then the Hilbert transform of s(t) is

Hs(eit) = Im
n∑

k=1

ckEk(eit),

which is also easy to compute.10

Proposition 5.1. For arbitrary n, given a sequence {ak}n
k=1, denote Bn =

{Bk}n
k=1

T
, En = {Ek}n

k=1
T
. Then the invertible transformation matrix Tn such
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that En = TnBn is given by Tn = {ckj}n×n where

ckj =

√
1 − |aj |2

1 − ākaj

j−1∏
i=1

āk − āi

1 − ākai
,

when all {ak} are distinct ; or

ckj =

{
Dq−1[zq−1Bj(z)](am), am 	= 0,

D(q−1)[Bj(z)](0), am = 0,

where m and q are uniquely determined by k. Dq−1 denoting the (q−1)th derivative,1

when {ak} has the multiplicity.2

Proof. There are two cases to consider.3

Case (i). Let {ak} be a sequence of distinct points in D. Since Bn is obtained
from En through Gram–Schmidt procedure, for finite n, Span Bn = Span En, and
elements in Bn are orthogonal, so Ek =

∑k
j=1 ckjBj , where

ckj = 〈Ek, Bj〉
= 〈Bj , Ek〉
= Bj(ak)

=

√
1 − |aj |2

1 − ākaj

j−1∏
i=1

āk − āi

1 − ākai
, k = 1, 2, . . . , n. (5.2)

Case(ii). When some ak has multiplicity larger than one, the corresponding
Ek changes. Suppose, for the given n, there are totally N different points
{a1, a2, · · · , aN}, with lm being the corresponding multiplicity of am, l1 + l2 + · · ·+
lN = n. In this case, Span Bn = Span En is irrelevant to the order of the points. We
may set the order to be {a1, . . . , a1, a2, . . . , a2, . . . , aN , . . . , aN}, and, accordingly,
Ek =

∑k
j=1 ckjBj , and

ckj = 〈Ek, Bj〉
= 〈Bj , Ek〉, j ≤ k. (5.3)

There exist some unique m and q such that Ek = 1
(1−āmz)q , am 	= 0 or Ek =

zq−1, am = 0, where 1 ≤ q ≤ lm. From Residue theorem, for j ≤ k, for the first
case,

ckj = 〈Ek, Bj〉
= 〈Bj , Ek〉

=
1
2π

∫ 2π

0

Bj(eit)
1

(1 − ame−it)q
dt

1350007-12
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=
1

2πi

∫
z∈D

Bj(z)zq−1
1

(z − am)q
dz

=
1

(q − 1)!
D(q−1)[zq−1Bj(z)](am) (5.4)

and, for the second case,

ckj = 〈Ek, Bj〉
= 〈Bj , Ek〉

=
1
2π

∫ 2π

0

Bj(eit)
1

ei(q−1)t
dt

=
1

2πi

∫
z∈D

Bj(z)
1
zq

dz

=
1

(q − 1)!
D(q−1)[Bj(z)](0). (5.5)

In both cases, for j > k,

Bj ⊥ Span{B1, . . . , Bk} = Span{E1, . . . , Ek},
and thus Bj ⊥ Ek, j > k. So, ckj = 0, j > k. Therefore, writing the n-dimensional
vector En, Bn in the matrix version, there exists

Tn =




c11 0 · · · 0
c21 c22 · · · 0
· · · · · · · · · · · ·
cn1 cn2 · · · cnn


,

such that En = TnBn. Note that ckk 	= 0 and Tn is invertible.1
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