Pricing and sales-effort analysis of dual-channel supply chain with channel preference, cross-channel return and free riding behavior based on revenue-sharing contract

Senyu Xu^a, Huajun Tang^a, Zhijun Lin^a, Jing Lu^b

^aSchool of Business, Macau University of Science and Technology, Taipa, Macau

^bYGSoft Incorporation, Zhuhai, PR China

Introduction

- Offline stores can attract more customers through sales-effort, but some customers may purchase in online channels after enjoying the pre-sale service from offline stores, which results in the free-riding behavior $(FRB)^1$.
- Due to the long lead time of online returns, customers have potential demand for cross-channel return $(CCR)^2$.
- Financing difficulties of small and medium-sized enterprises (SMEs) have become the key barrier of their development, and even the whole supply chain³.
- If the supply chain intends to achieve the optimal performance, it has to alleviate the conflict among the supply chain members⁴.

Objectives

Results

- Propose a trade credit financing (TCF) scheme to solve the capital constraint of the retailer, and discusses the effect of channel preference, sales-effort, FRB and CCR on the pricing decisions and the optimal performance of the dual-channel supply chain.
- Propose a revenue-sharing contract to coordinate the supply chain members, so as to reduce channel conflicts and improve the profits of both channels.

Methods		
Model Construction	Profit functions of retailer, supplier	
	and overall supply chain.	
Optimal Solution	Optimal sales-effort level, optimal	
	online and offline setting prices.	
	Achieve the coordination and	
Contract Coordination	reasonable profit distribution with Pareto-optimality	
	Tureto optimunty.	
Theoretical Analysis	Numerical Analysis	

 π_o^{d*} and π_f^{d*} are the optimal profits of the supplier's online channel and the retailer's offline channel, ε is the proportion of CCR, and *l* is unit contribution to the supplier of the CCR products.

Table 1. Coordination analysis

и	π_f^u	π^u_o	Π^{c*}
0.05	435780	1097700	1533500
0.07	458890	1074600	1533500
0.09	482000	1051500	1533500
0.11	505110	1028400	1533500
0.13	528220	1005300	1533500
0.15	551330	982170	1533500

u is the supplier's revenue sharing ratio, and π_f^u and π_o^u are the profit functions of the retailer and the supplier with revenue sharing contract.

Conclusions

- It is vital for the dual-channel members to propose some rules so as to control or avoid FRB when consumers have a high offline channel preference in real business.
- The members need to negotiate with each other to set a lower unit contribution to the supplier of the CCR products if more consumers use CCR service.
- Revenue sharing contract can well coordinate the supply chain members with TCF.

References

Figure 1. Π^{d*} and Π^{c*} with θ and β

 Π^{d*} and Π^{c*} are the overall supply chain profits under the decentralized and centralized decisions, θ is offline channel preference proportion, and β is free riding coefficient of the supplier.

- Chen, Jing, and Bintong Chen. 2019. When should the offline retailer implement price matching? Eur. J. Oper. Res. 277 (3):996-1009. doi: 10.1016/j.ejor.2019.03.013.
- Yan, S., X. Y. Xu, and Y. W. Bian. 2020. Pricing and Return Strategy: Whether to 2. Adopt a Cross-Channel Return Option? IEEE Trans. Syst. Man Cybern. -Syst 50 (12):5058-73. doi: 10.1109/tsmc.2020.2964560.
- Huang, J., W. S. Yang, and Y. L. Tu. 2019. Supplier credit guarantee loan in supply 3. chain with financial constraint and bargaining. Int. J. Prod. Res 57 (22):7158-73. doi: 10.1080/00207543.2019.1581386.
- Yang, Danqin, and Tiaojun Xiao. 2016. Coordination of a supply chain with loss-4. averse consumers in service quality. Int. J. Prod. Res 55 (12):3411-30. doi: 10.1080/00207543.2016.1241444.

Contact

- Name: Senyu Xu
- Phone Number: +86 15521173263
- E-mail: <u>420881488@qq.com</u>
- ORCID: 0000-0003-4264-5408

Acknowledgements: I would like to express my sincere gratitude to Prof. Huajun Tang (supervisor) for all his guidance and help during my PhD study.